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ABSTRACT

In contrast to existing multi-band Wi-Fi fusion in a frame-to-frame
basis for simple classification, this paper considers asynchronous
sequence-to-sequence fusion between sub-7GHz channel state in-
formation (CSI) and 60GHz beam SNR for more challenging down-
stream tasks such as continuous regression. To handle the timing
disparity between the two channel measurements, we extend our re-
cently proposed dual-decoder neural dynamic (DDND) framework
with latent ordinary differential equations (ODEs), align the distinct
latent dynamic states at the same time instances, and introduce a
post-ODE fusion framework. The resulting neural dynamic fusion
(NDF) framework is trained in an end-to-end fashion with a modi-
fied variational autoencoder loss function. Evaluation over a newly
collected in-house multi-band Wi-Fi dataset shows the advantage of
the proposed NDF method over frame-based and DDND methods.

Index Terms— WLAN sensing, 802.11bf, Wi-Fi sensing,
ISAC, localization, multi-band fusion, and dynamic learning.

1. INTRODUCTION

Wi-Fi sensing, e.g., device localization and device-free human
sensing, has received much attention in the past decade from both
academia and industry. This trend has been manifested by the estab-
lishment of a new task group (TG) - 802.11bf WLAN Sensing – in
September 2020, to go beyond data transmission and meet industry
demands for robust and reliable wireless sensing.

Existing studies are primarily based on the coarse-grained re-
ceiver signal strength indicator (RSSI) and the fine-grained channel
state information (CSI) in terms of channel frequency response over
OFDM subcarriers [1–5]. At a high frame rate, CSI reflects intrin-
sic channel features from frequency subcarriers (delay) and multiple
transmitter-receiver pairs (angle) but may experience channel insta-
bility to even small-scale environment changes. These features can
be extracted from frame-based or sequence-based frameworks [6–9].
On the other hand, mid-grained mmWave beam training measure-
ments at 60GHz, e.g., beam SNR, have shown better channel stabil-
ity over time [10–18]. These beam SNR measurements originate
from sector-level directional beam training, a mandatory step for
mmWave Wi-Fi to compensate for large path loss and establish the
link between the AP and the user. However, they suffer from low
frame rate and irregular sample intervals due to the beam training
overhead and follow-up association steps. To deal with such inter-
mittent sampling issues over multiple frames, [19] proposed a dual-
decoder neural dynamic learning (DDND) framework that learns the
underlying latent dynamics in a continuous-time fashion by explor-
ing the neural ODE framework [20–23].
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Fig. 1: Multi-band Wi-Fi fusion from frame-to-frame basis of [16]
for classification (top) to asynchronous sequence-to-sequence basis
for continuous-time regression (bottom).

Fusion-based approaches have been considered in the literature
for robustness and better accuracy. Heterogeneous sensor fusion
was studied between Wi-Fi and other modalities, e.g., Bluetooth
and acoustics [24–26]. Within Wi-Fi channel measurements, CSI
and RSSI can be simply concatenated for a joint feature extrac-
tion [27]. [28] proposed to fuse the phase and amplitude of the fine-
grained CSI for localization. When multiple access points (APs)
are deployed in the scene, multi-AP fusion was proposed in [29, 30]
by exploring the generalized interview and intraview discriminant
correlation analysis and, respectively, the maximum mean discrep-
ancy (MMD) criterion. To the best of our knowledge, our previous
work in [16] is the only effort considering multi-band Wi-Fi fusion
between CSI and beam SNR. However, it is limited to simple classi-
fication tasks, e.g., pose classification (over 8 stationary poses), seat
occupancy sensing (8 static patterns), and fixed-grid localization.
Despite being sampled at different time instances, the two channel
measurements can be simply combined on a frame-to-frame basis as
these asynchronous samples correspond to the same stationary label
(e.g., pose, occupancy, location) and their respective sampling time
becomes irrelevant for the fusion; see the top plot of Fig. 1.

In this paper, we substantially advance the multi-band Wi-Fi fu-
sion framework, evolving from the static frame-to-frame basis of
[16] to a dynamic asynchronous sequence-to-sequence basis (see
the bottom plot of Fig. 1.), thus supporting more challenging down-
stream tasks, e.g., continuous regression and continuous-time ob-
ject trajectory estimation, as opposed to simple classification prob-
lems. Referring to the neural dynamic fusion (NDF) framework,
it is achieved by extending the beam SNR-only DDND framework
of [19] to two separate neural ODE decoders defined on a shared
time axis, forcing the two decoders to generate virtual latent dynamic
states in the same time instances and combining these synchronized
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Fig. 2: Asynchronous multi-band Wi-Fi fusion with neural dynamic learning for object trajectory estimation.

post-ODE latent dynamic states via a fusion block for continuous
trajectory estimation. To further align the two distinct latent spaces
over time, we encode both the CSI and the beam SNR sequences to
estimate their respective initial conditions at a common starting time
t0, which can precede the first sample from either channel measure-
ment. To train the proposed multi-decoder neural dynamic fusion
network, we consider a loss function that is a weighted sum of wave-
form reconstruction losses at asynchronous time instances and coor-
dinate estimation errors at these synchronized time instances. With
a newly collected in-house multi-band Wi-Fi dataset for robot tra-
jectory estimation, comprehensive performance evaluation confirms
the effectiveness of the proposed neural dynamic fusion over a list
of baseline methods.

2. PROBLEM FORMULATION

We formulate trajectory estimation as a regression with asyn-
chronous CSI and beam SNR sequences. At time tbn, we collect a set
of M beam SNR values bn = [b1, b2, · · · , bM ]⊤ ∈ RMb×1, each
corresponding to one beam training pattern. For CSI, at time tcn, we
collect a channel frequency response matrix Cn ∈ CNTxNRx×Ns

over Ns OFDM subcarriers, NTx transmitting antennas, and NRx

receiving antennas. For a time window of length ∆Tw, we collect
Nb beam SNR samples and Nc CSI samples with which we aim
to estimate the trajectory at Np time instances tpn, n = 1, · · · , Np.
Note that Nb and Nc may vary from one time window to another.

The problem of interest is to estimate the coordinate of a trajec-
tory at any time point tpn within the time window with the beam SNR
and CSI input sequences along with their respective time stamps,

{bn, t
b
n}Nb

n=0, {Cn, t
c
n}Nc

n=0 → {pn}Np

n=0 , (1)

where pn = [xn, yn]
⊤ consists of two-dimensional coordinates at

tpn.

3. MULTI-BAND NEURAL DYNAMIC FUSION

The proposed multi-band sequence-to-sequence Wi-Fi fusion frame-
work is shown in Fig. 2. From left to right, we have two ODE-RNN
encoders for both beam SNR and CSI, two separate latent dynamic

ODE blocks, a post-ODE fusion block, and three decoders for wave-
form reconstruction and coordinate estimation. In the following, we
introduce each block in more details1.

3.1. Embedding Layers

For the fine-grained CSI matrix Cn, we follow standard calibra-
tion steps to remove sampling time offset (STO) between transmitter
and receiver due to sampling frequency offsets and packet detec-
tion errors and carrier frequency offset (CFO) among receiver RF
chains [31, 32]. The calibrated complex-valued CSI matrix at tcn is
then flattened and mapped to an embedding space via a pre-trained
one-dimensional convolution (Conv1D) network. Specifically, we
have E(Cn) = cn ∈ RMc×1 as the embedding vector of the CSI.
For the mid-grained beam SNR bn, we directly take the raw beam
SNR as the input to the following ODE-RNN encoders. To maintain
the balance between the two input dimensions, we have approxi-
mately Mb ≈ Mc.

3.2. ODE-RNN Encoders

For the two separate encoders for beam SNR and CSI, respectively,
we follow the ODE-RNN encoder architecture [19, 21] to take the
reversed input sequences tN , tN−1, · · · , t1 to estimate the initial la-
tent conditions at the common starting time t0

2.
Let us start from beam SNR encoding. With an ODE-RNN en-

coder, each recurrent unit updates its hidden vector hn ∈ RLh×1

with an auxiliary vector h′
n+1 and bn.

hn = Gθg (h
′
n,bn), (2)

where Gθg can be either GRU or LSTM unit with learnable parame-
ters θg . Then the ODE-RNN encoder utilizes an ODE function Oθbe
to describe the propagation of the latent vector in a continuous-time
fashion,

dh(t)

dt
= Oθbe

(h(t), t), (3)

1Note that the mathematical ornamental characters represent neural net-
works, and the θ subscript at the bottom right denote learnable parameters.

2Since the ODE-RNN encoder applies to both beam SNR and CSI, we
ignore the superindex, e.g., hb/c

n or tb/cn for simplicity.



where the ODE function is parameterized by a multi-layer percep-
tron (MLP) network with learnable parameters θbe. Utilizing a nu-
merical ODE solver S, e.g., Euler and Runge-Kutta solvers, one can
then propagate the hidden vector hn+1 at time tn+1 to the auxiliary
vector h′

n at the current time tn (recall that the time is in a reversed
order for estimating the initial condition):

h′
n = S(Oθbe

,hn+1, (tn, tn+1))

= hn+1 +

∫ tn

τ=tn+1

Oθbe
(h(τ), τ)dτ. (4)

By iterating between (2) and (4), we can propagate the latent encod-
ing vector from tN to t0, and the same procedure can be adopted for
CSI encoding with another set of parameters θce.

3.3. Latent Dynamic Learning

Once the hidden state h0 at t0 is obtained, h0 is used to generate z0,
the initial condition in the latent space for latent dynamic learning.
Following the VAE framework [33], the posterior distribution of z0
is approximated as

qθe(z0|h0) = N (µµµz0 ,σσσz0) (5)

where the mean and standard deviation are mapped from h0

µµµz0 ,σσσz0 = Mθs(h0) (6)

with M denoting an MLP. We sample zb0 ∈ RLb
z and zc0 ∈ RLc

z

from their respective posterior mean and standard deviations as:

zb0 = µµµb
z0 + σσσb

z0 ⊙ ϵ1, ϵ1 ∼ N (0, ILb
z
),

zc0 = µµµc
z0 + σσσc

z0 ⊙ ϵ2, ϵ2 ∼ N (0, ILc
z
), (7)

where ⊙ represents Hadamard product.
For the latent dynamic learning, we further enforce that the

above initial latent conditions zb0 and zc0 are aligned at the common
starting time tb0 = tc0 = t0. In this way, the latent dynamic learning
block takes the sampled initial latent condition at t0 and propagates
to the latent dynamic state at any query time tn achieved by using
another continuous-time ODE function Od modeled by a neural
network with parameters θb/c

d .
We first query the beam SNR-related and CSI-related dynamic

learning blocks with their respective sampling time t
b/c
n

zbn
△
= zbtbn = zb0 +

∫ tbn

t0

Oθb
d
(zt, t)dt = S(Oθb

d
, zb0, (t0, t

b
n)),

zcn
△
= zctcn = zc0 +

∫ tcn

t0

Oθc
d
(zt, t)dt = S(Oθc

d
, zc0, (t0, t

c
n)). (8)

These latent states for beam SNR and CSI are then fed to the wave-
form decoders (see Section 3.5) for waveform/feature reconstruc-
tion.

Due to the continuous-time dynamic modeling capability, we
then query the beam SNR-related and CSI-related dynamic learning
blocks at a set of unseen but shared time instances tpn for supervised
training and downstream tasks. Specifically, we have

zpbn
△
= zbtpn = zb0 +

∫ tpn

t0

Oθb
d
(zt, t)dt = S(Oθb

d
, zb0, (t0, t

p
n)),

zpcn
△
= zctpn = zc0 +

∫ tpn

t0

Oθc
d
(zt, t)dt = S(Oθc

d
, zc0, (t0, t

p
n)), (9)

where the above ODE associated parameters θb
d and θc

d are the same
as the ones in (8).

3.4. Post-ODE Latent Fusion

It is seen from (9) that the latent dynamic states z
pb
n for the beam

SNR are synchronized with their corresponding CSI latent dynamic
state zpcn at tpn. Such a latent dynamic alignment motivates us to
combine the two post-ODE dynamic pathways into a fused dynamic
pathway that might be more essential for downstream tasks such as
the object trajectory estimation.

To this end, we first project the aligned post-ODE states into
higher dimensions

ẑb/cn = M
θ
b/c
p

(z
pb/c
n ) (10)

using an MLP with learnable weights θ
b/c
p , then concatenate these

projected latent states, and finally compress it into a fused latent state
ẑn at tpn

ẑn = Mθf ([ẑ
b
n, ẑ

c
n]

⊤), n = 1, · · · , Np (11)

where θf consists of the weight matrices and bias terms for the fu-
sion MLP. It is expected that the post-ODE latent fusion allows for
a combination of the dynamics of distinct Wi-Fi propagation char-
acteristics at different frequency bands in a complementary way and
enhances the ability to represent a unified latent space for down-
stream tasks.

3.5. Multi-Head Decoders

From the latent dynamic learning and fusion blocks, we have the
latent dynamic states in three distinct sets of time instances:

• zbn, n = 1, · · · , Nb, at the beam SNR sampling time tbn;
• zcn, n = 1, · · · , Nc, at the CSI sampling time tcn;
• ẑn, n = 1, · · · , Np, at shared time instances tpn.

For the first two sets of latent dynamic states, we use two separate
MLP heads to decode them back to the beam SNR waveform or CSI
embedding feature spaces as

b̂n = Mθb(z
b
n), ĉn = Mθc(z

c
n). (12)

For the fused latent states, we use another MLP head to project
them into a coordinate trajectory as

p̂n = Mθp(ẑn), n = 1, · · · , Np. (13)

All MLP heads are shared over time steps.

3.6. Loss Function

In the following, we adopt a loss function modified from the evi-
dence lower bound (ELBO) of the standard VAE [33] for the pro-
posed NDF framework without providing the detailed derivation

L =

Np∑
n=0

∥p̂n − pn∥2 (14)

+ λ1

Nc∑
n=0

∥ĉn − cn∥2 − λ2

Lc
z∑
l

(
1 + log(σc

l )
2 − (µc

l )
2 − (σc

l )
2)

+ λ3

Nb∑
n=0

∥b̂n − bn∥2 − λ4

Lb
z∑
l

(
1 + log(σb

l )
2 − (µb

l )
2 − (σb

l )
2
)
.

where the hyperparameters λ1/2/3/4 play the trade-off roles between
the supervised trajectory estimation errors to the waveform (beam
SNR) and embedding feature (CSI) reconstruction errors.
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4. PERFORMANCE EVALUATION

4.1. In-House Testbed and Data Collection

We built a testbed to automatically collect CSIs and beam SNRs
from a moving device, shown in Fig. 3. We used ASUS RT-AC86U
for IEEE 802.11ac CSI collection, and TP-Link Talon AD7200 for
IEEE 802.11ad beam SNR collection. Two routers were installed
on a TurtleBot and continuously collected CSI and beam SNR while
driving the TurtleBot along a predefined route shown as red scatter
points in Fig. 3. The TurtleBot was equipped with a LiDAR to grasp
its position while moving, and recorded the coordinate information
used as labels for training. We had Mb = 36 for the beam SNR and
(NRx, NTx, Ns) = (4, 2, 234) for the CSI.

4.2. Implementation

We set ∆Tw = 5 seconds to group the corresponding CSI, beam
SNR, and coordinate labels. We divided all 5 s sequences into train-
ing and test sets with a ratio of 8:2. The beam SNRs {bn}Nb

n=0 were
normalized to [0, 1], and so were the timestamps {tbn}Nb

n=0, {tcn}Nc
n=0,

and {tpn}
Np

n=0 to be compatible with the ODE layers. Mc for the em-
bedded CSI feature vectors {cn}Nc

n=0 was set to 36, and the features
were also normalized to [0, 1]. The hidden status dimension of GRU
Lh was set to 20, and the latent dimension Lc

z = Lb
z = 20. For the

loss function, we empirically set λ1 = λ3 = 0.1 for the waveform
reconstruction and λ2 = λ4 = 0.01 for the KL divergence loss.
Neural networks were implemented using PyTorch 2.0.1 on Python
3.11 and trained on a GPU with CUDA 12.1 enabled.
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Fig. 5: Visualization of average localization errors over 50×50 cm2

grids with mean and median errors listed in the caption.

4.3. Comparison to Baseline Methods

We implemented the baseline methods: a fully connected neural net-
work (FCNN) and DDND. FCNN is the frame-based method and
DDND is the sequence-based method, and both methods estimate
the coordinates only from each CSI/beam SNR frames. In FCNN
and DDND, CSI is fed into the pre-trained embedding layers, ex-
plained in Sec. 3.1, before the coordinate estimation. The criterion
for localization performance is the mean Euclidean distance errors
between the ground truth and estimated locations.

Fig. 4 shows the performance of the proposed and baseline meth-
ods in terms of the cumulative distribution function (CDF) of the
mean Euclidean distance between the ground truth and estimated
coordinates. It shows that NDF overwhelms not only frame-based
baselines but also single-band DDNDs. Learning and modeling the
dynamics with CSI or beam SNR alone is still a good deal, but com-
bining different radio observations from multiple frequency bands
in the unified latent space further promotes trajectory learning and
helps the model obtain better understanding as to the relationship be-
tween radio fluctuation and location along with the continuous time
sequence.

Figs. 5 (a) to (c) visualize the average Euclidean distance error
for each 50 cm square grid of the target space. It shows that the pro-
posed NDF avoids significant errors at certain coordinates, as shown
in Fig. 5 (c), and reduces the average error compared to single-band
DDNDs. This indicates NDF provides a much clearer trajectory with
less variation than other baselines.

5. CONCLUSION

In this paper, we proposed an asynchronous multi-band Wi-Fi fusion
framework using latent ODE learning. Specifically, the framework
projects CSI and beam SNR onto their own latent space, utilizes a
post-ODE neural dynamics fusion to align these measurements in
the latent space, and estimates object trajectory from the aligned and
fused latent variables. Real-world experiments validate the proposed
neural dynamic fusion framework.
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