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Abstract  
Eigen decomposition of the governing equations that 

describe one-dimensional compressible flow has been 

presented. Analytical solution of the characteristics of 

the flow was derived. Simulation studies were 

conducted to support the theoretical analyses and wave 

propagation results were discussed in detail. It was 

found that acoustic effect introduced by the dynamic 

momentum led to a significant slowdown in the 

simulation and could be neglected in models without 

significant loss in accuracy for applications where 

energy transfer is of greater interest. 

 

Keywords: model reduction, characteristic speed, 

compressible flow, hyperbolic PDE, acoustic effect 

1 Introduction 

The equations that govern the motion of one-

dimensional compressible flow are the system of 

hyperbolic partial differential equations (PDEs). These 

consist of conservation laws for mass, momentum, 

and energy. Acoustic waves appear in a compressible 

flow, and pressure perturbation involves perturbation of 

density, velocity, and other parameters.  To capture the 

acoustic effect often requires very small integration 

steps when solving the governing equations, which 

significantly increases the computational cost. In 

contrast, energy transfer often involves a much slower 

time constant than other transport phenomena, and 

acoustic effect resulting from pressure perturbation is of 

minor importance. Consequently, many efforts have 

explored model reduction techniques to improve 

computational efficiency without significantly compro-

mising model integrity.  
 

One area of focus has been the simplification of the 

momentum equation since it usually does not affect the 

thermal system behavior over the time scales of interest 

in the applications where acoustic effect is not a top 

concern. Qiao and Laughman (2018) compared different 

model reduction techniques and showed that neglecting 

the phenomena on small time scales can improve 

numerical efficiency with a minimal loss in prediction 
accuracy based on simulation studies. However, the 

paper failed to present a theoretical proof to support 

their conclusions. Brasz and Koenig (1983) discussed 

the consequence of eliminating some terms in the 

original set of governing equations and found that the 

magnitude of the maximum characteristic speed was a 

key factor to limit the integration time step. 

Unfortunately, the authors did not provide detailed 

derivations to help readers fully understand the 

underlying reasoning. To fill in the gap, this paper will 

present a theoretical study for the propagation of waves 

in a fluid flowing through a channel, with an emphasis 

on applying the method of characteristics to solve the 

governing equations and elucidate the effect of dynamic 

momentum and acceleration pressure loss on the 

acoustic effect. 

 

The remainder of the paper is organized as follows. In 

Section 2, we present detailed derivations for the eigen 

decomposition of governing equations for one-

dimensional flow. In Section 3, we perform case studies 

to discuss the effect of dynamic momentum and 

acceleration pressure loss on the behavior of two-phase 

flow. Conclusions from this work are then summarized 

in Section 4. 

2 Eigen Decomposition of Governing 

Equations 

Without taking into account the gravitational force and 

axial heat conduction, the governing equations of mass, 

momentum and energy for one-dimensional flow with 

constant cross-sectional area can be written as  
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where r, G, p, e, h, tw, DH and !" are fluid density, mass 

flux, pressure, specific internal energy, specific enthalpy, 

wall shear stress, hydraulic diameter and heat flux, 

respectively.  



d1 and d2 is introduced here to evaluate the impact of the 

dynamic momentum term 
#$
#%  and the acceleration 

pressure loss term 
#
#& '$

(
) *  on the transient 

characteristics of fluid flow. Multiplying +/, on both 

sides of Eq. (2) and substituting it into Eq. (3) yields 

 
2

1 2

4 w

H

G G p

t x x D

t
d d

r
æ ö¶ ¶ ¶

+ = - -ç ÷¶ ¶ ¶è ø
 (4) 

 

( ) ( )
2

1 2

4

H

G G G

t x

q

D

e Gh
t x

d
r r

r d
¶ ¶

+ +
¶ ¶

¢¢
=

é ùæ ö¶ ¶
+ ç ÷ê ú¶ ¶ è øë û

 (5) 

 
In general, pressure p, specific enthalpy h and mass flux 

G are selected as dynamic states in the simulation of 

vapor compressor cycles. Using the chain rule to expand 

-, = '#)#.*0 -1 2 '
#)
#0*. -3, Eq. (1), (4) and (5) can be 

written in the quasilinear form after some manipulations 
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It is evident that the conservation laws described by Eq. 

(6) are hyperbolic inhomogeneous PDEs. The 

characteristic speed of information propagation dx/dt  
can be found by solving the eigenvalue of 4567  via 

|89 : 4567| = ;, where |� | indicates the determinant 

and l is the eigenvalue.  

 

However, 4 is singular and does not have an inverse if 

the dynamic term in Eq. (4) is neglected, i.e., d1 = 0. 

Note that 7 is always invertible regardless of the values 

of d1 and d2. Hence, Eq. (6) can be rewritten as  
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Eq. (7) is also hyperbolic PDEs with characteristic 

speed dx/dt that is the reciprocal of the eigenvalue of 

7564, i.e., <>%>& 9 : 7564< = ;. 

 

One can augment Eq. (6) with the total derivative of U 
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where I is a 3×3 identity matrix.  

 

It is shown below that the characteristic speeds of the 

system described by Eq. (6), dx/dt, are actually the 

roots of the determinant of the coefficient matrix of Eq. 

(8), regardless of whether B is singular or not. 
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With both dynamic momentum term and acceleration 

pressure loss term included in Eq. (6), i.e., d1 = d2 = 1, 

the determinant of the coefficient matrix is given by 
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where ? = @A/ '#)#. 2 6
)
#)
#0*. It is evident that there are 

three distinct characteristics for the system

, ,
dx

v c v v c
dt
= - + (11)

Next, we show that c is the speed of sound. Since the

change in density can be determined as -, =
'#)#.*0 -1 2 '

#)
#0*. -3, one can have
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The right-hand side of Eq. (14) is the definition of the 

speed of sound. 

We use the symbols {−, ◦, +} to denote these three

eigenvalues of B-1A, i.e., v - c, v, v + c. The 

corresponding eigenvectors are
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where the coefficients are carefully chosen so that the 

characteristic variables introduced below can be in a 

simple form.

Letting matrix Q be the matrix of eigenvectors, i.e., D =
EFG5HIFG°HIFGJHK, B-1A can be diagonalized as 
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Defining the characteristic variables W as -L =
D56-M, we can write Eq. (7) as
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Eq. (17) is equivalent to Eq. (18) - (20).
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Eq. (19) denotes that entropy wave LGOH = C travels 

with local flow speed of v, whereas Eq. (18) and (20)

denote that backward acoustic wave LG5H = N : P >.
)Q

and forward acoustic wave LGJH = N 2 P >.
)Q travel with 

sonic speed of c with respect of local flow speed v, as 

shown in Fig. 1. When the flow is adiabatic and inviscid 

(R = 0), Eq. (6) becomes Euler equations and three 

waves will remain constant along their respective

characteristic curve (Doyle, 2006). However, this is 

nonphysical and cannot occur in the real world. For fluid

flow with heat transfer, the variations in the entropy are

only determined by the heat flux along -R = N-S . 

Positive heat flux results in an increase in entropy and 

negative heat flux results in a decrease in entropy. For 

viscous flow, frictional losses always lead to the 

attenuation of both acoustic waves, as shown in Eq. (18)

and (20). Meanwhile, Eq. (18) and (20) indicate that

heat flux imposes opposite impact on two acoustic 
waves, because positive heat flux in the forward 



direction is equivalent to negative heat flux in the 

backward direction. 

Figure 1.  Characteristics of the original set of governing 

equations 

Following the above analyses, one can compute the 

characteristic speeds of the system when acceleration 

pressure loss is neglected, i.e., d1 = 1, d2 = 0. 
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It is evident that there are also three distinct 

characteristic speeds, i.e.,
>&
>% = :?T NT ? . These three 

characteristics correspond to three waves, i.e., backward 

acoustic wave LG5H = :P >.
)Q , entropy wave LGOH = C

and forward acoustic wave LGJH = P >.
)Q . Again, two

acoustic waves travel with sonic speed c.

When dynamic momentum is neglected, i.e., d1 = 0, d2

= 1, the determinant of the coefficient matrix becomes
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Only two distinct characteristic speeds exist in this case, 
>&
>% = U(5Q(

VU T N, corresponding to a supersonic backward 

acoustic wave and a forward entropy wave.

If neither dynamic momentum term nor acceleration 

pressure loss term is considered, i.e., d1 = d2 = 0, the 

determinant of the coefficient matrix is 
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In this case, the acoustic effect is eliminated and there is 

only one characteristic speed 
>&
>% = N, corresponding to 

the entropy wave travelling along with flow. 

CFL stability condition must hold if the FTUS (Forward 

in Time, Upwind in Space) scheme is employed to solve

Eq. (6). 
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where Dt is the time step, Dx is the length interval, and

l is the eigenvalue of the flux Jacobian (B-1A) with the 

largest absolute value (or the reciprocal of the 

eigenvalue of A-1B with the smallest absolute value). It 

is evident from Eq. (24) that the time step is restricted 

by the fastest characteristic speed. When either dynamic 

momentum term or acceleration pressure loss is taken 

into consideration, time steps need to be extremely small 

to obtain a stable solution since the fastest characteristic 

speed contains the speed of sound. In comparison, when 

neither term is included, much larger time steps can be 

taken since the CFL condition becomes
UW%
W& X A. In this 

case, v is the only characteristic speed, and it is often 

much smaller than the speed of sound c.

3 Results and Discussions

The finite volume method is often used to discretize the 

governing equations that describe the dynamics of fluid 

flow because it has been highly successful in 

approximating the solution of a wide range of thermal-

fluid systems and maintaining quantity conservation. In 

many of these types of models, a staggered grid scheme 

is utilized to decouple the mass and energy balance 

equations from the momentum balance equation. As a 

result, the mass and energy balances are calculated 

within the volume cells while the momentum balance is 

calculated within the flow cells, as depicted in Fig. 2. 

Figure 2. Staggered grid scheme

To simplify the analysis, homogeneous equilibrium 

model (HEM), which assumes liquid and vapor phases 

are in thermodynamic equilibrium and have the same 

phasic velocities, was used to calculate thermodynamic 
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properties of two-phase. As a result, Eq. (6) can be 

discretized as (Qiao et al., 2015)
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Based on the above discretized form, a dynamic model

for one-dimensional channel flow was created in 

Modelica with inlet boundary conditions defined as 

mass flow rate and specific enthalpy and outlet 

boundary conditions as pressure and specific enthalpy, 

as depicted in Fig. 3. Please note that specific enthalpy 

at the outlet was only useful when reverse flow occurred. 

Four case studies were conducted, and each case 

corresponded to a combination of d1 and d2 with 

different values, i.e., Case 1 (d1 = 1, d2 = 1), Case 2 (d1

= 1, d2 = 0), Case 3 (d1 = 0, d2 = 1) and Case 4 (d1 = 0, 

d2 = 0). The flow was assumed to be adiabatic so that 

the effect of heat transfer on wave propagation can be 

precluded. For Case 1 and 2, the flow was assumed to 

be inviscid (YZ = ;) since pressure could be decoupled 

from mass flux by the dynamic momentum. For Case 3 

and 4, however, frictional pressure loss between 

adjacent segments needed to be considered since 

pressure and mass flux were coupled through algebraic 

relations. Frictional pressure loss was approximated as 

follow (Laughman and Qiao, 2018)

( )2

0 0/p p m mD = D )2

0 0/m m0 00 0/0 00 0 (28)

To perform a fair comparison between these cases,

frictional pressure loss in the Case 3 and 4 needed to be 

very small. W1[ and \] [ were chosen to be 5 Pa and 

0.005 kg/s, respectively. 

The flow channel was 6m long with hydraulic diameter 

of 0.01m and was divided into 50 segments with equal 

size. R-32 was the working fluid, and its properties were

computed based on the patch-based B-spline approach 

(Laughman and Qiao, 2021). The mass flow rate and 

specific enthalpy at the source was 0.005 kg/s and 380 

kJ/kg, respectively. The pressure and specific enthalpy 

of the sink was fixed at 820 kPa and 382 kJ/kg, 
respectively. For all cases, models were initialized with

steady-state condition and subject to a step change in the 

specific enthalpy of the source at t = 0, from 382 kJ/kg 

to 458 kJ/kg. Simulations were carried out in the 

Dymola 2023x environment (Dassault Systemes, 2023). 

With the Euler solver, smaller time steps (Dt < 4e-7s)

were required to yield stable solutions for Case 1 and 2. 

For Case 3 and 4, much larger time steps could be used

(Dt < 2e-5s). The results shown below were obtained 

with the DASSL solver with a tolerance of 1e-6.

Figure 3.  Modelica model of channel flow with a step 

change in inlet enthalpy

Fig. 4 illustrated the profiles of pressures along the flow 

channel at various time instants for Case 1. At t = 0, 

pressures were uniform everywhere. With a sudden 

increase in specific enthalpy at the inlet, two-phase flow 

with higher vapor quality entered the channel, resulting 

in an increase in pressure due to more vapor 

accumulating in the first segment. This high-pressure 

wave (it is related to the term of P >.
)Q in W(-) and W(+)) 

would travel forward with a speed of v + c along the flow 

channel, as show in Fig. 4a. At 0.032 sec, the front of 

the pressure wave reached the exit of the channel and 

the average wave speed was around 187 m/s, which was

very close to the value of v + c. The pressure in last 

segment could not vary freely since the pressure 

boundary at the exit was fixed. At 0.04 sec, the pressure 

in the last segment increased to its maximum. Due to the 

enlarged pressure difference between the last segment 

and the channel exit, more flow left the channel and 

pressure in the last segment started to decline.

Accordingly, the upstream pressures would be affected,

and pressure wave would bounce back. The reflection 

behavior was similar to the reflection of any waves with 

fixed end. It was interesting to notice that the wave front 

kept its shape after reflection. As shown in Fig. 4b, at 

0.046 sec the pressure in the last segment reached to its 

minimum and corresponded to a peak of outflow. At 

around 0.08 sec, the backward wave reached the inlet of 

the channel and its average speed was about -176 m/s, 

which was very close to the value of v – c. Since the 

outflow of the first segment exceeded its inflow at this 

point, the pressure would decrease accordingly. Based 

on the behavior of wave reflection with free end, the 

pressure of the first segment could decrease to a much 
lower value than the equilibrium pressure, resulting in 

an inverted low-pressure wave. At 0.088 sec, the 



pressure of the first segment reached its minimum and 

then pressure wave traveled forward again (Fig. 4c). At 

0.12 sec, the low-pressure wave reached the channel exit 

again and reflects with a similar shape. At 0.16 sec, the 

backward pressure wave reached the inlet of the channel 

once more (Fig. 4d). Then the pressure in the first 

segment would elevate quickly, and a high-pressure 

wave with the same phase as the initial forward wave 

built up and thus finished up a complete cycle.   

 

Fig. 5 showed the profiles of mass flow rates along the 

flow channel for Case 1. At t = 0, mass flow rate was 

equal to 5 g/s everywhere. As the pressures near the inlet 

of the channel started to build up, resulting in negative 

pressure gradients. From Eq. (26), it was easy to deduce 

that negative pressure gradients tend to accelerate the 

flow. Therefore, a mass flow wave (it is related to the 

term of v in W(-) and W(+)) that corresponded to the 

pressure wave formed and propagated forward. At 0.034 

sec, mass flow wave reached the exit of the channel (Fig. 

5a). At the same time, the reflecting backward pressure 

wave retained its negative slope at the wave front, 

resulting in further acceleration of the flow. Because the 

mass flow rate was not fixed at the exit, it was amplified 

by twice of the magnitude of the mass flow wave at 

0.0445 sec (Fig. 5b). Similarly, the mass flow wave was 

inverted at the free end and traveled back towards the 

inlet of the channel. At 0.08 sec, the high mass flow 

wave reached the inlet. Since the inverted forward 

pressure wave resulted in positive pressure gradients at 

the wave front, the fluid flow started to decelerate. The 

reflected mass flow wave kept its shape since it was 

fixed at the inlet and reached the exit once again at 0.12 

sec (Fig. 5c). At the exit, the corresponding pressure 

wave reflected with unchanged positive slopes at wave 

front, leading to further deceleration of the flow. 

Consequently, the mass flow rate at the exit declined by 

more than twice of the magnitude of the wave at 0.13 

sec. As the inverted low mass flow wave traveled 

backwards, mass flow rates behind the wave front 

oscillated around the equilibrium (Fig. 5d). At 0.16 sec, 

the wave reached the inlet of the channel. As the 

corresponding high-pressure wave started to form at this 

point, the mass flow wave finished a complete cycle.  

 

Fig. 6 depicted the profiles of entropies along the flow 

channel for Case 1. Initially, the entropy of the flow was 

1147 J/(kg×K) everywhere. As a result of a sudden 

increase in specific enthalpy at the inlet, the entropy in 

the first segment increased rapidly. It can be observed 

that entropy wave traveled along with the flow and the 

wave front flattened out with time. At around 4 sec, 

entropy profile reached a new equilibrium. Different 

from pressure wave and mass flow wave, entropy wave 

traveled along with the flow at a much slower speed and 

did not bounce back at the boundaries, which 

corroborated the derivations in the previous section.   
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(d) 

Figure 4.  Pressure profiles along flow channel (Case 1) 
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Figure 5.  Flow profiles along flow channel (Case 1) 

 
Figure 6.  Entropy profiles along flow channel (Case 1) 

 

The profiles of pressures, mass flow rates and entropies 

along the flow channel for Case 2 were plotted in Fig. 7 

to 9. As discussed in the previous section, merely 

neglecting the acceleration pressure loss did not lead to 

major changes in the characteristics of the flow except 

that the speeds of acoustic waves changed slightly. 

Hence, the interpretation of the results in Case 2 will be 

the same as in Case 1. 
 

Fig. 10 to 12 displayed the profiles of pressures, mass 

flow rates and entropies along the flow for Case 3. 

Although two analytical characteristics existed, i.e., 
U(5Q(
VU T N , the backward supersonic wave was not 

physical and did not show up in the results. Like the 

entropy wave, the mass flow wave did not exhibit any 

acoustic effect. At 3.5 sec, the wave died out and mass 

flow rates were back to their equilibrium condition. Due 

to the frictional pressure loss, the equilibrium pressure 

profile was not flat. Since the dynamic term was 

neglected, the speed of pressure propagation should be 

infinite. Overall, pressure variations were well-behaved, 

and the rippling effect at the beginning dissipated very 

quickly.  
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Figure 7.  Flow profiles along flow channel (Case 2) 
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Figure 8.  Pressure profiles along flow channel (Case 2) 
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Figure 9.  Entropy profiles along flow channel (Case 2) 

 

 
 

Figure 10.  Pressure profiles along flow channel (Case 3) 

 

 
 

Figure 11.  Flow profiles along flow channel (Case 3) 

 

 
 

Figure 12.  Entropy profiles along flow channel (Case 3) 

 

The profiles of pressures, mass flow rates and entropies 

along the flow channel at various time instants for Case 

4 were manifested in Fig. 13 to 15. This was the simplest 

case with only one characteristic speed. Again, entropy 

wave and mass flow wave traveled along with the fluid 

and did not reflect at the boundaries. Compared with 

Case 3, no rippling effect was observed in the pressure 

profiles.  

Comparison of simulation speed between these cases 

indicates that Case 1 was the slowest, followed by Case 

2 and then Case 3, while Case 4 was the fastest. For 15 

sec simulation, CPU time of these cases was 240 sec, 

180 sec, 7 sec and 1 sec, respectively. At the end of 

simulation, acoustic wave effect was still in place for 

both Case 1 and Case 2, whereas in Case 3 and 4 steady-

state conditions arrived at around t = 4 sec. Profiling 

showed that pressures and mass flows were the 

dominating states for Case 1 and 2, whereas pressures 

and specific enthalpies were the dominating states for 

Case 3 and 4.  

Solver choice did not exhibit noticeable effect on the 

results as long as the solutions were stable, but the 

computational speeds could vary significantly. With the 

Euler solver, the simulation speeds were substantially 

slower than the DASSL solver. In comparison, the CPU 

time for these cases were 42894 sec, 21215 sec, 649 sec, 

and 604 sec, respectively. This indicated that the BDF 

methods were much more numerically efficient than the 

explicit fixed time step methods. 

The above analysis indicated that both dynamic 

momentum term and acceleration pressure loss term 

imposed significant impact over simulation speed and 

accuracy. In the applications where acoustic effect is not 

a great concern, these terms can be neglected in models 

to achieve much higher computational performance at 

the expense of accuracy.  
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Figure 13.  Pressure profiles along flow channel (Case 4) 

 

 
 

Figure 14.  Flow profiles along flow channel (Case 4) 

 

 
 

Figure 15.  Entropy profiles along flow channel (Case 4) 

 

4 Conclusions 

This paper explored the effect of dynamic momentum 

and acceleration pressure loss on the characteristics of 

one-dimensional compressible flow. Eigen decompo-

sition for the governing equations was shown to obtain 

their characteristic form and analytical solution for the 
wave speeds was derived. Simulation studies were 

performed to provide evidence to the theoretical 

analyses. It was found that acoustic effect arising from 

the dynamic momentum greatly affected the simulation 

speed. Meanwhile, it was shown that both dynamic 

momentum and acceleration pressure loss may be 

neglected in models to speed up simulations in 

applications where energy transfer is more important 

than momentum transfer.  
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