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Abstract
We develop a guidance policy for a lunar lander under state and input constraints to land at a
nominal target location, while maintaining the ability to divert to alternative landing sites if a
hazard is detected. To ensure divert feasibility, we compute controllable sets that characterize
the set of states that can be driven to a landing site for a range of fuel mass and length of
divert trajectories. In the event a hazard is detected, we select the best divert feasible set
among the landing targets according to a scoring metric of attributes such as fuel utilization
and hazards. Simulations of the policy demonstrate that the lander can safely divert to an
alternative landing site after a hazard is detected. We develop a visualization environment
using Unreal Engine to render a landing trajectory at the lunar south pole using high fidelity
digital elevation maps obtained by the Lunar Reconnaissance Orbiter. The visualization
environment enables us to generate synthetic imagery of the lunar surface for terrain relative
navigation and hazard detection.
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We develop a guidance policy for a lunar lander under state and input constraints to land at
a nominal target location, while maintaining the ability to divert to alternative landing sites if a
hazard is detected. To ensure divert feasibility, we compute controllable sets that characterize
the set of states that can be driven to a landing site for a range of fuel mass and length of divert
trajectories. In the event a hazard is detected, we select the best divert feasible set among the
landing targets according to a scoring metric of attributes such as fuel utilization and hazards.
Simulations of the policy demonstrate that the lander can safely divert to an alternative landing
site after a hazard is detected. We develop a visualization environment using Unreal Engine to
render a landing trajectory at the lunar south pole using high fidelity digital elevation maps
obtained by the Lunar Reconnaissance Orbiter. The visualization environment enables us
to generate synthetic imagery of the lunar surface for terrain relative navigation and hazard
detection.

I. Introduction
As lunar exploration sees a resurgence of activity, and a permanent human presence on the Moon gets closer to

reality, the ability to land at specific areas of interest on the lunar surface are of paramount importance. With increasing
attention focused on the water ice located at the south pole of the Moon [1], this work presents an integrated study on
achieving soft landings at points of interest, while maintaining the feasibility to divert to alternative landing sites if a
hazard is detected.

Numerous space agencies such as NASA [2], JAXA [3], and ISRO [4], as well as private enterprises such as
iSPACE [5] aim to further explore the lunar surface using landers and rovers. Due in part to this renewed activity and
interest in lunar exploration, a number of studies have been conducted in recent years to achieve autonomous guidance,
navigation, and control for lunar landings. Although the Apollo missions successfully utilized a polynomial guidance
law for powered-descent, and manual control of the spacecraft for the terminal descent phase, these trajectories were not
propellant-optimal, and had landing uncertainty ellipses on the scale of kilometers [6, 7]. To overcome these drawbacks,
the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) [8] program has been deployed since
2008 to detect hazards and perform divert maneuvers at the approach and terminal descent phases (at altitudes of
1-2 kilometers and 30 meters, respectively), with landing ellipses on the order of tens of meters. Recent advances
in technology have enabled a more robust autonomous approach to precision landings. Utilization of terrain relative
navigation (TRN) techniques has enabled more accurate state estimation in planetary and lunar landing problems,
and was incorporated in the Mars 2020 mission [9]. Real-time implementation of powered descent guidance (PDG)
algorithms have been facilitated by the development of computationally efficient interior-point algorithms [10]. Finally,
guidance and control algorithms that incorporate vision-based data have been developed for pin-point landing accuracy,
for example as utilized in the JAXA SLIM mission [11].

Diverting from the initially intended landing site may be necessary due to, for example, hazard detection, crater
impacts, and the a priori unavailability of high quality terrain data. Ho et al. discuss deep-learning methods for safe
landing site selection, with considerations for divert maneuvers in [12]. Model predictive control (MPC) based methods
for soft landing have been proposed in [13, 14], which have the ability to incorporate algorithms for diverts [15].
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In this work, we utilize the convex optimization-based minimum-fuel PDG algorithm [16] to develop fuel-optimal
trajectories, and based on the work in [17], compute the set of initial conditions from which landing at a specific
target can be achieved. Trajectories from these initial conditions are guaranteed to reach the designated target landing
spot, while satisfying all state and path constraints. These controllable sets are generated for a range of divert lengths
and fuel mass values, to facilitate divert capabilities at various points along the final descent stage. A trajectory
generation algorithm is then developed to divert-feasible landing sites, incorporating factors such as fuel utilization
and hazards at the site to dynamically change the order of priority of the divert lading sites. The algorithm selects
the best divert feasible set from the pre-computed controllable sets that facilitates landing at the selected alternate
landing site. The 3D computer graphics game engine Unreal Engine 4.26 is utilized in conjunction with Simulink to
develop a high-fidelity environment of the lunar south pole region, where the computed trajectories are visualized.
The visualization environment enables the implementation of real-time state estimation based on topographic digital
elevation data and computer vision algorithms and allows us to simulate hazards at the primary landing site, which are
detected via a LiDAR sensor.

The rest of this paper is structured as follows. Section II introduces the lander dynamics, constraints, and the powered
descent guidance problem. In section III we describe controllable sets and their use to compute divert-feasible states.
Section IV develops the algorithm for trajectory generation with feasible divert. In section V we present simulation
results for nominal and divert trajectories after a hazard is detected. In section VI we describe the environment developed
using Unreal Engine to visualize landing trajectories for terrain relative navigation and demonstration of hazard detection
on the primary landing site. Finally, we discuss future work and provide concluding remarks in section VII.

Notation: The interval N[𝑎,𝑏] enumerates all natural numbers between and including 𝑎, 𝑏 ∈ N. Euclidean distance
is denoted by ∥ · ∥. Given a continuous time signal 𝑥(𝑡) sampled with period Δ𝑇 , we denote the value at time instant
𝑘Δ𝑇 , 𝑘 ∈ N, by 𝑥𝑘 = 𝑥(𝑘Δ𝑇).

II. Problem Formulation & Preliminaries
In this section we describe the lander dynamics model, state and input constraints, the powered descent guidance

problem, and define the problem statement.

A. Lander Dynamics and Constraints
Consider the 3 degrees of freedom (3-DOF) dynamics model of the lunar lander,

¤𝑟 = 𝑣, (1a)

¤𝑣 =
𝑢

𝑚
+ 𝑔moon, (1b)

¤𝑚 = − ∥𝑢∥2
𝑔earth𝐼sp,

(1c)

with position 𝑟 = [𝑟1, 𝑟2, 𝑟3] ∈ R3, velocity 𝑣 = [𝑣1, 𝑣2, 𝑣3] ∈ R3, mass of the spacecraft 𝑚 ≥ 𝑚dry, where 𝑚dry > 0
is the mass of the lander without any fuel, thrust 𝑢 ∈ R3, gravity with respect to earth 𝑔earth = −9.81𝑚/𝑠2, gravity
vector with respect to the moon 𝑔moon = [0; 0;−1.62]𝑇𝑚/𝑠2, and the specific impulse of the engine 𝐼sp. We ignore the
effects of planetary rotation and consider a constant gravity model. We can represent (1) compactly with the nonlinear,
continuous-time dynamics,

¤𝑥 = 𝑓 (𝑥, 𝑢), (2)

where 𝑥 = [𝑟, 𝑣, 𝑚] ∈ R7.
The thrust 𝑢 is subject to the constraint 𝑢 ∈ U, where the input setU is given by

U = {𝑢 : 0 < 𝜌lower ≤ ∥𝑢∥ ≤ 𝜌upper, �̂�
⊤𝑢 ≥ ∥𝑢∥ cos(𝜃)}. (3)

The input set U requires that the thrust is bounded from above and below with known constants 𝜌lower, 𝜌upper, and
requires the attitude constraint that the deviation angle between the thrust 𝑢 and a pre-specified unit vector �̂� ∈ R3 be
less than a pre-specified bound 𝜃 ∈ [0, 𝜋].
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The lander trajectory is constrained to be contained within a feasible cone with a pre-specified landing target with
the minimum glide slope angle 𝛾gs specified by

X =

𝑥 ∈ R
7 : tan(𝛾gs) ≤

𝑟3√︃
𝑟2

1 + 𝑟
2
2

 . (4)

B. Powered Descent Guidance using Convex Optimization
We adopt the minimum-fuel powered descent guidance (PDG) framework [16, 18]. Specifically, we design a thrust

profile 𝑢(𝑡) ∈ U which, when applied to the spacecraft, takes it from a pre-specified initial state 𝑥(0) to rest at the origin
in minimum time 𝑡 𝑓 > 0 with non-negative terminal mass 𝑚(𝑡 𝑓 ) > 0.

We formulate the lunar landing problem as the solution of the following continuous-time optimization problem,

minimize
𝑡 𝑓 ,𝑢( ·)

−𝑚(𝑡 𝑓 )

subject to ¤𝑥 = 𝑓 (𝑥, 𝑢), ∀𝑡 ∈ [0, 𝑡 𝑓 ],
𝑢(𝑡) ∈ U, 𝑥(𝑡) ∈ X, ∀𝑡 ∈ [0, 𝑡 𝑓 ],
𝑟 (0) = 𝑟0, 𝑣(0) = 𝑣0, 𝑚(0) = 𝑚dry + 𝑚fuel,

𝑟 (𝑡 𝑓 ) = 0, 𝑣(𝑡 𝑓 ) = 0, 𝑚(𝑡 𝑓 ) > 𝑚dry.

(5)

Problem (5) is a nonconvex due to the nonlinear dynamics (1) and the lower bound on the thrust magnitude 𝜌lower
and thus difficult to solve. In [16], it was shown that the change of variables 𝑧 = 𝑙𝑛(𝑚), �̄� = 𝑢/𝑚, 𝜎 = | |𝑢 | |/𝑚, and a
“lossless" convex relaxation of the constraints in (5) yields an optimization problem whose solution is the optimizer of
(5). For tractability, [16] proposes a first-order hold of the continuous-time dynamics (2) at time steps 𝑡𝑘 = 𝑘Δ𝑡 for
some discrete-time step Δ𝑡 to arrive at a discrete-time model,

𝑟𝑘+1
𝑣𝑘+1
𝑧𝑘+1

︸    ︷︷    ︸
𝜉𝑘+1

=


𝑟𝑘 + Δ𝑡

2 (𝑣𝑘 + 𝑣𝑘+1) +
Δ𝑡2

12 (�̄�𝑘+1 − �̄�𝑘)
𝑣𝑘 + Δ𝑡

2 (�̄�𝑘 + �̄�𝑘+1) + 𝑔Δ𝑡
𝑧𝑘 − 𝛼Δ𝑡

2 (𝜎𝑘 + 𝜎𝑘+1)

︸                                                ︷︷                                                ︸
𝐹Δ𝑡 ( 𝜉𝑘 ,𝜇𝑘 )

(6)

with state 𝜉 = [𝑟, 𝑣, 𝑧] ∈ R7 and input 𝜇 = [�̄�, 𝜎] ∈ R4. Using (6), [16] proposes the second-order cone program (SOCP)
for a given time of flight 𝑡 𝑓 > 0, control horizon 𝑁 ∈ N, initial mass 𝑚(0), and initial state 𝜉0 = [𝑟0, 𝑣0, ln(𝑚(0))],

minimize
𝜇0 ,...,𝜇𝑁−1

−𝑧𝑁
subject to 𝑟𝑁 = 𝑣𝑁 = 0,

∀𝑘 ∈ N[0,𝑁−1] , 𝜉𝑘+1 = 𝐹Δ𝑡 (𝜉𝑘 , 𝜇𝑘),
∀𝑘 ∈ N[0,𝑁−1] , | |�̄�𝑘 | | ≤ 𝜎𝑘 ,

∀𝑘 ∈ N[0,𝑁−1] , 𝜌lower𝑒
−𝜂𝑘 [1 − (𝑧𝑘 − 𝜂𝑘) + (𝑧𝑘−𝜂𝑘 )2

2 ] ≤ 𝜎𝑘 ≤ 𝜌upper𝑒
−𝜂𝑘 [1 − (𝑧𝑘 − 𝜂𝑘)],

∀𝑘 ∈ N[0,𝑁−1] , 𝜂𝑘 ≤ 𝑧𝑘 ≤ ln(𝑚(0) − 𝛼𝜌lower𝑘Δ𝑡),
∀𝑘 ∈ N[0,𝑁−1] , �̄�3,𝑘 ≥ cos(𝜃)𝜎𝑘 ,

∀𝑘 ∈ N[1,𝑁 ] , | | (𝑟1,𝑘 , 𝑟2,𝑘) | | tan(𝛾gs) ≤ 𝑟3,𝑘 ,

(7)

where Δ𝑡 = 𝑡 𝑓 /𝑁 and 𝜂𝑘 = ln(𝑚(0) − 𝛼𝜌upper𝑘Δ𝑡) for 𝑘 ∈ {0, . . . , 𝑁 − 1} is a collection of pre-defined constants. This
formulation of the PDG problem can be solved in polynomial time and has been demonstrated to work in real-time
applications [19].

Problem (7) depends on the time of flight 𝑡 𝑓 , which determines discrete-time step size Δ and the amount of fuel at
landing 𝑚(𝑡 𝑓 ) = exp(𝑧𝑁 ). We ensure minimum fuel usage by optimizing time of flight 𝑡 𝑓 . As done in [18], a golden
search algorithm repeatedly solves (7) in order to compute the optimal time of flight value 𝑡 𝑓 .
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C. Problem Statement
Problem 1 Given an initial state and constraints on the thrust and glide slope of the lander, design a trajectory for the
lander to successfully land at a pre-specified target location, while maintaining the ability to divert to alternative target
locations in the event a hazard is detected.

III. Controllable and Divert-Feasible Sets

A. Characterization of Divert-Feasible States
We next characterize the set of states 𝜉0 from which we can divert to a prescribed landing site ℓ = [ℓ1, ℓ2, 0] ∈ R3.

First, we use the 𝑘-step controllable set [20] to characterize the states that can be driven to ℓ = 0 in 𝑘 steps while
satisfying thrust and glide slope constraints for some fixed Δ𝑡′ (possibly different from Δ𝑡 used in (6)),

K(𝑚, 𝐷) = {𝜉0 ∈ R7 |∀𝑘 ∈ N[0,𝐷−1] , ∃𝜇𝑘 ∈ R4, 𝜉𝑘+1 = 𝐹Δ𝑡 ′ (𝜉𝑘 , 𝜇𝑘) such that constraints in (7) are satisfied}, (8)

for any mass before divert 𝑚 > 0 and any length of divert trajectory 𝐷 ∈ N. For a landing site ℓ ≠ 0, we can translate
the set K by −ℓ, which corresponds to the 𝑘-step controllable set in a new coordinate frame where the landing site is at
the origin. Thus, the set of divert-feasible states B(ℓ;𝑚, 𝐷) for any landing site ℓ is given by the Minkowski sum of
K(𝑚, 𝐷) and {−ℓ},

B(ℓ;𝑚, 𝐷) = K(𝑚, 𝐷) ⊕ {−ℓ}. (9)

B. Computation of controllability sets
A convex optimization based method introduced in [17] is adopted in this work to calculate the set of initial conditions

from which the target can be reached, subject to all dynamics and constraints as described in problem (7). Solutions of
the optimization problem (7) to alternate landing sites are dependent on the mass of fuel 𝑚(0) available at the start of the
divert maneuver and the length of divert trajectory 𝐷. The divert length 𝐷 and initial mass𝑚(0) are treated as independent
variables that determine the solution of (7). By setting the objective function in (7) to be a 𝑗𝜼, where a 𝑗 is a set of unit
vectors ±e 𝑗 , 𝑗 = 1, 2, . . . 𝑛, and 𝜼 is the vector of initial conditions 𝑥0 = [𝑟𝑥 (0); 𝑟𝑦 (0); 𝑟𝑧 (0); 𝑣𝑥 (0); 𝑣𝑦 (0); 𝑣𝑧 (0)]𝑇 ,
trajectories are generated such that each initial condition a 𝑗𝜼 is maximized, resulting in a set of 6 dimensional states that
correspond to the greatest initial conditions such that the target is reached. Taking the convex hull of the set of initial
conditions constructs a preliminary constrained controllability set of initial states from which the target is guaranteed
to be reached, for a given amount of mass of fuel 𝑚(0) and a given divert length 𝐷. Further details of the polytope
generation algorithm can be found in [17].

An example controllability set is represented in Figure 1, with projections onto the position and velocity coordinates.
Custom solvers have demonstrated the constrained controllability sets can be computed with low computational times
[19], allowing for a large number of the constrained controllability polytopes to be constructed. This work assumes a
large number of polytopes are constructed prior to launch and stored onboard the lander.

A 2 dimensional array of controllable sets is constructed, corresponding to various fuel mass and divert length
values [𝑚(0) + 𝑛Δ𝑚(0), 𝐷 + 𝑝Δ𝐷] respectively, for a total of 𝑛𝑝 sets. Table 1 depicts projections of a subset of the
2-D array of controllable sets onto the position dimensions, with mass dimensions along the x-axis and divert lengths
along the y-axis. It can be observed that the sets corresponding to various 𝐷 values vary more in dimensions from one
another, as time of flight restricts the maximum fuel available to be used.

IV. Trajectory Generation and Divert Landing Site Selection
A few factors have to be taken into account for landing site selection. It is assumed in this work that a primary target

zone has been chosen as part of the mission design. For example, a comparatively flat area of 1 km × 1 km is selected as
the overall target zone, near the lunar south pole. The guidance algorithm must now determine the optimal landing
zone within this primary region. Three factors have been chosen in this work to weigh the decision. Every landing site
identified within the primary region is assigned the following attributes :

• Cost of reachability: The mass of fuel required to reach the landing site. A landing site that requires a lower
amount of fuel to reach is given a higher priority, as this ensures greater fuel availability in case of a second divert
requirement.
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(a) Projection of K on position coordinates (b) Projection of K on velocity coordinates

Fig. 1 Example 𝐷-step controllable set K projections onto position and velocity coordinates

𝑚 = 1780 𝑘𝑔 𝑚 = 1800 𝑘𝑔 𝑚 = 1820 𝑘𝑔

𝐷 = 20

𝐷 = 24

𝐷 = 28
Table 1 Subset of 2-D array of 𝐷-step controllable sets parameterized by mass and divert length and projected
onto position dimensions.

• Hazards and topographic favorability: Due to the highly uneven topography of the lunar south pole, hazard
detection via a topological mapping sensor such as a LiDAR sensor is essential for real-time target selection
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during the landing phase. This attribute is dynamic, due to greater imaging resolution as the spacecraft gets closer
to the surface. Areas receiving sunlight are given a higher priority.

• Scientific output potential: Depending on the mission requirements, it may be favorable to land at or near a
shadowed crater that may contain water ice. This attribute is assigned in tandem with the hazard attribute, as there
may exist an overlap in hazardous regions with high scientific output potential, e.g. highly craterized permanently
shadowed regions that may contain water ice.

Algorithm 1 depicts the computation of the best divert-feasible set. The scoring metric 𝐽 incorporates the above
mentioned attributes of each divert-feasible site. In this work, we provide randomized values in the range [0, 1] to
Algorithm 1, to simulate these attributes. It may be assumed that locations of high scientific interest are known a-priori,
with scores for each site provided to the guidance algorithm during the mission design phase.

Algorithm 1 Computation of the best divert-feasible set
Input: Set of targets L, collection of 𝐷-step controllable sets K(𝑚, 𝐷) for various initial mass 𝑚 for every
(𝑚, 𝐷) ∈ M × D, scoring metric 𝐽 : L ×M ×D → R, the state at which hazard is detected 𝜉

Output: Best divert-feasible set B(ℓ∗, 𝑚∗, 𝐷∗) and the best divert landing site ℓ∗
1: Compute the set of relevant divert feasible sets ℬ = {(ℓ, 𝑚, 𝐷) : 𝜉 ∈ B(ℓ, 𝑚, 𝐷)} that include the state 𝜉 for each

divert landing site ℓ ∈ L, initial mass before divert 𝑚 ∈ M, and divert trajectory length 𝐷 ∈ D
2: Compute ℓ∗, 𝑚∗, 𝐷∗ ← arg min(ℓ,𝑚,𝐷) ∈ℬ 𝐽 (ℓ, 𝑚, 𝐷)

Algorithm 2 Trajectory generation for lunar landing with feasible divert
Input: Initial position 𝑟0, initial velocity 𝑣0, initial mass 𝑚(0), time step for nominal trajectory 𝑁 , discrete time
step to use in divert Δ𝑡′, altitude at which hazards are observable 𝐻, set of discrete mass of lunar lander to consider
for divert computationM, set of divert trajectory lengths to consider for divert computation D, set of targets L,
scoring function 𝐽

Output: Trajectory {𝜉𝑘}𝑘≥0 to land at origin, or divert safely in the event of detection of a hazard

Offline:
1: Compute K(𝑚, 𝐷) for 𝑚 ∈ M and 𝐷 ∈ D

Online:
2: Solve for optimal control {𝜇∗

𝑘
}𝑁
𝑘=0 for nominal landing using golden search and (7)

3: Initialize 𝑘 ← 0, 𝜉0 ← [𝑟0, 𝑣0, ln(𝑚(0))], 𝜏 ← 0
4: while 𝑘 ≤ 𝑁 do
5: if Altitude 𝑟3,𝑘 ≤ 𝐻 and a hazard is detected at the current state 𝜉𝑘 then
6: Use Algorithm 1 to obtain the best divert-feasible set B(ℓ∗, 𝑚∗, 𝐷∗) and the best divert landing site ℓ∗ ∈ L

for some initial mass before divert 𝑚∗ ≤ exp(𝜉7,𝑘), and some divert trajectory length 𝐷∗ ∈ N
7: Solve (7) for 𝑁 = 𝐷∗, initial state (𝜉𝑘 − [ℓ∗, 0, 0]), and 𝑡 𝑓 = 𝑁Δ𝑡′ to compute the control for divert {𝜂∗

𝑘
}𝑁
𝑘=0

8: Overwrite 𝜇∗
𝑘+𝑖 = 𝜂∗

𝑖
for all 𝑖 ∈ N[0,𝐷∗ ]

9: Store the instant of divert as 𝜏 ← 𝑘

10: Reset 𝑘 ← 0, and 𝑁 ← 𝐷∗

11: end if
12: Apply control 𝜇∗

𝑘+𝜏 to obtain 𝜉𝑘+𝜏+1
13: Increment 𝑘 ← 𝑘 + 1
14: end while

The trajectory generation algorithm for lunar landing with feasible divert is detailed in Algorithm 2, which solves
Problem 1.

V. Results
The convex optimization process provides the fuel-optimal trajectory from a given initial state 𝑥0 ∈ R7 =

[𝑟0; 𝑣0;𝑚(0)]𝑇 to the final state 𝑥 𝑓 = [𝑟 (𝑡 𝑓 ); 𝑣(𝑡 𝑓 );𝑚(𝑡 𝑓 )], subject to the dynamics and constraints specified in the
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previous section. The initial trajectory conditions for this study are

𝑟0 = [−20000; 30000; 40000]𝑇𝑚, 𝑣0 = [200;−10;−15]𝑇𝑚/𝑠, 𝑟 (𝑡 𝑓 ) = [0; 0; 0]𝑇𝑚, 𝑣(𝑡 𝑓 ) = [0; 0; 0]𝑇𝑚/𝑠, 𝑚(0) = 2500 𝑘𝑔,

𝑁 = 100 𝜃 = 25◦, 𝐼sp = 225 𝑠, 𝛾gs = 15 deg (10)

Algorithm 2 solves Problem 1 from the initial condition described in (10) to the final rest condition at origin to
obtain a nominal trajectory, depicted in Figure 2.

Fig. 2 Nominal lander trajectory

Figure 3 demonstrates the divert capability achieved through methods in this study. A divert trajectory is
calculated to an alternate landing site ℓ = [−500;−457; 0]𝑚, with the divert maneuver initialized at the state
𝑟 = 1𝑒03 × [3.9902; 2.8307; 3.000] 𝑚, 𝑣 = [−68.3959;−52.8986;−58.6963] 𝑚/𝑠, 𝑚 = 274.1473 𝑘𝑔, 𝑡 = 111.605 𝑠.
At an altitude ≤ 1500 meters, Algorithm 1 is invoked. The current state of the spacecraft is obtained, which is utilized

Fig. 3 Divert Trajectory

to select the appropriate controllable sets translated to the targets such that the current state lies within them. This
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calculates the feasibility to the multiple alternate landing sites available to the spacecraft from the current state, and
landing sites are prioritized. Figure 4 depicts the divert maneuver to a randomly selected trio of alternate landing sites,
with the controllable sets corresponding to the mass of fuel 𝑚 and divert length 𝐷 at which the divert maneuver was
initialized.

Fig. 4 Trajectories to divert-feasible sites within 1𝑘𝑚2

Set 𝑆 contains multiple divert-feasible landing targets, provided sufficient information about the current state and the
landing sites are available. Although the simulation in Figure 4 demonstrates three targets selected within the primary
landing zone of 1 𝑘𝑚2, diverts are possible to any target location whose divert-feasible set includes the current state, for
fuel mass values not greater than the current fuel mass available to the lander. Figure 5 depicts two divert maneuvers
from the state 𝑟 = 1𝑒03 × [2.0003; 1.3545; 1.4106]𝑚, 𝑣 = [−56.0274;−38.4224;−40.1378]𝑚/𝑠, 𝑚 = 222.076𝑘𝑔 to
target sites of ℓ1 = [−1030; 0; 0]𝑚 and ℓ2 = [357;−1018; 0]𝑚 respectively. The two controllable sets depicted represent
projections onto the positional dimenstions generated for 𝐷 = 23, 𝑚 = 221𝑘𝑔 (depicted in blue) and 𝐷 = 28, 𝑚 = 190𝑘𝑔
(depicted in red).

Fig. 5 Divert trajectories to distant targets

VI. Visualization & TRN
Preliminary work has been conducted to create a high-fidelity environment where the results of the optimized

trajectory can be visualized. In addition, data obtained from the visualization environment is utilized to perform a basic
version of terrain relative navigation (TRN), state estimation, and hazard detection. Simulink and the MATLAB UAV
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Toolbox are utilized to visualize the results of the optimized trajectory. The fuel-optimal trajectory data obtained by
solving problem (7) are provided to Simulink, which executes the dynamics in the visualization environment. The
Simulink model is depicted in Figure 6.

The Simulation 3D UAV Vehicle block accepts the translational data obtained from problem (7) and simulates a UAV
inside Unreal Engine. The mesh file for this UAV may be customized, and is provided a model of the Apollo 11 Lunar
Module. The Simulation 3D Scene Configuration block interacts with the visualization environment of UE4.26, to
which a custom scene of the lunar surface is provided. Two cameras are included in this model, utilizing the Simulation
3D Camera block. A Kalman Filter block has been implemented to provide state estimates using data obtained from
the cameras, and a LiDAR block which performs hazard detection is also included in the model. Further details of
these components are provided below. The custom MATLAB code blocks implement a variety of operations such as
normalization and cross correlation of the images, used for position estimation from visual data.

Fig. 6 Simulink model

A. Visualization Environment
Unreal Engine 4.26 has been utilized to visualize the lunar environment. Using publicly available high-resolution

lunar terrain data captured by the Lunar Reconnaissance Orbiter (LRO) in the form of digital elevation maps (DEM),
the topography of the lunar south pole can be rendered with high fidelity in UE4.26, as depicted in Figure 7. Due to
the granularity and level of customization options available for scenes in UE4.26, the lighting at the south pole can be
reproduced, allowing the permanently shadowed regions (PSR) of the lunar south pole to be modeled with a high degree
of accuracy.

The fuel-optimal trajectory data in Simulink is visualized in the lunar south pole environment using UE4.26 as
shown in Figure 8. In addition to visualization, the Simulink-UE connection allows for in-situ measurements during the
trajectory, utilizing the Simulation 3D Camera modules in the UAV Toolbox. In this work, two camera models are
implemented in the Simulink model: Camera 1 acts as an on-board camera facing the negative 𝑧 direction, and Camera
2 which is stationary and acts as a bird’s eye view camera. The bird’s eye view camera acts as a reference map of the
overall lunar south pole. This formulation ensures the lighting conditions in the reference map and the on-board camera
are similar. The properties of the camera models are detailed in Table (2).

B. Localization and Terrain Relative Navigation
Terrain relative navigation involves the measurement of topographic features via sensors such as lidars and cameras,

and comparing these measurements to a terrain map to estimate the position of the vehicle [21]. Utilizing the image
output of the two cameras in the Simulink model, the position of the spacecraft with respect to the reference map of
the south pole is obtained. First, a coarse position is obtained using normalized image correlation, following which,
individual features in the two images are matched to obtain a refined position estimate.
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(a) 200 × 200 km landscape (b) Shackleton Crater (Center)

Fig. 7 Lunar south pole with PSRs modeled in UE4.26

Fig. 8 Fuel-optimal trajectory visualized in UE4.26

Table 2 Simulink Camera Properties

Properties Camera 1 Camera 2
Position (m) Spacecraft [0; 0; 100000]𝑇

Relative rotation (degrees) [0, 90, 0] [0, 90, 0]
Focal length (pixels) [1109, 1109] [1109, 1109]
Image size (pixels) [1516, 1516] [1389, 1656]

FOV (degrees) 90◦ 90◦

1. Coarse position estimation
Normalized 2D image correlation [22] is utilized to obtain a coarse estimate of the lander’s position within the

reference map. We consider the image output of the on-board camera (Camera 1) as a template, and compare it to the
image output of the bird’s eye view camera (Camera 2) to obtain the best correlation coefficient between the two. The
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image from Camera 1 is resized in accordance with the altitude such that the image footprint 𝑑2 remains constant, where

𝑑 = 2𝑟𝑧𝑡𝑎𝑛(
𝜃

2
), (11)

𝜃 is the field of view of the camera, and 𝑟𝑧 is a noisy estimate of the altitude. The correlation coefficient is given by

Γ(𝑢, 𝑣) =
∑

𝑖, 𝑗 [ 𝑓 (𝑖, 𝑗) − 𝑓𝑢,𝑣] [𝑡 (𝑖 − 𝑢, 𝑗 − 𝑣) − 𝑡]√︃∑
𝑖, 𝑗 [ 𝑓 (𝑖, 𝑗) − 𝑓𝑢,𝑣]2

∑
𝑖, 𝑗 [𝑡 (𝑖 − 𝑢, 𝑗 − 𝑣) − 𝑡]2

, (12)

where 𝑓 is the image (Camera 2) with coordinates (𝑖, 𝑗), 𝑡 is the template (Camera 1) with coordinates (𝑢, 𝑣) that
correspond to the location in (𝑖, 𝑗) space where the template is placed, 𝑡 is the mean of the template, and 𝑓𝑢,𝑣 is the
mean of 𝑓 (𝑖, 𝑗) in the region under the template [23]. The argmax of (12) is used to construct a bounding box in the
image (Camera 2) of equal size to the template obtained from the on-board camera, as shown in Figure 9. The center of
the bounding box gives the coarse position estimate in (𝑖, 𝑗) space.

(a) On-board camera view (b) Reference map with bounding box

Fig. 9 Coarse position estimation

2. Feature Matching
Consider the center of the image obtained from the on-board camera (Camera 1) to be the true position. The

normalized image correlation provides a coarse position estimation via a bounding box that may or may not have it’s
center aligned with the center of the image obtained from Camera 1. This discrepancy may lead to position estimation
errors that can correspond to 10s of kilometers depending on the altitude of the spacecraft. To refine this estimate,
individual features inside the bounding box are matched with the corresponding features in the image obtained from the
on-board camera.

The speeded-up robust features (SURF) algorithm is utilized to detect features in the two images. SURF utilizes
Hessian matrices to identify the local change around a point and points of interest are chosen based on the determinant
values of the Hessain matrices [24]. Descriptors are then constructed which describe every point of interest identified
in the image. By comparing descriptors in two separate images, matching pairs can be extracted which describe the
same point of interest. The distance offset between the same set of features is then extrapolated, facilitated by the prior
knowledge of the image resolutions and noisy altitude data. The image obtained from Camera 1 is resized to be the
same size as the bounding box in pixels, for best results. An example of feature matching is depicted in Figure 10.
The blue circles indicate features detected from the on-board camera image and the red circles represent the same
features, detected inside the bounding box of position estimate. For a feature 𝑓𝑐 detected in the image obtained from
the on-board camera and correlated to a feature 𝑓𝑏 obtained from the bounding box, the Euclidean distance between
the (𝑥, 𝑦) coordinates of the feature is calculated. The average distance between the strongest subset of such features
detected in both images (𝑥𝑎𝑣𝑔, 𝑦𝑎𝑣𝑔) is then calculated, and the coarse position estimate obtained from the center of the
bounding box is adjusted by shifting it by the average distance offset.
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Fig. 10 Feature matching

C. State Estimation
Utilizing the position estimation data obtained from the feature matching process, a Kalman filter has been

implemented to estimate the states of the spacecraft. The measurements to the filter are the position estimate data
in [𝑟𝑥 , 𝑟𝑦] and noisy altitude data 𝑟𝑧 . The process noise covariance and measurement noise covariance are given by
700 × 𝐼6×6 and 150002 × 𝐼3×3, respectively, based on a coarse tuning of the filter. The filter is initialized at an initial
state different from the actual initial state, and the measurements are used until the lander reaches an altitude of 15km
above the surface (∼ 70% of the trajectory). This measurement cutoff is implemented due to Camera 1 not being able to
image sufficiently large areas on the surface to correlate with the reference map as the spacecraft lowers in altitude and
coarse localization fails. As seen in Figure 11, once the coarse localization fails the lander relies on dead reckoning.
The results in Figure 11 reflect the usage of visual data alone to perform TRN in [𝑟𝑥 , 𝑟𝑦], and exhibit deviations from
the true states. State of the art TRN techniques for lunar landings utilize a location coordinate dataset of known features
such as craters, resulting in better state estimates [25].

(a) Position (b) Velocity

Fig. 11 Estimted states, true states, and measurements
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D. Hazard Detection
This section details an example implementation of a hazard detection system that utilizes a simulated LiDAR sensor.

Through the 3-dimensional imaging functionality of the LiDAR sensor, an elevation map of the surface is obtained,
which is further analyzed to detect and classify areas on the surface as viable or non-viable for a safe landing. The
visualization environment in UE4.26 is utilized to simulate obstacles at the primary landing site, which are then detected
by the LiDAR sensor incorporated in the Simulink model. Figure 12 depicts the obstacles as visualized in UE4.26 and
the corresponding site as captured by the LiDAR sensor.

A simple morphological filter (SMRF) [26] algorithm is utilized to classify the point cloud data into ground and
non-ground points via the MATLAB function 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑆𝑀𝑅𝐹. The LiDAR sensor has a 90◦ field in both the
vertical and horizontal directions and has a range of 500 meters, which is sufficient for surveying a footprint area of
1𝑘𝑚2 at an altitude of 500m. The footprint of the lander is assumed to be a circle with radius of 5 meters, which
includes the actual dimensions of the lander and a buffer zone which may be utilized for auxiliary activities such as the
deployment of rovers. Figure 13 depicts the classification of ground points from an altitude of ∼ 250 meters, with an
elevation threshold of 5.5. The obstacles at the primary landing site can be seen on the top-right hand side of the image,
as detected by the LiDAR and classified as obstacles.

(a) UE4.26 (b) LiDAR output

Fig. 12 Hazards at the primary landing site, UE4.26 and LiDAR point cloud

VII. Conclusion and Future Work
This work establishes a convex optimization based method to ensure successful landing of a lunar lander under given

state and path constraints, while maintaining the ability to divert to alternate landing sites. Divert ability is achieved
through the use of controllable sets that characterize a set of initial conditions from which a divert target is viable.
The best divert site is selected by quantifying fuel usage, time required to reach, and a scoring metric that represents
site hazards and the scientific output potential. A visualization environment was developed, where the fuel-optimal
trajectory was visualized. Visual data from the visualization environment was utilized in preliminary work to perform
state estimation and hazard detection.

Future work will aim to improve the localization and TRN capabilities, incorporating location data of known features
and landmarks on the lunar surface. Additionally, the state information obtained from the TRN implementation will be
utilized in divert site selection. Finally, the controllable sets will be constructed with state uncertainties to improve
robustness and enable closed-loop autonomous landing trajectory generation based on TRN state estimates.
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Fig. 13 Ground classification
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