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Abstract
Implicit Neural Representation (INR) is an emerging technology for representing multimedia
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for the residual signals between the original image and the decoded image derived from the
trained INR. The integration of the INR and analog transmission provides high-frequency
details to users with low traffic, and further improves the image quality as a function of the
wireless channel quality between the transmitter and each user. Evaluations using an RGB
image dataset show that the proposed scheme achieves better image quality than the existing
INR-based image compression and standard image codecs under the same amount of traffic.

IEEE International Conference on Computing, Networking and Communications (ICNC)
2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Implicit Neural Representation-based Hybrid
Digital-Analog Image Delivery

Akihiro Kuwabara∗, Yutaro Osako†, Sorachi Kato†, Takuya Fujihashi†, Toshiaki Koike-Akino‡, Takashi Watanabe†
∗School of Engineering, Osaka University, Japan

†Graduate School of Information Science and Technology, Osaka University, Japan
‡Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA

Abstract—Implicit Neural Representation (INR) is an emerging
technology for representing multimedia signals, such as RGB
images, with small data size. A key issue in INR is the accuracy
of high-frequency details in RGB images under the limited data
size. Many studies in machine learning have discussed activation
functions and coding to improve the accuracy. This paper aims
at the same goal and proposes a novel communication-oriented
solution for INR. To represent high-frequency details to the user,
the proposed scheme exploits analog transmission for the residual
signals between the original image and the decoded image derived
from the trained INR. The integration of the INR and analog
transmission provides high-frequency details to users with low
traffic, and further improves the image quality as a function of
the wireless channel quality between the transmitter and each
user. Evaluations using an RGB image dataset show that the
proposed scheme achieves better image quality than the existing
INR-based image compression and standard image codecs under
the same amount of traffic.

I. INTRODUCTION

Representing multidimensional signals in a memory-
efficient format is a key technology for transmitting high-
resolution, high-dimensional multimedia signals with small
data sizes. Implicit Neural Representation (INR) [1]–[4] is a
novel memory-efficient format for representing multidimen-
sional signals. INR consists of a small Multi-Layer Percep-
tron (MLP)-based Neural Network (NN) architecture, and
then the perceptron overfits the target multimedia signal, such
as an RGB image. The INRs require less data traffic than
explicit representations such as pixels and 3D points. Recent
studies [5], [6] used the INR for image compression and
demonstrated large traffic reduction compared to traditional
image coders.

One of the key issues in INR for image signals is to repre-
sent high-frequency details in each image using a small MLP-
based architecture. A lack of high-frequency details will result
in low image quality in the INR-based services. Recent studies
in machine learning have developed sinusoidal encodings and
activations [4], [7], [8] to reduce errors in high-frequency
details. In this paper, we propose a novel communication-
side approach to solve the issue of the INR. A key idea of
the proposed scheme is to send coded residuals containing
high-frequency details between the original and decoded pixel
values obtained from the trained INR, in addition to sending
the trained parameters of the INR, to compensate for the

details. Specifically, the proposed scheme integrates digital and
analog transmission, inspired by hybrid digital-analog (HDA)
transmission [9], [10]. The digital transmission part sends the
parameter set of the trained INR in a digital manner, while the
analog transmission part encodes the residuals and sends them
in an analog manner. Specifically, the proposed scheme com-
putes and encodes residuals between the original pixel values
and the decoded pixel values obtained from the trained INR,
and transmits the coded residuals using analog modulation. By
sending the coded residuals in an analog manner, the proposed
scheme can send high-frequency details to the users but also
improve the image quality according to the instantaneous
wireless channel quality between the sender and each receiver.
We note that the future machine-learning-side approaches for
the INR will contribute to the quality improvement of our
communication-side approach since they reduce the energy of
the residuals for further quality enhancement [11].

Evaluations using a Kodak image dataset [12] show that the
proposed scheme achieves better image quality than standard
image codecs, such as JPEG, JPEG2000, and High-Efficiency
Image File Format (HEIF), and the existing INR-based image
compression, COIN, under the same amount of traffic. In
addition, the improvement in wireless channel quality leads
to an improvement in image quality by sending the coded
residuals in an analog manner.

II. RELATED WORK

A. Implicit Neural Representation

INR represents multimedia signals, such as images and 3D
point clouds, not as explicit values, but as a continuous map-
ping function from spatial or spatio-temporal coordinates to
some quantity of interest using a small NN architecture. A key
issue in INR is the lack of accuracy in high-frequency details.
To represent high-frequency details using a small NN archi-
tecture, SIREN in [2] argues that sinusoidal activations work
better than ReLU networks because the sinusoidal activations
are able to model multimedia signals contained in higher-order
derivatives. Neural Radiance Fields (NeRF) in [4] proposed
positional coding, and Tancik et al. [8] proposed positional
coding in a Neural Tangent Kernel framework to address
the same problem. Based on the results of the INR work,
recent work has used INR for image compression [5], [6].



Unlike neural compression [13], [14] for RGB color values,
INR-based image compression represents the same number of
RGB color values using a small NN architecture. Therefore,
it achieves traffic reduction compared to the existing image
codecs. We note that the continuous fashion of the INR also
has the potential for various tasks such as interpolation and
super-resolution [15]–[17].

Our study is inspired by the advantage of INR, which
can represent multimedia signals with low traffic. On the
other hand, the existing solutions still require large traffic
to represent high-frequency details compared to the existing
codecs. We propose an analog-empowered solution to provide
the details for users with low traffic. Specifically, the pro-
posed scheme computes the residuals containing the details
and transmits the coded residuals in an analog manner over
wireless channels. The integration with the analog transmis-
sion improves the image quality even with a small increase
in traffic, and achieves graceful image quality improvement
according to the wireless channel quality.

B. Hybrid Digital-Analog Transmission

There are several HDA solutions for multimedia trans-
mission [9], [10], [18] that take advantage of both digital-
based and analog-based transmission schemes. HDA solutions
typically use low-rate digital codecs for the images and analog
coding for the residuals and sequentially/simultaneously trans-
mit the digital-coded and analog-coded transmission symbols
over wireless channels. The earlier studies [9] have designed
HDA transmission for image and video signals and the recent
studies [10], [18] extended HDA transmission for multi-view
video plus depth and point cloud signals.

The proposed scheme is the first study to propose an
INR-based HDA transmission scheme. Specifically, the digital
transmission part sends the trained parameters of the INR to
guarantee the basic image quality. The analog transmission
part sends the coded residuals to complement the details of
the image. The integration can provide many details to the
users under almost the same traffic as the existing INR-based
solution.

III. PROPOSED SCHEME

A. Overview

Fig. 1 shows an overview of the proposed scheme. We
consider a data set of an RGB image with MN pixels
D = {xi, f(xi)}i, where xi = [xi, yi] is i-th pixel coordinates
and f(xi) = [ri, gi, bi] is the color values of the coordinates.
Here, we consider the height and width of the RGB image
to be M and N pixels, respectively. The proposed scheme
consists of digital and analog transmitters and receivers. The
digital part guarantees the baseline quality of the RGB image,
and the analog part improves the image quality according to
the instantaneous wireless channel quality. We assume that the
transmitter and receiver share the same NN architecture of the
INR in advance.

B. Transmitter

1) Digital Transmitter: The digital transmitter consists of
the INR, the channel encoder, and the digital modulator.
Fig. 2 shows the NN architecture of our INR. The INR
Φθ: R2 → R3 is based on the existing NN architecture for
INR [2], [5] with skip connection with a set of parameters
θ for fast convergence. The input to INR is the i-th pixel
coordinates of RGB images xi = [xi, yi]. We set the number
of linear layers to L and the number of neurons to W . In
addition, the activation function for the front hidden layers is
the sine function representing the high-frequency details, and
the activation function for the last hidden layer is the ReLU
function to avoid the gradient vanishing. The last layer uses
an identity function to output the color values of the pixel
coordinates Φθ(xi) = [r̂i, ĝi, b̂i]. The purpose of the INR is
to reconstruct the pixel values of each pixel index as close to
the original values as possible. This means that the parameter
set of the INR θ should be optimized to minimize the error
between the original color values f(xi) and the reconstructed
ones Φθ(xi) over all pixel coordinates of the RGB image as
follows:

LMSE(θ) =
∑
i

∥Φθ(xi)− f(xi)∥2. (1)

The input of the channel coding is the binarized parameter set
θ for error protection. The channel-coded bits are assigned to
the transmission symbols using the digital modulation formats,
e.g., Binary Phase Shift Keying (BPSK), Quadrature Phase
Shift Keying (QPSK), and Quadrature Amplitude Modula-
tion (QAM). For example, the i-th modulated symbol of BPSK
s
⟨d⟩
i is formed by s

⟨d⟩
i = bi, where bi ∈ X = {±1}.

2) Analog Transmitter: The analog transmitter consists of
an analog encoder, a scaler, and an analog modulator. To
reduce the signal energy of the analog transmitter, the pro-
posed scheme calculates the residuals di = (d

(r)
i , d

(g)
i , d

(b)
i )

from the original color values f(xi) and the reconstructed
ones derived from the INR Φθ̂(xi) with the set of decoded
parameters θ̂ as: di = f(xi) − Φθ̂(xi). After calculating
the residuals for all pixel coordinates, the analog transmitter
feeds the two-dimensional (2D) residuals of the color channels
D = [D(r),D(g),D(b)] ∈ RM×N×3 to the analog encoder.
Here D(·) ∈ RM×N is the 2D residual for a color channel.
The analog encoder is a full-frame 2D Discrete Cosine Trans-
form (2D-DCT) to transform the residuals of each color chan-
nel into frequency representations C ∈ RM×N and discards
low-energy frequency representations for further energy com-
pression. Unlike the digital transmitter, the analog transmitter
skips the bit-to-symbol mapping for transmission. Instead, it
maps frequency representations directly to transmission sym-
bols, i.e., analog modulation. Analog modulation ensures that
the quality of the transmitted residuals can be incrementally
improved as the wireless channel quality improves. The simple
mapping between frequency representations and transmission
symbols results in low quality due to channel noise. The
scaling operation unevenly assigns transmission power to the
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Fig. 1. Overview of the proposed scheme: (a) transmitter side and (b) receiver side.
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Fig. 2. NN architecture of our INR.

frequency representations before analog modulation for error
protection.

Let s⟨a⟩i be the i-th analog-modulated symbol, ci ∈ C be the
i-th DCT coefficient, and gi is the scaling factor for the i-th
DCT coefficient. Here, the j-th analog-modulated symbol is
formed by s

⟨a⟩
j = gi · ci + ȷgi+1 · ci+1. A key issue for analog

modulated symbols is to find the optimal scaling factor for
each DCT coefficient to minimize the MSE under the transmit
power budget as follows:

min
{gi}

MSE = E
[
(ci − ĉi)

2
]
=

1

N

N∑
i

σ2λi

g2i λi + σ2
, (2)

s.t.
1

N

N∑
i

g2i λi = P, (3)

where ĉi is the estimate of the i-th DCT coefficient, P is the
transmit power budget, λi = |ci|2 is the power of the i-th DCT
coefficient, and σ2 is the noise power in the wireless channel.
By solving the MSE minimization problem, the optimized
scaling factor gi can be derived as follows:

gi = mλ
−1/4
i , m =

√
P∑
j λ

1/2
j

. (4)

C. Receiver

The proposed scheme sequentially transmits digital and
analog-modulated symbols over wireless channels. The wire-
less channel, denoted by η, takes the digital and analog
modulated symbols s as input and produces the output as
the received signal y. The channel transfer function from the

transmitter to the receiver can be modeled as y = η(s) =
s + n, where n ∼ CN(0, Iσ2) is a vector of additive white
Gaussian noise (AWGN) with an average noise variance of σ2,
I is the identity matrix, and CN(a, b) is a complex Gaussian
distribution with a mean of a and a variance of b.

1) Digital Receiver: The digital receiver consists of the dig-
ital demodulator, the channel decoder, and the decoded INR.
The digital receiver first demodulates the digitally modulated
symbols and decodes the channel-coded bits to obtain the set
of decoded parameters θ̂ of the INR. The decoded parameter
set θ̂ is then assigned to the INR at the receiver side. The
digital receiver then feeds the pixel coordinates of the RGB
image xi to the decoded INR to reconstruct the color values
Φθ̂(xi) of the pixel coordinates.

2) Analog Receiver: The analog receiver includes the ana-
log demodulator, denoiser, and decoder. It considers analog
modulated symbols as the received frequency representations
and descales the frequency representations of each color
channel Ĉ ∈ RM×N using a minimum MSE (MMSE) filter
that minimizes the MSE between the original and descaled fre-
quency representations. The MMSE filter provides an estimate
of the DCT coefficient ĉi ∈ Ĉ by exploiting the knowledge of
the power information of the coefficient and the channel noise
as follows:

ĉi =
giλi

g2i λi + σ2
· yi. (5)

where yi ∈ y is i-th received analog modulated symbol.
The analog receiver performs inverse 2D-DCT (2D-IDCT)

for each color channel to transform the denoised frequency
representations into the decoded residuals D̂ ∈ RM×N×3.
Finally, the proposed scheme adds the reconstructed color
values from the decoded INR Φθ̂(xi) to the reconstructed
residuals d̂i to decode the final color values ri as follows:

ri = Φθ̂(xi) + d̂i. (6)

IV. EVALUATION

A. Settings

Metric: We evaluate image quality in terms of the Structural
Similarity Index (SSIM) [19]. SSIM can predict the perceived
quality of the original and decoded images. Larger values of



(a) Kodim02 (b) Kodim04 (c) Kodim05
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Fig. 3. Rate distortion performance of the proposed and baseline schemes under modulation format of BPSK with/without 1/2-rate convolution code. (a)-(c)
BPSK with 1/2-rate convolution code. (d)-(f) BPSK without convolution code.

SSIM close to 1 indicate higher perceptual similarity between
the original and decoded images.
Dataset: We perform experiments on the Kodak image
dataset [12], which consists of 24 images of 768 × 512
pixels. We selected three images from the dataset, Kodim02,
Kodim04, and Kodim05, to discuss the SSIM index and visual
quality in different RGB images. Specifically, Kodim02 is a
natural image, Kodim04 is a face image, and Kodim05 is a
complicated image.
Baselines: We compare the proposed scheme with the INR-
based compression scheme, COIN, and the standard image
codecs, JPEG, JPEG2000, HEIF, and AV1 Image File For-
mat (AVIF). We used Pillow 8.4.0 for JPEG and JPEG2000,
pillow-heif 0.11.1 for HEIF, and pillow-avif-plugin 1.3.1 for
AVIF implementations. We implement the proposed scheme
and COIN in PyTorch and perform all experiments on a single
RTX3080Ti GPU. We use the adaptive momentum (ADAM)
optimizer for weight learning of the proposed scheme and
COIN with a learning rate of 0.0002 for 50, 000 epochs. We
set the number of linear layers L to 5 and the number of
neurons W to 2 to 64 to discuss the image quality under the
different amount of traffic.
Wireless Channel Settings: The transmitted digital and ana-
log symbols are impaired by an AWGN channel. We used
scikit-commpy 0.8.0 for the wireless channel simulation. The
digital transmitter of the proposed scheme and the base-
lines use the BPSK digital modulation format with/without
a 1/2-rate convolutional code and a constraint length of 8.
From preliminary evaluations, the receiver decodes the BPSK-
modulated symbols with a 1/2 convolutional code above the

wireless channel SNR of 5 dB, and then the corresponding
results are used for the performance comparison in low-quality
wireless channels. In addition, the receiver decodes the BPSK-
modulated symbols without a convolutional code above the
wireless channel SNR of 14 dB, and then the results are used
for the performance comparison in higher-quality wireless
channels.

B. Rate Distortion Performance

We first discuss the rate-distortion performance of the pro-
posed and baseline schemes under the different wireless chan-
nel environments. Figs. 3 (a) to (c) show the SSIM index of the
proposed and baseline schemes as a function of the amount
of image traffic in terms of the total number of transmitted
symbols considering the modulation format of BPSK with a
1/2 rate of the convolutional code at the wireless channel
SNRs of 5 dB and 10 dB. We note that the performance of
the proposed scheme depends on the instantaneous wireless
channel quality. We consider the proposed schemes under the
different wireless channel SNRs of 5 dB and 10 dB to discuss
the effect of channel quality fluctuation on the rate-distortion
performance.

The results of the evaluation reveal the following key
observations:

• The proposed scheme achieves the best image quality in
lower-traffic regimes. Specifically, the proposed scheme
achieves the best performance up to 178.5 K transmitted
symbols in Kodim02, 237.5K symbols in Kodim04, and
298.1K symbols in Kodim05,
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Fig. 4. SSIM index as a function of wireless channel SNRs in different RGB images at the number of transmitted symbols ranging from 60.5 Ksymbols to
76.6 Ksymbols. The detailed number of transmitted symbols in each scheme is shown in Fig. 5.

• The proposed scheme gradually improves the image qual-
ity with the improvement of the wireless channel quality
by sending the residuals in an analog manner,

• In Kodim02 and Kodim04, JPEG and JPEG2000 achieve
better image quality than the proposed scheme in larger
traffic environments,

• HEIF and AVIF perform well in Kodim05, while they
have low rate-distortion performance in Kodim02, and

• COIN achieves better image quality than other standard
image codecs for a total number of transmitted symbols
of 11.2 Ksymbols.

The above results suggest that the proposed scheme has the
potential to provide high quality images to users in low-quality
wireless channels.

Figs. 3 (d) and (f) show the SSIM index of the proposed
and baseline schemes as a function of the amount of image
traffic considering the modulation format of BPSK under the
wireless channel SNRs of 15 dB and 20 dB. We also consider
the proposed schemes under the wireless channel SNRs of
15 dB and 20 dB for the same purpose in Fig. 3 (a) to (c).
From the results, there are several findings:

• The proposed scheme achieves the best image quality at
the number of transmitted symbols of 5.9 Ksymbols in
Kodim02 and Kodim04,

• The proposed scheme outperforms JPEG2000 at a large
number of transmitted symbols and a wireless channel
SNR of 15 dB in the same images,

• When the wireless channel quality improves to 20 dB,
the proposed scheme achieves the best image quality,
especially in the number of transmitted symbols above
303.7 K, and

• HEIF and AVIF achieve the best image quality with
fewer symbols in Kodim05, while the proposed scheme
overcomes them with many symbols.

C. Effect of Channel Quality Fluctuation

The above section demonstrated that the proposed scheme is
well-performed in low-quality wireless channels and improves
the rate-distortion performance with the improvement of the
wireless channel quality during image delivery. In this section,

we discuss the effect of channel quality improvement on image
quality in detail.

Figs. 4 (a) to (c) show the SSIM index of the proposed and
baseline schemes as a function of the instantaneous wireless
channel SNRs, considering the modulation format of BPSK
with a 1/2 rate of the convolutional code at the number of
transmitted symbols from 60.5 Ksymbols to 76.6 Ksymbols.
In COIN and the standard image codecs, the image quality is
constant regardless of the channel quality improvement. The
image quality of COIN is limited due to the size of the NN
architecture, and the receiver side does not recover quanti-
zation errors in the image codecs. In contrast, the proposed
scheme gradually improves the image quality according to
the instantaneous SNRs of the wireless channels by sending
the residuals in an analog manner. For example, the proposed
scheme improves 0.0352 on average from the wireless channel
SNRs of 5 dB to 25 dB.

D. Visual Quality

Figs. 5 (a)–(u) show snapshots of the proposed scheme
and baselines for different RGB images to discuss the visual
quality. Here we consider the modulation format of BPSK
with a 1/2 rate convolutional code at wireless channel SNR
of 5 dB and 10 dB and the number of transmitted symbols
from 60.5 Ksymbols to 76.6 Ksymbols. We can see that
the decoded images of JPEG2000 and COIN discard high-
frequency details, those of HEIF and AVIF contain errors in
some color channels, and the proposed scheme exhibits better
visual quality compared to the other schemes by reconstructing
the details.

V. CONCLUSION

Although INR has the potential to transmit high-quality
RGB images with low traffic, the image quality is still limited
due to the lack of high-frequency representations of the
images. This paper proposes an INR-based HDA transmission
scheme to overcome the quality limitation of INR-based solu-
tions. In addition to transmitting the trained parameters of the
INR in a digital manner, the proposed scheme also transmits
the residuals in an analog manner. From the evaluations, the
proposed scheme yields better image quality compared to the
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Fig. 5. Snapshots of baseline and proposed schemes in different RGB images at wireless channel SNR of 5 dB and 10 dB and the number of transmitted
symbols of 60.5 Ksymbols up to 76.6 Ksymbols.

existing INR-based image compression under the same traffic
by sending the residuals in the analog part. In addition, the
image quality of the proposed scheme can be improved ac-
cording to the wireless channel quality between the transmitter
and receiver.
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