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Abstract—Compton cameras use a pair of detectors to record
the energy deposited during Compton scattering and photoab-
sorption of gamma ray photons. By inverting the forward model
for these detection events, the 3D radioactive source distribution
can be recovered computationally. However, existing methods
of describing the forward model ignore the ambiguity in the
Compton cone axis introduced by the detector pixel size. In this
paper, we introduce approximations to the axis ambiguity that
make the description of the source ambiguity computationally
tractable and improve the accuracy of the detection forward
model. Specifically, we model the pixel active areas as discs, so the
intersection between all possible Compton cone axes and a plane
parallel to the detectors is also a disc. Because of ambiguity in the
Compton cone axis, the gamma source position is constrained to
lie within a more complicated volume that we approximately
bound by ellipses or hyperbolas at discrete depth slices. We
perform simulations of single point gamma sources using the
Geant4 software. Our forward model leads to improved source
distribution recovery using both backprojection and iterative
reconstruction methods, demonstrating that accurate localization
can be performed from a smaller number of detected photons.
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I. INTRODUCTION

Compton scattering of high-energy photons, such as gamma
rays, can be modelled as an inelastic collision, transferring en-
ergy and momentum to a single electron [1]. This phenomenon
is used in so-called “Compton cameras” to measure the loca-
tion and angle of arrival of gamma photons. Constructed from
two or more radiation-sensitive layers, these imagers detect
and record the location and deposited energy of high-energy
photons, which theoretically constrains the gamma source to
lie on the surface of a cone. Compton cameras have largely
been used for astronomy and medical imaging, although an
important growing application area is localization of nuclear
waste, both within power plants and externally, e.g., as a result
of the Fukushima Daiichi accident.

Initial approaches to Compton imaging were influenced by
astronomical applications and were predominantly focused on
two-dimensional (2D) reconstructions [2], [3]. Recent work
has aimed to solve the more challenging tomography problem
of reconstructing the 3D distribution of radioactive sources [4],
[5], [6], [7], [8], [9]. A fundamental hurdle in Compton
tomography is accurately constructing the measurement ma-
trix, namely accounting for the uncertainty in the Compton
cone based on ambiguity in the detector. As identified in
early works, the main sources of ambiguity are the energy

resolution, spatial resolution, and thickness of the detectors,
and the distance of the radioactive source to the imager [10].
Research efforts have begun to tackle a number of these issues,
including the photon’s incident angle [11], [4], [5], the finite
extent of the detector [6], and the detector’s energy resolution
[7].

Compton imaging in nuclear medicine requires only short-
range measurements and can use high-resolution silicon strip
detectors, so ambiguity due to detector spatial resolution is low
and has been specifically neglected (e.g., in [7]). The Compton
cone axis is thus assumed to be known exactly, leading to the
intersection of the Compton cone with a plane at a fixed depth
from the camera to be idealized as an ellipse. However, appli-
cations such as robotic radiation source localization (e.g., [12])
require lower-resolution scintillator-based detectors that are
more rugged, lower cost, more efficient, and larger area [13].
Significant uncertainty in accurately determining the axis of
the Compton cone is incurred due to the larger scintillator-
based detector elements, so instead of being restricted to the
surface of a cone, the gamma photon’s source location lies
in a volume of ambiguity. Furthermore, methods such as [4],
which chooses the 3D voxel size based on the detector pixel
size, naively assume the 3D position uncertainty is on the order
of the detector pixel size, ignoring the increase in ambiguity
as a function of distance from the imager.

In this paper, we explicitly model the ambiguity in the
cone axis due to the detector pixel size. By approximating the
active pixel area by a disc, we show instead that at each depth
plane, plausible source locations fall in regions approximately
bounded by ellipses and hyperbolas. We incorporate the spatial
resolution uncertainty to construct an improved measurement
matrix, which we use in an iterative reconstruction procedure
to show improved source localization from fewer photon
detections.

II. COMPTON IMAGING MODEL

A. Compton Cone

A classical model of Compton camera detection is depicted
in Fig. 1. Ideally, an incoming gamma photon undergoes
Compton scattering at the first detector array (scatterer) and is
completely absorbed at the second detector array (absorber).
We call this pair of interactions (scattering and absorption)
an event. Let Eγ be the incident photon energy and let Ẽs

and Ẽa be the energy deposited at the scatterer and absorber,
respectively. Suppose that the gamma photon hits the scatterer
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Fig. 1: Measurements of energy deposited at rs on the scatterer
and ra on the absorber restrict the gamma photon source to
lie on the Compton cone defined by axis vector β and angle
ϕ. Coarse detector spatial resolution causes ambiguity in β.

at position r̃s and absorber at position r̃a. Then the position
of the incident gamma photon is known to be located on
the surface of a cone, where the cone is determined by
(r̃s, r̃a, Ẽs, Ẽa). Specifically, the vertex is r̃s, and the axis
vector β̃ and the half-angle ϕ̃ are defined as

β̃ =
r̃s − r̃a
∥r̃s − r̃a∥

(1)

cos ϕ̃ = 1− mec
2Ẽs

(Ẽs + Ẽa)Ẽa

, (2)

where me is the mass of an electron at rest (mec
2 = 0.5510

MeV).1

We observe that the cone angle ϕ̃ depends on the detector
energies, and the effect of the energy resolution on 3D
reconstruction has been investigated previously, e.g., [14]. On
the other hand, the cone axis β̃ depends on the position of the
Compton scattering and photon absorption events. In newer,
3D-position-sensitive detectors (e.g., CdZnTe), energy deposi-
tion is measured at a continuum of depths, and a multivariate
Gaussian position uncertainty model has been explored in [15].
However, the conventional detectors we consider have fixed
detector arrays layers without spatial sensitivity, so measured
positions are assigned to be the center of the pixels in which
these interactions are detected, which we denote rs and ra.
The errors between the assigned and actual event positions
(∥rs − r̃s∥, ∥ra − r̃a∥) depend on the spatial resolution, i.e.,
the size of the detector pixels. Because β is affected by errors
in both rs and ra, the cone axis error is magnified as a function
of the distance of the radiation source relative to the Compton
camera.

B. Forward Model

The radiation source can be described as an intensity
distribution λ in three spatial dimensions. The goal of the
inverse problem is to reconstruct the intensity distribution

1We use letters marked with a tilde to denote the idealized values assuming
infinite spatial and energy resolution, whereas letters without tilde will be used
to denote the measured value by a practical Compton camera.

given the Compton camera measurements. The most important
step toward inversion is carefully defining the forward model
that describes how gamma rays generate Compton camera
measurements.

We first define a computational domain that specifies the
extent of the volume in which to reconstruct the intensity
distribution and discretizes this volume into voxels. Because
of the high dimensionality of the photon coincidence, high-
resolution discretization or “binning” of the measurement
space leads to an extremely large measurement matrix, and the
number of coincidence events is typically low, so most bins
would have zero associated events. As a result, we follow the
convention of using list-mode data [16], separately storing the
measurement 4-tuple (rs, ra, Es, Ea) for each event. We can
also represent a measurement as a 3-tuple (rs, ra, ϕ), where ϕ
is computed from Es and Ea according to (2).

The system matrix T relates the source distribution to
the measurement space, with element Ti,j defined as the
probability that a photon emitted from the jth voxel in the
computational domain is measured as the ith event. We also
define the sensitivity vector s, where element sj is the prob-
ability that a photon emitted from the jth voxel is measured
by the camera.

1) General Form of the System Matrix: A general form of
system matrix has been proposed in [7]. Suppose that the ith

event is associated with measurement (r(i)s , r
(i)
a , ϕ(i)), then the

(i, j)th element of the system matrix T is defined as

Ti,j =
1

vol(Vj)

∫
Vj

∫
R3

{
| cos[∠(x− r̃′s)])|

∥x− r̃′s∥22
prs|r̃s(r

(i)
s |r̃′s)∫

R3

| cos[∠(r̃′a − r̃′s)]|
∥r̃′a − r̃′s∥22

pra|r̃a(r
(i)
a |r̃′a)

K(ϕ(x; r̃′a, r̃
′
s)|Eγ)

pϕ|ϕ̃

(
ϕ(i)|ϕ(x; r̃′a, r̃′s)

)}
dr̃′a dr̃

′
s dx ,

(3)

where K(ϕ|Eγ) is the angular distribution given by the Klein-
Nishina formula [17], Vj ⊂ R3 is the jth voxel in the
computational domain, ϕ(x; r̃′a, r̃

′
s) is the angle between x−r̃′s

and r̃′s − r̃′a, ∠a is the angle between vector a and the z-
axis, and the conditional probability distributions prs|r̃s , pra|r̃a ,
and pϕ|ϕ̃ model, respectively, the spatial ambiguity on the
scatterer and absorber, and the half-angle ambiguity due to
limited energy resolution. According to [7], the sensitivity can
be approximated as

sj =
∑
k

| cos[∠(vj − r̃
(k)
s )]|

∥vj − r̃
(k)
s ∥22

, (4)

where the summation is over all scatterer pixel center positions
r̃
(k)
s and vj denotes the center of the voxel Vj . In [7], spatial

ambiguity is ignored, i.e., prs|r̃s(rs|r̃s) = δ(rs − r̃s) and
pra|r̃a(ra|r̃a) = δ(ra − r̃a), and the half-angle ambiguity
pϕ|ϕ̃(ϕ|ϕ̃) is modeled as Gaussian with mean ϕ̃.

2) Proposed Implementation of Cone Surface Integral: If
we assumed no ambiguity in the measurements, then all prs|r̃s ,
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pra|r̃a , and pϕ|ϕ̃ are Dirac delta functions, and the forward
operator becomes the conventional cone surface model

Ti,j = K(ϕ(i))|Eγ)
| cos[∠(r(i)a − r

(i)
s )]|

∥r(i)a − r
(i)
s ∥22

1

vol(Vj)∫
Vj

| cos[∠(x− r
(i)
s )])|

∥x− r
(i)
s ∥22

δ(ϕ(i) − ϕ(x; r(i)a , r(i)s )) dx ,

(5)

which integrates over all points on the cone surface within
Vj . Numerous methods have been proposed for computing the
cone surface integrals for Compton imaging. Here we propose
a convenient approximation, which we use for the baseline
comparison that ignores spatial resolution ambiguity.

Assuming sufficiently small voxels, we can approximate the
integral in (5) by evaluating based only on the value at the
voxel center vj and whether the cone surface intersects Vj :

Tsurf
i,j ∝ K(ϕ(i))|Eγ)

| cos[∠(r(i)a − r
(i)
s )]|

∥r(i)a − r
(i)
s ∥22

| cos[∠(vj − r
(i)
s )])|

∥vj − r
(i)
s ∥22

Icone(Vj ; r
(i)
a , r(i)s , ϕ(i))), (6)

where the indicator function is defined as

Icone(Vj ; r
(i)
a , r(i)s , ϕ(i))) =


1, cone defined by

(r
(i)
a , r

(i)
s , ϕ(i))

intersects Vj

0, otherwise.

(7)

To determine Icone(Vj), we first describe the surface of the
cone as the zero-level set of the equation

g(x; rs,β, ϕ) =

〈
x− rs

∥x− rs∥
,β

〉
− cos(ϕ), (8)

i.e., g(x) = 0 for any x on the cone surface. Points that lie
inside the cone have g(x) < 0, and points that lie outside the
cone have g(x) > 0. Because of the continuity of the cone
surface, if there are some points in voxel Vj that are inside
the cone and some points in Vj that lie outside the cone, then
the cone surface must pass through Vj .

We now develop a simple test based on the voxel cor-
ners, as illustrated in two dimensions in Fig. 2. For voxel
Vj with center vj , we define the set of 8 voxel corner
points {w(k)

j }8k=1, where the positions are given as w
(k)
j =

vj + (±dx/2,±dy/2,±dz/2) for voxels with dimensions
dx × dy × dz . If there exist corner indices m,n ∈ {1, . . . , 8}
such that g(w

(m)
j ) < 0 and g(w

(n)
j ) > 0, then the cone

surface must pass through Vj , and Icone(Vj) = 1. Otherwise,
we set Icone(Vj) = 0, which is true with high probability. It is
possible for the cone surface to intersect the edge of a voxel
despite all 8 corners lying outside the cone as shown in the
top view in Fig. 2b; however, we consider this probability to
be negligible, especially for small voxels and large cone radii.

3) Proposed system matrix accounting for spatial ambigu-
ity: Due to the limitation of spatial resolution of the detector
arrays, when a pair of scatterer index and absorber index is
recorded, there is an ambiguity of the location where the

computational domain
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Fig. 2: (a) The cone indicator function can be determined by
testing whether all voxel corners lie inside or outside the cone
surface. (b) The top view also shows a possible missed case
that is highly unlikely to occur.

photon hits the scatterer and absorber within those detector
pixels. In other words, a measurement does not determine
a cone, but a region surrounding the cone. Ignoring this
ambiguity can lead to unreliable reconstruction, especially
when the number of measurements is small and when the
source is situated far from the detector. In our work, we assume
the energy recordings are sufficiently accurate and ignore the
half-angle ambiguity, thus pϕ|ϕ̃(ϕ|ϕ̃) = δ(ϕ − ϕ̃). We ignore
the thickness of the detector and model the detector pixel as
the largest disc contained in that pixel whose radius is denoted
by rpix. That is, we define p(rs|r̃s) as uniform for r̃s in the disc
centered at rs, and a similar definition is applied to p(ra|r̃a).

Ti,j =
K(ϕ(i)|Eγ)

vol(Vj)

∫
Vj

∫
disc(r

(i)
s ,rpix)

{
| cos[∠(x− r̃′s)])|

∥x− r̃′s∥22∫
disc(r

(i)
a ,rpix)

| cos[∠(r̃′a − r̃′s)]|
∥r̃′a − r̃′s∥22

δ(ϕ(i) − ϕ(vj ; r̃
′
a, r̃

′
s))

}
dr̃′adr̃

′
s dx ,

(9)

where disc(c, r) denotes the disc centered at c and with radius
r. Finally, we use the center vj to represent the voxel Vj and
evaluate whether it lies in the ambiguity region. Therefore, our
proposed system matrix accounting for spatial ambiguity is a
special case of (3) and can be written as

Tamb
i,j ∝ K(ϕ(i)|Eγ)

| cos[∠(vj − r̃′s)])|
∥vj − r̃′s∥22

| cos[∠(r̃′a − r̃′s)]|
∥r̃′a − r̃′s∥22

Iamb(vj ; r
(i)
a , r(i)s , ϕ(i)),

(10)

where

Iamb(vj ; r
(i)
a , r(i)s , ϕ(i)) =

{
1, vj in ambiguity region
0, otherwise.

(11)
In the following, we discuss how to approximate the indicator
function Iamb(vj).
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III. APPROXIMATED SPATIAL AMBIGUITY MODEL

In this section, we introduce an approximation to the ambi-
guity region. Our goal is to have a model that is sufficiently
accurate for reliable reconstruction and the representation is
simple enough for efficiently building the forward operator. A
graphic illustration of our model is shown in Figure 3.

A. Cone Axis Ambiguity
Given a measurement tuple (rs, ra, ϕ), the cone axis di-

rection can be from any point within disc(ra, rpix) on the
absorber to any point within disc(rs, rpix) on the scatterer.
At any z-plane in the computational domain, the intersection
of complete set of cone axes with the z-plane also forms
a disc, corresponding to the cone axis ambiguity at that
distance. Denote the positions of the centers of the current
pixels on scatterer and absorber by rs = (xs, ys, zs) and
ra = (xa, ya, za), respectively. At a z-plane, the cone axis
ambiguity disc has center p0 = (x0, y0, z) and radius rz given
by

x0 = xs +
z − zs
zs − za

(xs − xa)

y0 = ys +
z − zs
zs − za

(ys − ya),

rz =
z − (zs + za)/2

(zs + za)/2− za
rpix.

(12)

The boundary of the cone axis ambiguity disc is the circle on
the z-plane that can be parameterized by θ ∈ [0, 2π) as

xc(θ) = x0 + rz cos(θ), yc(θ) = y0 + rz sin(θ). (13)

For a fixed boundary point pc(θ) = (xc(θ), yc(θ), z), we can
trace back to find the corresponding cone vertex v(θ) on the
scatterer and the cone axis direction β(θ), which along with
an angle ϕ fully expresses the cone.

B. Source Ambiguity Region
We next describe how the ambiguity in the cone axis affects

the possible locations of a radiation source, given an angle
measurement ϕ. We focus on the possible source locations
for the most extreme cone axis positions, which lie on the
boundary of the disc, and thus define the boundary of the
source ambiguity region. In fact, these cones define both an
exterior and interior boundary, which we fit with ellipses or
hyperbolas, although in some cases, only the exterior boundary
will be used.

1) Boundary Points: To find the approximate interior and
exterior boundaries of the ambiguity region, we define points
pi(θ) = (xi(θ), yi(θ), z) and pe(θ) = (xe(θ), ye(θ), z) for
each point pc(θ) on the disc boundary; see the red cone in
Fig. 3b. These points are defined by two constraints: 1) they
are on the line connecting p0 and pc and 2) the angle between
v(θ)+β(θ) and either pi(θ) or pe(θ) is ϕ. To distinguish the
interior and exterior points, we define pi(θ) to be on the ray
from pc(θ) toward p0(θ), whereas pe(θ) is on the ray from
p0(θ) toward pc(θ). Mathematically,

⟨pi(θ)− pc(θ),pc(θ)− p0(θ)⟩ < 0 (14)
⟨pe(θ)− pc(θ),pc(θ)− p0(θ)⟩ > 0, (15)

where ⟨·⟩ denotes the inner product. For each point pe(θ) and
pi(θ), we solve for coordinates (x, y) such that

y − y0 =
yc(θ)− y0
xc(θ)− x0

(x− x0) (16)

cos(ϕ) =

〈
v(θ) + β(θ)

∥v(θ) + β(θ)∥
,

(x, y, z)

∥(x, y, z)∥

〉
. (17)

In cases where the cone axis is less tilted and/or the cone angle
is sufficiently small, we obtain solutions for both pe(θ) and
pi(θ), whereas in other cases, we only obtain a solution only
for pi(θ).

2) Solid Ellipse vs Ring Regions: We repeat the same
calculation for pe(θ + π) and pi(θ + π) associated with
pc(θ + π) (the yellow cone in Fig. 3b). Suppose that we
obtained two solutions for both cones as shown on the bottom
right in Fig. 3b. If the two points of the yellow cone and the
two points of the red cone do not interlace (e.g., for a small
cone angle), then all of the points inside the exterior boundary
are possible locations for the radiation source. This implies a
solid ambiguity region, in this case an ellipse, so the interior
boundary is discarded. If the points for the θ and θ+π cones
do interlace (e.g., for large cone angle), then there is an open
portion in the interior of the ambiguity region whose points
do not lie on any plausible Compton cone surface. We then
call the ambiguity region a “ring,” which has both interior and
exterior boundaries. As we sweep θ from 0 to π, the indication
of solid ellipse or ring determined by the cones at θ and θ+π
may be mixed, in which case, we approximate it as a solid
ellipse.

3) Fitting Ellipses or Hyperbolas: We observed that the
collection of points Xi = {(xi(θ), yi(θ), z) : θ ∈ [0, 2π)} can
be approximated by an ellipse when there are two solutions
for all θ, whereas when there is only one solution for θ in
a continuous interval in [0, 2π), it can be approximated as a
hyperbola; we call this the interior shell of the ambiguity re-
gion. Similarly, Xe = {(xe(θ), ye(θ), z) : θ ∈ [0, 2π)} defines
the exterior shell. Therefore, we can obtain the parameters for
ellipse or hyperbola for the interior (resp. exterior) shell by
least squares fit to the points Xi (resp. Xe) computed from a
discrete set of θ angles. We used 100 equally spaced θ values
in [0, 2π) for the simulation results presented in Section V.
Specifically, we first fit a conic section

Ax2 +Bxy + Cy2 +Dx+ Ey + 1 = 0. (18)

If B2 − 4AC < 0, it is a shifted and rotated ellipse:

fellipse(x, y) =
[(x− cx) cos(α) + (y − cy) sin(α)]

2

a2

+
[(x− cx) sin(α)− (y − cy) cos(α)]

2

b2
= 1.

If B2 − 4AC > 0, it is a shifted and rotated hyperbola:

fhyperbola(x, y) =
[(x− cx) cos(α) + (y − cy) sin(α)]

2

a2

− [(x− cx) sin(α)− (y − cy) cos(α)]
2

b2
= 1.

We can then relate the center (cx, cy), clock-wise rotation
angle α, major axis radius a, and minor axis radius b to the
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Fig. 3: Illustration of spatial ambiguity in the computational domain due to limited spatial resolution of the detector arrays. (a)
Detector pixels are approximated by discs. The resulting possible Compton cones (purple) have axes whose intersection with
any z-plane is a cone axis ambiguity disc (blue). Depending on the angle ϕ, the set of possible Compton cones traces out a
larger region (green) corresponding to the ambiguity in the radiation source position. (b) To fit the source ambiguity region
with a conic section, we solve for interior and exterior boundary points. If there are two intersections for both cones (red and
yellow), the ambiguity region boundary is approximated as an ellipse; else if only one solution exists, the region boundary is
approximated by a hyperbola. The interior intersections determine whether the ambiguity region is solid or an open ring.

estimated parameters (A,B,C,D,E). Specifically, for both
ellipse and hyperbola,

cx =
2CD −BE

B2 − 4AC
, cy =

2AE −BD

B2 − 4AC

α =
1

2
arctan

(
B

A− C

)
.

Let
F = Ac2x +Bcxcy + Cc2y − 1, (19)

then we have

a2 =
F cos(2α)

A cos2(α)− C sin2(α)
, b2 =

±F cos(2α)

C cos2(α)−A sin2(α)
,

where in the expression for b2, the ‘+’ sign is for ellipse,
whereas the ‘−’ sign is for hyperbola. Note that a hyperbola
has two branches and they lie in two different half-spaces
separated by the line perpendicular to the major axis and
passing through the center (cx, cy). The branch that we are
interested in is the one in the half-space whose normal and
the vector (xs − xa, ys − ya) form an angle less than 90◦.
Fig. 4 shows an example for the least squares fit results.

Once the parameters for the ellipse or hyperbola have been
determined, it is convenient to test whether an arbitrary point
vj in the computation domain is in the ambiguity region, and
thus whether Iamb(vj) equals 0 or 1. For example, consider
the vj = (xj , yj , z)’s on a z-plane, if the ambiguity region
is between two hyperbola as in the first plot in Fig. 4, then
Iamb(vj) = 1 if the following conditions are satisfied:

f i
hyperbola(xj , yj) ≤ 1, f e

hyperbola(xj , yj) ≥ 1,

⟨(xj − cx, yj − cy), (xs − xa, ys − ya)⟩ ≥ 0,

Fig. 4: Least squares fit for hyperbola and ellipse. The black
solid lines represent Xi and Xe, whereas the red dashed lines
represent the ellipse or hyperbola obtained by least squares fit.

where f i
hyperbola and f e

hyperbola denotes the hyperbola fitted by
Xi and Xe, respectively. As another example, if the ambiguity
region is between an ellipse and a hyperbola as in the second
plot in Fig. 4, then Iamb(vj) = 1 if the following conditions
are satisfied:

f i
ellipse(xj , yj) ≥ 1, f e

hyperbola(xj , yj) ≥ 1,

⟨(xj − cx, yj − cy), (xs − xa, ys − ya)⟩ ≥ 0.

Other cases can be defined in a similar way.
An example for the ambiguity region with various scatterer-

absorber locations is shown in Fig. 5. We notice that a solid
ellipse is obtained at the bottom-left plot in Fig. 5a. This is
the case when the cone angle is comparatively small and the
scatterer pixel is directly above the absorber pixel, thus the
cone axes are not so tilted throughout the ambiguity region.
The other extreme is shown at the top-right plot in Fig. 5b,
where we obtained a region in between two hyperbolas. This
is the case when the cone angle is comparatively large and the
scatterer pixel is horizontally farther away from the absorber
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(a) Cone angle ϕ = 10◦. (b) Cone angle ϕ = 30◦.

Fig. 5: Cone surfaces (yellow) and ambiguity regions (blue)
surrounding them at the plane z = 50 mm. Both scatterer
and absorber have 8 × 8 detection elements and the distance
between scatterer and absorber is 30 mm. The size of each
element is 5 × 5 mm (i.e., rpix = 2.5 mm) and there is a 1
mm gap between neighboring elements. The scatterer position
is fixed at the bottom-left corner and the absorber locations
vary over the four corners of an 8× 8 array.

pixel, thus the cone axes are very tilted. Additional cases
between these two extremes are shown in the rest of the plots
in Fig. 5, where the ambiguity region is a ring between two
ellipses.

IV. INVERSE PROBLEM

A. Measurement Selection

Although the modeling assumes a perfect event is recorded
other than the spatial ambiguity, with Compton scattering and
photon absorption happening at a single pixel in each of the
respective detectors, actual Compton camera measurements
themselves are highly ambiguous. One major challenge is that
the sequence of photon hits cannot usually be tracked, so there
are often multiple plausible sequences (e.g., Compton scatter-
ing occurs at the absorber, and the photon is back-scattered and
absorbed by the scatterer) that result in dramatically different
cones [18], [19]. Other ambiguities arise if the energy from
an interaction is deposited in multiple pixels of the same
detector, or if the energy is incompletely deposited, so that
Es + Ea ̸= Eγ . To avoid modelling all of these additional
ambiguities, we follow convention in selecting only events
that meet the following criteria, based on assumptions of a
137Cs radiation source (with characteristic emission of 662-
keV gamma photons) and Cesium Iodide (CsI) detectors:

1) Total energy: the gamma photons used in our simulation
have energy Eγ = 0.662 MeV, and we only use measurements
with Es + Ea > 0.66 MeV.
2) Excluding fluorescence X-ray contamination: for CsI de-
tectors, X-rays with energy approximately 0.045 MeV escape
from the absorber and are then absorbed by the scatterer [20,
pp. 472]. This has nothing to do with Compton scattering and
the angle of the X-ray is completely random. We observed in
our simulation that the measurements with Es ∈ [0.025, 0.045]
MeV are likely due to X-ray contamination and we exclude
them for reconstruction.

B. Sequencing

For the recorded events satisfying the above criteria, we
observed that with our configuration of the Compton camera,
the number of back-scattering events (i.e., the photon hits the
absorber first and then is back-scattered to the scatterer, thus
the role of the scatterer and the absorber is interchanged) is
non-negligible. Therefore, we include the following sequenc-
ing techniques in our method for more reliable reconstruction:
1) Compton edge test: for a given event, if the recorded
energy is greater than the Compton edge energy, which is
defined as

Eedge = Eγ

(
1− 1

1 +
2Eγ

mec2

)
, (20)

then this cannot be the first interaction, because this is the
largest possible energy deposited during Compton scattering.
2) Probabilistic combination: when both recorded energies
pass the Compton edge test, either of them can be the first
interaction. It has been shown [21] that the (non-normalized)
probability of (E1, ϕ) being the first hit can be computed as

K(ϕ;Eγ)
2πmec

2

(Eγ − E1)2
1

2π sin(ϕ)
, (21)

where K(ϕ;Eγ) denotes the Klein-Nishina formula. However,
in our experiments, the sequence determined directly by this
probability does not seem to be very accurate. We observed
that a large number of events that are supposed to be forward
scattering have higher probability of being back scattering.
We found that an ad-hoc correction by scaling the back-
scattering probability by 0.6 seems to result in more reasonable
sequences. Therefore, in all our simulations, we apply this ad-
hoc modification to the probability.

C. List-Mode Maximum Likelihood Expectation Maximization

With some initial estimate of the source intensity distribu-
tion λ(0), the algorithm proceeds as

λ(t+1) =
λ(t)

s
⊙
(
TT 1

Tλ(t)

)
, (22)

where ⊙ denotes coordinate-wise multiplication and the divi-
sions are all coordinate-wise.

V. SIMULATION RESULTS

We now test our reconstruction method on Geant4 simulated
data. A single point source with energy 0.662 MeV is utilized.
Both the scatterer and the absorber have 8 × 8 pixels made
of Cesium Iodide (CsI) and of size 5× 5× 5 mm3. There is
a 1 mm gap between pixels. The scatterer is placed at depth
z = 0 mm and the absorber is placed at depth z = −30 mm.

In the first set of simulations, we fix the source location at
(20, 20, 50) mm and vary the number of measurements. We
select measurements that satisfy the criteria in Section IV-A
as well as Es < Eedge. All these measurements are treated
as forward scattering events. The computational domain is a
64 × 64 × 33 volume and the physical size of the volume is
shown in the figures. We can see from Fig. 6a and Fig. 6b
that by using our ambiguity model instead of the cone surface
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(a) Back-projection

(b) LM-MLEM

Fig. 6: Reconstruction of the yz-slice at the true x position.
First row: cone surface model. Second row: ambiguity region
model. From left to right: the number of measurements is 64,
132, 1375, respectively. The red cross shows the true source
position.

model in the forward operator, we are able to obtain higher
quality reconstruction with the same number of measurements.
Alternatively, we can achieve good source distribution recon-
structions with a smaller number of detected photons.

In the second set of simulation, we move the source farther
away from the detector and set it at (20, 20, 200) mm. The
computational domain is a 64 × 64 × 64 volume and the
physical size of the volume is shown in the figures. As we
can see from the first column in Fig. 7a and Fig. 7b, the
cone surface model results in a significant bias towards the
detector along the z-direction. Comparing the second and the
third columns, we notice that the error due to back-scattering
is non-negligible along the z-direction and a probabilistic
combination of forward- and back-scattering events yields
more accurate reconstruction when the source is far from the
detector.

VI. CONCLUSION

We have demonstrated that accounting for ambiguities due
to the spatial resolution of a Compton camera can improve
source distribution reconstruction, enabling the use of a
smaller number of detected photons. Our ambiguity model is
based on an approximation of the detector pixels by a disc, and
then approximating the resulting ambiguity regions as being
bounded by conic sections for a given depth plane. Future
work may use more accurate models that also take the pixel
depth into account, as well as investigating the combination
of ambiguity models for both spatial and energy resolution.
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