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ABSTRACT

Reconfigurable intelligent surface (RIS) is envisioned to be a key
enabling technology for future wireless systems and is currently be-
ing developed and studied for various applications. In this work,
we investigate how a single, passive RIS can assist both preamble
detection and localization. We propose a joint preamble detection
and localization scheme and a rule-based multi-antenna peak correc-
tion method to improve the reliability of range estimates and pream-
ble detection. The proposed approach builds prior information on a
low-speed factory vehicle’s position based on a previously estimated
position to more efficiently estimate the vehicle’s current location
along a trajectory. Simulation results present how RIS can enable
these two tasks and how performance varies across various vehicle
positions.

Index Terms— RIS, DoA estimation, ToA estimation, Peak cor-
rection, Statistical beamforming, RIS-aided localization.

1. INTRODUCTION
Future smart manufacturing demands connectivity of sensors, actu-
ators, and controlling devices distributed across the factory while
providing advanced localization services for factory vehicles such as
an automated guided vehicle (AGV). Due to the ubiquitous pres-
ence of indoor Wi-Fi devices, Wi-Fi signals can be leveraged to
localize indoor moving objects, even in non-line-of-sight (NLOS)
scenarios. Wi-Fi-based localization can be categorized into range-
based and range-free approaches [1]. Range-based approaches con-
sist of measurements of time-difference-of-arrival (TDoA), time of
arrival (ToA), and or angle of arrival (AoA) via triangulation tech-
niques [1, 2]. Fingerprinting techniques can match either coarse-
grained received signal strength indicator (RSSI), mid-grained beam
training measurements, or fine-grained channel state measurements
(CSI) to a radio map of the indoor space via data-driven approaches.
Wi-Fi signals from different frequency bands can be combined to
extract complementary features for robust localization [1–8].

In challenging scenarios, reconfigurable intelligent surfaces
(RIS), a programmable metasurface comprised of a large number
of low-cost, passive elements, can further assist Wi-Fi-based indoor
localization by providing a means of controlling the wireless prop-
agation environment. RIS-assisted localization has been studied
in the literature [9–26]. In [27], an iterative positioning algorithm
is proposed for beam training at terminals and AOA estimation.
Cramer rao lower bound (CRLB) analysis on position and orien-
tation of RIS is derived in [28]. RIS-aided downlink positioning
is studied by Fisher information analysis and a two-step optimiza-
tion is carried out to select the best active RIS subset to improve
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Fig. 1. An automated guided vehicle (AGV) travels along a trajec-
tory and transmits Wi-Fi signals to an access point (AP) via an indi-
rect path aided by reconfigurable intelligent surface (RIS).

positioning performance in [29]. In [16], CRLB is derived on the
estimation error on channel parameters to to improve the LOS link
through coherent combining and to solve a single-input single output
(SISO) localization and synchronization problem. In [21], CRLB is
derived for a radar target AoA within a joint sensing and waveform
application. In [18], a two stage localization algorithm is proposed
based on ToA and AoA estimation and prior statistical information
on the UE position.

Most of the above RIS-assisted localization efforts have not ex-
ploited the Wi-Fi frame structure such as a preamble. A preamble is
prepended to Wi-Fi packets to ensure that the receiver can detect the
start of the frame and acquire initial synchronization [30]. In [31],
preamble has been detection leveraged for range estimation in local-
ization. In this paper, we propose to incorporate the frame structure
for RIS-assisted joint preamble detection and localization. Specifi-
cally, our contributions are summarized as follows:

S1. We propose to build upon the work done in [18] by incorpo-
rating a WiFi-supported frame structure and extending the two-
stage RIS-aided localization algorithm to support a low-mobility
AGV by defining the prior information based on the knowledge
on the previous position, as opposed to coarse assumed prior in-
formation.

S2. We propose a novel preamble detection algorithm with a rule-
based multi-antenna peak correction stage in order to reduce
false alarm detection and obtain a reliable ToA estimate. Em-
ploying available statistical knowledge of the training sequence
such as periodicity and number of expected peaks to reconstruct
the ideal cross-correlation signal, and utilizing receive diversity
at the AP makes a key difference from the work of [30] and [31].



After analyzing the effect of the RIS on preamble detection when
the RIS link between a transmitter and receiver serves as the only
link available, we present numerical results to assess the perfor-
mance of the proposed algorithm on localization.

2. SYSTEM MODEL
2.1. Geometry Model
As shown in Fig. 1, we consider a RIS-assisted millimeter-wave
(mmWave) uplink communication system between a low-mobility
AGV at pUE = [xUE, yUE, zUE] with a single antenna and a Wi-Fi ac-
cess point (AP) with a uniform linear array (ULA) of M antennas at
pAP = [xAP, yAP, zAP]. We consider the case in which the direct path
between the AGV and AP is fully blocked and only the AGV-RIS-
AP uplink path is available. The RIS consists of N passive elements
with tunable phase shifts [0, 2π] modeled as a uniform planar array
(UPA), where its reference center is located at pR = [xR, yR, zR].

The AGV-RIS link h(p) ∈ CN×1 and RIS-AP link G ∈
CN×M are assumed to be Line-of-Sight (LOS) channels except
that we also include the lognormal shadowing. Let θ = [θx, θz]
be the AoA of the AGV-RIS path in azimuth and elevation. Then,
AGV-RIS channel is given as

h(p)
△
=
√
γb(θ), (1)

where γ = χd−β is the corresponding path loss with d denoting
the unknown RIS-AGV distance and χ = 100.1ϕdB modeling the
lognormal shadowing via ϕdB ∼ N (0, σ2

ϕ,dB), and b(θ) ∈ CN×1 is
the UPA array response array at the RIS

b(θ) = by(θ)⊗ bx(θ), (2)

with by(θ) and bx(θ), respectively, defined as

bx(θ) = [1, ejδ
′ cos θx sin θz , . . . , ejδ

′(Nx−1) cos θx sin θz ]T,

by(θ) = [1, ejδ
′ sin θx sin θz , . . . , ejδ

′(Ny−1) sin θx sin θz ]T,

with NxNy = N and δ′ = 2πδ/λ, where δ denotes the antenna
spacing and λ the wavelength.

Denote ψD = [ψD,x, ψD,z] as the angle of departure (AoD) from
the RIS to the AP in azimuth and elevation and ψA to be the AoA at
the AP. Then, the LOS RIS-AP channel is given by

G ≜
√
γGb(ψD)a(ψA)

H, (3)

where the path loss term γG follows a similar form to that of the
AGV-RIS link, i.e., γG = χd−βG with dG denoting the known RIS-
AP distance, b(ψD) ∈ CN×1 is the UPA array response as a function
of the AoD ψD (similarly defined as (1) by changing the AoA θ to
AoD ψD), and the ULA array response at the AP

a(ψA) = [1, ejδ
′ sin(ψA), . . . , ejδ

′(M−1) sin(ψA)]. (4)

2.2. Signal Model
In this work, we consider a frame structure similar to that of the
single-carrier physical layer frame of 802.11ad [32] which is com-
patible with wireless local access networks (WLANs) including Wi-
Fi. More specifically, we focus on the short training field (STF)
of the 802.11ad preamble to jointly carry out preamble detection
and extract a distance measurement for localization. The STF is
comprised ofQ repetitions of 128-sample Golay complementary se-
quence Ga128 followed by its binary complement −Ga128 [31, 33].

We assume a narrowband transmission and a moving AGV
equipped with a single-antenna transmitting a preamble training
sequence s[k] where k denotes the time slot index. The received
uplink AGV-RIS-AP signal is expressed as

y[k] =
√
PGHΦ[k]Hh(p)s[k] + n[k] ∈ CM×1, (5)

where P is the transmit power of the AGV, Φ[k] is a diagonal matrix
containing the amplitude and phase shifts associated with each RIS
element along the diagonal of form Φ[k] = diag[α1[k]e

jϕ1[k] . . .

αN [k]ejϕN [k]], with ϕi[k] ∈ [0, 2π] and |αi[k]|2 ≤ 1 ∀i, and
n[k] ∈ CM×1 ∼ CN (0, σ2

n I) denotes an additive white Gaus-
sian noise with zero mean and noise variance σ2

n . Furthermore, am-
plitudes and phases in Φ[k] are assumed to be independently opti-
mized. The received SNR is defined below

SNR(p, k) = P ||GHΦ[k]Hh(p)||2/σ2. (6)

which can be used for AoA estimation and RIS optimization.

3. JOINT PREAMBLE DETECTION AND LOCALIZATION

3.1. RIS-Assisted Preamble Detection
Preamble detection is an essential component during initial access.
The first stage of our localization carries out preamble detection and
range estimation using a cross-correlation based approach through
the passive RIS link. We consider the cross-correlation between
the received signal y[k] and known training sequence p[k], which
is given by p[k] = Ga128. When ym[k] denotes the m-th element of
y[k], the cross correlation for preamble detection is given by

Rm[l] =
∑K−1

k=0
ym[k]p∗[k − l], 0 ≤ m ≤M − 1, 0 ≤ l < L−1,

where l is the correlation lag index,K = Q(128+1)+LCP withLCP

denoting the cyclic prefix length. Due to the expected periodicity
of ym[k], the first peak in the set of detected peaks corresponds to
preamble detection peak lP and is extracted from Rm[l] using the
following rule:

l̂m = min{l| |Rm[l]|/Cm ≥ µ}, ∀l (7)

where Cm
△
=max{Rm[l],∀l} and µ is a given threshold value less

than 1. The delay corresponding to ToA is obtained from the pream-
ble detection estimate as l̂ToA = l̂m − LCP. Thus, the performance
of peak detection via the RIS corresponds to the performance of
ToA estimation and consequently directly impacts localization per-
formance. In the lower SNR regime, peak detection based on µ be-
comes challenging as noise corrupts the cross-correlation output and
peak detection becomes more susceptible to incorrect peak selec-
tion. Thus, we propose a peak correction algorithm to improve peak
detection and eventually ToA estimation, in the low SNR regime,
where an accurate estimate of noise floor may not be available. We
note that even when the received signal can be filtered with respect
to a noise floor, Rm[l] may still contain spurious peaks.

3.2. Rule-based Multi-Antenna Peak Correction
Let Lm

△
={[l1]m, [l2]m, . . . , [lQ]m} denote a set of peaks by apply-

ing the above peak detection to the mth antenna at AP, and its size
is denoted by cal(Lm) = Q. Owing to periodicity of the STF
composed by p[k], we have the following constraints for the cross-
correlation peaks:

[lj±l]m − [lj ]m = ±128l,∀j ∈ {1, . . . , Q} and ∀m, (8)
cal(Lm) = Q,∀m, (9)

[l1]m ≥ 0 and [lQ]m ≤ K, ∀m. (10)

Note that (10) is a boundary condition to fix missing peaks in Lm.
At a given threshold µ, the peak detector may not satisfy constraint
(9). Thus, using constraint (8), we first form a set of candidates Lm.



Our rule-based multi-antenna peak correction follows rules corre-
sponding to the above constraints of (8), (9), (10) and exploits the
cross-correlation consistency over multiple antennas at the AP.

C1. Rule-based Peak Correction: From (8), missing but expected
peaks between detected peaks are reinstated to a lag index that
restores the periodic recurrence of cross-correlation peaks and
is added to the detected peak set Lm. If (9) is not satisfied
even after applying this correction, we begin appending missing
peaks to either the beginning or end of Lm sequentially. If a
missing peak is found at a lag index greater than K, the length
of the cross-correlation output, we reintroduce a missing peak
at the beginning of Lm as long as the corresponding lag index is
positive (see (10)) and the total number of peaks is not greater
than Q (see (9)). If constraint (10) is not violated by either
appending a peak at the beginning or end of the current peak
sequence Lm, the missing peak location is selected based on
cross-correlation signal power. Missing peaks are sequentially
added to Lm until (9) is met. Finally, denoting the updated peak
set as L̃m, the ToA is estimated as the leading peak in L̃m as

Pm = L̃m[0]. (11)

C2. Multi-Antenna Peak Consistency: Since the AP is equipped
with M antennas, our peak correction further exploits the re-
ceiving antenna diversity to improve the reliability. Among M
leading peaks {Pm}Mm=1, we apply the majority rule as follows:

[C, P̃ ] = Majority({Pm,m = 1, . . . ,M}), (12)

where C denotes the number of the most frequent leading peak
P̃ . In other words, we pick the most consistent ToA estimate
across all M antennas. The larger C is, the more reliable P̃ is
for the ToA estimate. Thus, receive diversity at the AP increases
reliability in peak detection.

C3. RIS-Assisted Peak Correction: In scenarios (e.g., deep fad-
ing) that the majority rule fails (i.e., C < ⌊M/2⌋), it may imply
that the corresponding RIS coefficients Φ may not be ideal. In
this case, we re-evaluate the peak detection with a new Gaussian
randomization selection for the semidefinite program (SDP) op-
timization (see the subsection below), until the majority rule is
met or a predefined number of attempts are met ND.

Thus, the proposed peak correction can increase reliability of the
preamble detection and ToA estimation.

3.3. RIS-Assisted Localization
We consider localization in the SIMO setting based on two angular
measures and a range estimate. We denote the ToA estimate as τ̂TOA,
and obtain an estimate of the AGV-RIS distance as

d̂ = τ̂TOAc− dG. (13)

Then, assuming knowledge of the AGV height zUE, an estimate of
the elevation AoA is obtained as

ψ̂D,z = arccos((zRIS − zUE)/d̂). (14)

Furthermore, for azimuth AoA estimate ψ̂D,x, we adopt a similar ap-
proach to the one in [18]. Nevertheless, the difference is that we es-
timate the range (3.1) prior to the azimuth angle estimation, thus re-
ducing a two-dimensional search space to a one-dimensional search
in the angular domain. The remaining search space is then again split
into a predefined number of subareas Na repetitively, and statistical
beamforming is performed from each subregion. A distribution of

user locations fp(p) is then generated from each subregion and the
RIS is optimized with respect to the position that minimizes (6).

The initial position along a trajectory may correspond to a set-
ting in which an AGV has lost direct communication with the AP
and is switching to communication with the AP via the RIS. In such
a setting that no recent CSI of h(p) is available to optimize the RIS,
we measure the SNR of (6) by randomly choosing ai and gi out of
a random codebook, and choose a pair of corresponding ai and gi
that maximizes the SNR. Then, we can have

Φ = diag(a ◦ exp(jg)), (15)

where ◦ denotes the Hadamard product.
In contrast, when channel estimates of h(p) from a previous

position are available, a SDP as in [18] is applied as follows:
max
V⪰0

min
{pt}Tt=1

tr (H̄(pt)V)

s.t. diag(V) ≤ 1, rank(V) = 1,
(16)

where T is the number of sample points drawn from fp(p),
V = vvH with v = [α1e

−jϕ1 , · · · , αNe−jϕN ]T , and H̄(pt) =
H(pt)H(pt)

H where H(pt) = diag(h(pt)
H)G such that the

SNR of (6) can be written as a quadratic function P ||vHH(p)||/σ2

which gives rise to the form in (16).

3.4. Overall Localization Algorithm
The overall localization algorithm is summarized as follows:

A1. The initial position uses a random codebook to optimize the
RIS. Preamble detection and range estimation are then evalu-
ated as defined in Section 3.1. An estimate of the elevation an-
gle and range estimate is calculated. Azimuth AoA ψ̂D,x is then
calculated where the initial azimuth angle search space consid-
ered at the initial position along a trajectory is [−π/2, π/2].
The rectangular coordinate estimates of the AGV are then cal-
culated and used to evaluate euclidean localization error:

x̂(p) = xRIS − d̂(p) sin(ψ̂D,z) cos(ψ̂D,x),

ŷ(p) = yRIS − d̂(p) sin(ψ̂D,z) sin(ψ̂D,x). (17)

A2. In subsequent positions, the azimuth search space is defined
based on the previous time step azimuth AoA estimate ψ̂D,x,(i-1)

and predefined radius as indicated in Fig. 1. We assume a max-
imum speed v that a user can move at and define a maximum
radius rmax = vτ a user could have moved from its current esti-
mated position where τ is the assumed time difference between
the previous (i− 1)th position and current ith position. Know-
ing the position of the RIS and estimated location of the user,
the minimum and maximum azimuth angles defining the search
space for estimation of the current ith position are calculated
using the azimuth difference ∆az, i.e., ∆az = |ψ̂D,x,(i-1) − ψr,x|,
where ψ̂D,x = arctan(ŷ(p)/x̂(p)) and ψ̂r,x is an azimuth angle
corresponding to a location along the circumference of poten-
tial positions of the AGV at position i defined from the (i−1)th
estimated position as ψ̂r,x = arctan(ŷ(p)/(x̂(p)− rmax)). Us-
ing a determined ∆az, we define the azimuth search space for
the ith position as [ψ̂D,x,(i−1) −∆az, ψ̂D,x,(i−1) +∆az].

A3. The angular search space is split into Na uniform subregions,
in which a sample AGV location is randomly selected from the
subregion. The RIS is then optimized by (16) and an estimate
of ψ̂D,x,(i) is retrieved from the subregion using MUSIC [18].
Received SNR is used to iteratively refine ψ̂D,x,(i).



Fig. 2. 2D trajectory of AGV along factory floor

In future work, a multi-AGV setting can be supported by the pro-
posed localization solution by incorporating a signal decoding stage
to alleviate interference during preamble detection and optimizing
the RIS based on the signal-to-interference-plus noise ratio. A trade-
off between the number of users supported by a single RIS and lo-
calization error may exist.

4. NUMERICAL RESULTS
We evaluate localization error along a trajectory shown in Fig. 2 of a
typical factory floor setting where the coordinates of AGV, RIS and
AP are marked. The AGV moves closer to the AP and RIS over the
course of the trajectory with varying distances to AP dAP ∈ [7, 25]m
and distances to RIS dRIS ∈ [10, 30]m. We use the following pa-
rameters for the evaluation of the proposed algorithm: i) M = 4,
N ∈ {16, 64, 144}; ii) AGV is equipped with a single antenna; iii)
the elevation height info is assumed to be known and constant with
zRIS = zAP = 4m and zUE = 2m; iv) LOS channels are mod-
eled with β = 1.73 and σ2

ϕ,dB = 3.02; v) transmit power at the
AGV is 20 dBm; vi) sampling frequency is 60.72 MHz; vii) cross-
correlation detection threshold µ = 0.65 for the initial peak detec-
tion andQ = 10; viii)Na = 3 in the AoA estimation, and no overlap
is assumed between the subregions; and x) threshold for convergence
between subsequent AoA estimates is set as ϵ = .05 in degrees, ix)
ND = 1000 to manage the low SNR setting considered.

In Fig. 3, we illustrate an example of peak detection and correc-
tion at an SNR of 15 dB. The top plot clearly shows the challenges
regarding correlation-based frame detection and the issue of false
detected peaks even at a reasonable SNR range. With the rule-based
multi-antenna peak correction, the corrected peak locations ofRm[l]

Fig. 3. An example of preamble peak detection and correction.

Fig. 4. Localization error across trajectory provided in Fig. 2

are reconstructed as shown in the middle plot of Fig. 3, in which the
preamble start is successfully located. The bottom plot further re-
veals that i) either an optimized RIS or a RIS with more elements
reduces the false alarm rate. This is more evident at the lower SNR
regime. Specifically at the SNR of −10 dB, the proposed approach
with N = 144 RIS elements can reduce the false alarm rate from
0.98 to 0.16; and ii) make the false alarm rate less sensitive to the
operating SNR.

The impact of an operating SNR is further investigated in the top
plot of Fig. 4, where we present a performance comparison between
the proposed approach with 1) a randomly configured RIS and 2) the
PAPIR localization approach of [18]. It is noted that [18] assumes
an SNR of 100 dB, a known AoA search space and known elevation
angle, conducts AoA estimate over a wide search space, and relies
on detection of a single peak corresponding to a ToA estimate, re-
sulting in a large localization error. In [18], the range estimation is
evaluated after AoA estimation. If there are substantial AoA esti-
mation errors, the received signal is measured without a good RIS
configuration and the sufficient beamforming gain of the RIS may
not be achieved to compensate for the high noise level. In contrast,
we utilize the beamforming gains of the RIS through evaluating ToA
first with Φ optimized via random codebook or with a recent Φ.
Consequently, localization error is more robust to AoA errors in the
proposed approach, as we can still reliably estimate the range as in-
dicated in Fig. 4. The results presented in Fig. 4 serve as an upper
bound on range estimation performance for position index i as Φ
is optimized according to estimated channel parameters of position
(i − 1). Fig. 4 shows that when N is small, e.g., N = 16, the
position error does not converge as the position index increases. In
contrast, when N = 144, the proposed approach yields converged
position errors with less then 0.1m even at an SNR of −5 dB, and re-
duces the convergence time to achieve less than 10% of the position
error of the initial position. Thus, it is necessary to employ sufficient
passive elements according to the position of the AGV with respect
to the AP and RIS to achieve reliable RIS-aided localization.

5. CONCLUSION
This paper has introduced a joint preamble detection and localization
method to incorporate the frame structure for RIS-assisted Wi-Fi in-
door localization. Specifically, for a low-speed AGV, previously es-
timated positions have been used to sequentially define prior knowl-
edge for RIS-assisted localization, and ToA corrections to improve
reliability of the preamble detection. Numerical results validate how
exploiting a single, passive RIS can enable initial access procedures
and localization across SNR and positions.
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