
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

On the Use of Pretrained Deep Audio Encoders for
Automated Audio Captioning Tasks

Wu, Shih-Lun; Chang, Xuankai; Wichern, Gordon; Jung, Jee-weon; Germain, François G; Le
Roux, Jonathan; Watanabe, Shinji

TR2023-141 December 07, 2023

Abstract
Automated audio captioning (AAC) is the task of describing an audio clip that may contain
sounds from natural and/or human activities. In the context of autonomous driving, AAC
models are a beneficial addition as they can enhance self-driving cars’ awareness of the sur-
rounding acoustic environment. Despite being a rather new task, recurring DCASE challenges
have sparked continuous research interests in AAC. Following the tremendous successes of
pretrained deep models in various fields like computer vision and natural language processing,
the majority of DCASE AAC challenge submissions have also used a pretrained deep audio
encoder by default. However, not enough exploration and analyses have been done on this
vital model component. In this work, we categorize and explain relevant pretraining tasks
for deep audio encoders, and compare the downstream AAC performance when using four
publicly-accessible pretrained audio encoders in our experiments. We find that, just by alter-
ing the pretrained audio encoder in an AAC model, the caption quality metric, SPIDEr-FL,
can vary by as much as 15%, and inference speed by more than 100%. Finally, considering
the tradeoff between speed and quality, we recommend favoring architecturally simpler audio
encoders with more pretraining for time-sensitive applications like self-driving cars.

International Symposium on Future Active Safety Technology toward zero traffic accidents
(FAST-zero) 2023

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





1

On the Use of Pretrained Deep Audio Encoders
for Automated Audio Captioning Tasks

Shih-Lun Wu 1, Xuankai Chang 1, Gordon Wichern 2, Jee-weon Jung 1,
François Germain 2, Jonathan Le Roux 2, Shinji Watanabe 1

1 Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
{shihlunw, xuankaic, jeeweonj, swatanab}@andrew.cmu.edu

2 Speech & Audio Team, Mitsubishi Electric Research Labs, Cambridge, MA, USA
{wichern, germain, leroux}@merl.com

Abstract—Automated audio captioning (AAC) is the task of describing an audio clip that may contain sounds from natural and/or
human activities. In the context of autonomous driving, AAC models are a beneficial addition as they can enhance self-driving cars’
awareness of the surrounding acoustic environment. Despite being a rather new task, recurring DCASE challenges have sparked
continuous research interests in AAC. Following the tremendous successes of pretrained deep models in various fields like computer
vision and natural language processing, the majority of DCASE AAC challenge submissions have also used a pretrained deep audio
encoder by default. However, not enough exploration and analyses have been done on this vital model component. In this work, we
categorize and explain relevant pretraining tasks for deep audio encoders, and compare the downstream AAC performance when
using four publicly-accessible pretrained audio encoders in our experiments. We find that, just by altering the pretrained audio encoder
in an AAC model, the caption quality metric, SPIDEr-FL, can vary by as much as 15%, and inference speed by more than 100%.
Finally, considering the tradeoff between speed and quality, we recommend favoring architecturally simpler audio encoders with more
pretraining for time-sensitive applications like self-driving cars.
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✦

1 INTRODUCTION

Automated audio captioning (AAC) [1] is a multimodal task
that aims to generate a text description for an input audio clip. The
input audios can contain a wide variety of sounds, ranging from
natural ones like rain, thunder, or various animal sounds, to those
of human activities like car driving, talking, or household chores.
Audio captioning systems are highly valuable to the automotive
engineering community, as they can help self-driving cars detect,
for example, the sirens of fire engines or ambulances early on to
allow enough time to make way for them, or the footsteps and
chatter of children that may easily fall into the blind spots of a
car’s cameras to avoid accidents.

Thanks to the rise of deep learning [2], compilation of paired
audio-caption datasets [3], [4], and the recurring DCASE chal-
lenges on audio captioning [5], [6], [7], [8], AAC has become
a fast-developing area of research. Pretrained audio encoders
[9], [10], Transformer text decoders [11], [12], data augmen-
tation techniques [13], [14], auxiliary training objectives [15],
and reinforcement learning-based optimization [16] have all been
experimented with to boost AAC models’ performance. However,
in our opinion, the choice of pretrained audio encoders is an
understudied topic, with most of the DCASE AAC challenge
submissions opting for the PANN [9] encoder by default, and
only one pivoting to BEATs [10]. On the one hand, the audio
encoder’s network architecture and pretraining tasks (i.e., tasks
that are related to AAC, often with more training data, learned
by the audio encoder before AAC) could significantly impact the
downstream AAC performance. On the other hand, choosing the
right audio encoder for an AAC model is especially crucial to
practitioners outside of the deep learning (or deep learning-based
audio processing) expertise—as opposed to using various data
augmentation techniques and auxiliary training objectives, which

requires tedious implementation and tweaks, swapping in and out
pretrained audio encoder modules is straightforward to anyone
who has learned object-oriented programming, thanks to the easy-
to-use text generation pipeline by the open-source HuggingFace
library.1 Therefore, the primary goal of our study is to find out
how much impact on AAC performance different audio encoders
can cause, using the simplest negative log-likelihood (NLL, read
Section 2 for details) training objective for AAC tasks, and only
pretrained audio encoders accessible to the public for the best
convenience and the least additional carbon footprint incurred.

In this paper, we start by formulating the AAC task as a
sequence-to-sequence problem (Section 2), and then describe and
compare common pretraining tasks for the audio encoder in AAC
models (Section 3). In Section 4, we detail our experimental setup
with 4 different versions of the PANN and BEATs audio encoders,
and the metrics used to examine caption quality and generation
speed. The results are presented and discussed in Section 5, where
we also offer our suggestions for the safety-critical use case of
self-driving cars.

2 PROBLEM FORMULATION

The task of automated audio captioning (AAC) can naturally be
formulated as a sequence-to-sequence (i.e., seq2seq) [17] problem.
The input x is a sequence of real numbers representing an audio
waveform typically sampled at 16 to 48 kHz:

x = (x1, x2, . . . , xT ); xt ∈ R , (1)

1. github.com/huggingface/notebooks/blob/main/
examples/language_modeling_from_scratch.ipynb
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where T is the number of waveform samples. The output y, i.e.,
the desired caption for the input x, is a sequence of text tokens:

y = (y1, y2, . . . , yN ); yn ∈ N ∩ [1, |V|] , (2)

where N is the length of the caption (in number of tokens) and V
is a predefined vocabulary of text tokens.2

It is assumed that audio captions in the real world are generated
from a conditional probability distribution p(y |x), which, by the
chain rule of probability, can be decomposed as:

p(y |x) = p(y1, y2, . . . , yN |x) (3)

= p(y1|x)p(y2|y1;x) · · · p(yN |y1:N−1;x) (4)

=
N∏
n=1

p(yn|y1:n−1;x) , (5)

where y1:n−1 is a slice of y containing the first n− 1 tokens, and
y1:0 = ∅, which indicates an empty string.

Under the seq2seq framework, an AAC model typically con-
sists of an audio encoder and a text decoder. The audio encoder
fϕ(x), implemented by a neural network with parameters ϕ,
transforms the waveform samples x into a sequence of (learned)
audio features H(x):3

H(x) = fϕ(x) = (h
(x)
1 ,h

(x)
2 , . . . ,h

(x)
T ′ ); h

(x)
t′ ∈ Rd , (6)

where d is the preset output dimension of the audio encoder, and
T ′ is the number of encoded audio features (usually T ′ ≪ T ).
The text decoder, implemented by another neural network with
parameters θ, then takes the encoded audio features fϕ(x) and
a partially complete caption y1:n−1 to estimate the probability
distribution over |V|:

pθ(yn = y |y1:n−1; fϕ(x)), ∀y ∈ V , (7)

which in turn, by the decomposition in Eqs. (3)-(5), can estimate
the true distribution of audio captions p(y |x).

The AAC models are most commonly trained via maximum
likelihood estimation (MLE) [18], i.e., searching for the best
parameters {ϕ, θ} through the following optimization:

argmax
ϕ,θ

E(x,y)∼D [pθ(y | fϕ(x))] , (8)

where D is the training data distribution. In practice, to obtain
better numerical stability and to follow the convention of framing
an optimization problem as a minimization, the negative log-
likelihood is more often used as the loss function, leading to the
following optimization equivalent to Eq. (8):

argmin
ϕ,θ

E(x,y)∼D [− log pθ(y | fϕ(x))] . (9)

The optimization can be done using stochastic gradient descent
(SGD) [19] algorithms, where the parameters {ϕ, θ} are iteratively
updated using the gradient computed on sampled data instances,
i.e., ∇ϕ,θ − log pθ(y | fϕ(x)).

2. Every integer in N ∩ [1, |V|] gets mapped either to a word (e.g., bird) or
to a part of a word (e.g., the suffix -ing) by the vocabulary V .

3. The superscript (x) is used to clarify that H(x) originates from x.

3 PRETRAINING THE AUDIO ENCODER

The goal of pretraining the audio encoder fϕ(x) is to equip it
with relevant background knowledge before it is finetuned on the
AAC task as detailed in the previous section, so that it can perform
well with less amount of AAC training data. Relevant background
knowledge includes, for example, the correlation between samples
in an audio clip and the interplay between audio and language,
which reside in a wider range of data beyond carefully curated
audio-caption pairs. In the following subsections, we will intro-
duce three pretraining tasks (and the required data formats) in
the order of increasing supervision from language, and provide a
comparison between them in the end.

3.1 Masked Audio Language Modeling (MALM)

The idea of MALM originates from masked language modeling
(MLM) in text domain [20]. It is a self-supervised4 learning
method which randomly masks out some parts of a sequence and
trains the model to infer the masked parts from the unmasked ones.
This induces the model to learn co-occurrence patterns of signals.

The MALM approach in audio domain was proposed by Chen
et al. [10], and it requires an additional audio tokenizer eψ(x), a
neural network with parameters ψ, to discretize/compress audio
waveform x ∈ RT (cf. Eq. (1)) into a token sequence c ∈ NT

′
:

eψ(x) = c(x) = (c
(x)
1 , c

(x)
2 , . . . , c

(x)
T ′ ); c

(x)
t′ ∈ N ∩ [1, |C|] ,

(10)
where C is the vocabulary of discretized audio tokens (commonly
called the codebook). Note that the length of c is the same as that
of H(x), the output features of the audio encoder (cf. Eq. (6)).5

The MALM pretraining task is constructed as follows. First,
the waveform x is internally converted into a mel spectrogram6

and split into T ′ patches before being processed by learned
parameters in fϕ and eψ . Let the mel spectrogram patches be
S(x) ∈ RT

′×k, where k is the number of elements in a patch,
a random set of indices M ⊂ {1, 2, . . . , T ′} is chosen to mask
out some patches in S(x). The encoder fϕ is asked to predict
the tokens corresponding to the masked patches based on the
unmasked ones, with the help of a linear classifier gλ (i.e., a
linear transformation + a softmax operation) attached to its output
features H(x). Mathematically, fϕ and gλ produce a probability
distribution over C at all masked indices t′ ∈ M:

pϕ,λ(c
(x)
t′ = c |S(x)

Mc), ∀c ∈ C , (11)

where S
(x)
Mc denotes the unmasked patches of S(x). Similar to

Eq. (9), the optimization problem can hence be written as:

argmin
ϕ,λ

Ex∼Dpt
[
∑
t′∈M

− log pϕ,λ(c
(x)
t′ |S(x)

Mc)] , (12)

where Dpt denotes the pretraining data distribution.

3.2 Multi-Label Audio Classification (MLAC)

The MLAC method trains the model to recognize the collection
of events occuring in an audio clip. This was made possible
largely by the AudioSet [21] dataset and its tree-structured class

4. I.e., a learning paradigm which does not require human-labeled data.
5. In [10], the audio tokenizer eψ is learned alternately with the encoder fϕ;

to keep only the key idea here, we refer readers to their paper for more details.
6. A representation showing energy levels on the time-frequency plane.
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ontology,7 which led to the standardized task of audio tagging
addressed by numerous subsequent research works [9], [22], [23].

Since the audio event classes are not mutually exclusive (e.g.,
an audio can contain the sound of a flying aircraft and falling
rain), the task to be learned is multi-label classification, i.e., doing
binary classification on every class. Let the set of classes be C.
To perform the task, typically, the output features H(x) are first
mean-pooled across the time dimension before being passed to
gλ, a family of |C| binary classifiers, to output the probabilities of
each class c ∈ C being positive in the audio, i.e.,

h̄(x) = MeanPoolt′{h(x)
1 , . . . ,h

(x)
T ′ }; h̄(x) ∈ Rd , (13)

o(x) = (pϕ,λ(c |x))c∈C = gλ(h̄
(x)); o(x) ∈ [0, 1]|C| , (14)

where gλ is composed of a linear transformation followed by an
element-wise sigmoid function to squash outputs into the interval
[0, 1]. The optimization objective here is therefore:

argmin
ϕ,λ

E(x,v)∼Dpt
[−

∑
c∈C

(vc log o
(x)
c +(1−vc)(1−log o(x)c ))] ,

(15)
where v ∈ {0, 1}|C| is the ground truth associated with x, i.e., vc
is 1 when class c is positive, and 0 when negative. In the literature,
this objective function is often called binary cross-entropy.

3.3 Audio-Text Contrastive Learning (ATCL)

ATCL aims to learn cross-modal representations using separate
unimodal (i.e., audio and text) encoders. By aligning the unimodal
encoders’ representations, concepts in the language can be infused
into the deep audio features H(x), which is highly beneficial
to language-related downstream tasks like audio captioning. This
technique was first pioneered on image-text paired data [24] and
later brought to the audio-text domain [25], [26].

To implement ATCL, we need paired audio-text data (x,y),
and an (often already pretrained) text encoder eψ(y) to convert the
text y (as a token sequence, cf. Eq. (7)) into a high-dimensional
feature h(y) ∈ Rd.8 On the audio encoder side, the pooled feature
h̄(x) (see Eq. (13)) is used as a summarized audio representation.
Then, learning is driven by the InfoNCE [15] loss function, which
is computed across data instances in a sampled batch B ⊂ Dpt:

sim(h̄(x),h(y)) = exp
( h̄(x)⊤h(y)

||h̄(x)|| ||h(y)||
· 1
τ

)
, (16)

LNCE x = EB⊂Dpt

[ |B|∑
i=1

− log
sim(h̄

(x)
i ,h

(y)
i )∑|B|

j sim(h̄
(x)
j ,h

(y)
i )

]
,

(17)

LNCE y = EB⊂Dpt

[ |B|∑
i=1

− log
sim(h̄

(x)
i ,h

(y)
i )∑|B|

j sim(h̄
(x)
i ,h

(y)
j )

]
,

(18)

LNCE =
1

2
(LNCE x + LNCE y) , (19)

where i and j index instances in a same batch, and sim(·, ·)
measures the similarity between two representations, which can be

7. E.g., human voice and laughter are two classes in AudioSet, with laughter
being in the subtree of human voice.

8. For simplicity of formulation, here we assume that the learned audio and
text features have the same dimension d. The dimensions can easily be adjusted
by a linear transformation if they are different.

sharpend (or flattened) by setting a lower (or higher) temperature
τ . Following the above, the optimization objective is simply:

argmin
ϕ

LNCE . (20)

Intuitively, when only the audio encoder fϕ is being trained,9

the InfoNCE loss components (i.e., Eqs. (17) and (18)) are pulling
an audio feature h

(x)
i closer to its paired text feature h

(y)
i while

pushing other audio features h
(x)
j,(j ̸=i) away from h

(y)
i . Through

such optimization over the entire dataset Dpt, under the limited
capacity of the Rd space, the audio encoder is encouraged to put
audios with similar language concepts in the same neighborhood
in Rd, and place the most dissimilar ones the furthest apart.

3.4 Comparison
In terms of the knowledge obtained, only MALM forces the audio
encoder to learn fine-grained, time-varying features, which are es-
pecially helpful in cases where multiple events occur successively
in the audio, e.g., “a car drives by followed by people chattering
on the street,” or where the sound is gradually evolving, e.g., “the
ambulance siren gets louder and louder as it approaches.” On the
other hand, although MLAC and ATCL apply their loss function
only on a single feature pooled through the temporal dimension,
they are more closely related to audio captioning as they teach
the audio encoder to link up its representations with concepts
in the texts paired with audios, with ATCL allowing richer and
more flexible text inputs, i.e., sentences with nouns, adjectives,
and temporal/positional relations, as opposed to combinations of
predefined sound classes in MLAC.

Regarding the data available for pretraining, MALM is the one
with the least restrictions since it does not need any annotation.
MLAC requires the most careful data curation to ensure annotated
labels are consistent with its class ontology. ATCL has a flexibility
in between MALM and MLAC. Although text inputs are required,
less accurate descriptions of the audio (compared to AAC training
data) are acceptable, so we can leverage the vast amount of paired
audio and text uploaded to the web, where an audio may be simply
described as, for example, “upbeat jazz music.” Even MLAC
training data can be used for ATCL by just writing out the labels,
e.g., “the sound of [class 1], [class 2], . . . , and [class C].” Both
of the aforementioned data collection measures were used in [26].

Training-wise, MLAC is arguably the most straightforward as
it only involves the audio encoder and there are no hyperparame-
ters to tune in the objective function. The only detail that requires
attention is balanced sampling [22], which prevents the model
from collapsing to only predicting the most common classes.
ATCL is fairly easy as well if we keep the text encoder frozen.
It will be helpful to pick a strong text encoder by referring to,
for example, the Massive Text Embedding Benchmark [27], and
to experiment with several temperature values τ in the InfoNCE
loss function. MALM pretraining is the trickiest since there are
two models to be trained alternately. We have to ensure that the
audio tokenizer eψ(x) sufficiently utilizes the codebook C [28],
and also carefully select the fraction of audio signal masked by
M, such that the reconstruction task is neither too trivial nor too
difficult for the audio encoder fϕ(x) to learn.

To evaluate the pretrained audio encoder, for MLAC, we can
simply measure its auto tagging (i.e., multi-label classification)

9. We note that it is better not to update the text encoder eψ when it has
been pretrained on a much larger volume of web text.
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performance on the evaluation set. For ATCL, it is also straight-
forward to evaluate it on text-audio retrieval, which computes the
similarity between the audio representation and those of a pool
of text candidates to select the most relevant text description for
an audio clip. On the contrary, evaluating a MALM-pretrained
audio encoder is not directly possible, as the accuracy on predict-
ing masked audio tokens is barely interpretable. We can attach
additional network components on top of the pretrained encoder
to test it out on downstream tasks like audio tagging, but doing so
entails an extra finetuning process.

Despite the individual advantages and drawbacks discussed,
we note that multiple pretraining methods can be applied at the
same time to enjoy the best of all methods, as long as all necessary
network components are attached to the audio encoder. Such a
strategy was used in some of the pretrained audio encoders we
experiment with, which will be covered in the next section.

4 EXPERIMENTS
4.1 Datasets
The main dataset we use for finetuning and evaluation on the
automated audio captioning (AAC) task is Clotho [4],10 which
consists of 6K audio clips (about 4K / 1K / 1K in training
/ validation / evaluation splits respectively), each being 15∼30
seconds long and paired with 5 human-annotated captions. During
Clotho’s data collection, the authors ensured that no information
is leaked to the captions from video clips associated with the
audios, restricted caption length to 8∼20 words, and maintained
the consistency of vocabulary distribution in the 3 splits. Since the
Clotho dataset itself is small in size, following common practice
in DCASE AAC challenges [5], [6], [7], we additionally leverage
the AudioCaps dataset [3], which contains 45K paired audios and
captions (audios are 10-second long and sampled from AudioSet
[21]), to finetune our models on it before Clotho.

As for pretraining, all publicly available audio encoder im-
plementations [9], [10] and model weights we experiment with
utilized AudioSet [21], which comprises 2M clips and 5K hours
of audio (i.e., 40× and 130× the size of AudioCaps and Clotho
respectively), as their large-scale pretraining dataset.

4.2 Pretrained Audio Encoders
We leverage two publicly released, pretrained audio encoders,
PANN [9] and BEATs [7], as the audio encoder fϕ(x) in our
audio captioning models. The major difference between the two in
network architecture is that PANN is based on convolutional neu-
ral network (CNN) layers [29], assuming locality and translation
invariance of input data and applying (a large number of) learnable
filter windows that ‘slide’ over the entire input to extract features
from neighboring input elements. BEATs, on the other hand, has
Transformer [11] layers as its backbone. Instead of being restricted
to the neighborhood, every element in the input is allowed to
access and gather information from arbitrary parts of the entire
input through the Transformer’s self-attention mechanism, making
Transformers a more general and stronger sequence processor.

The PANN and BEATs models (2 versions for each) we use
represent 4 combinations of pretraining tasks: PANN is either
pretrained on MLAC alone,11 or on MLAC+ATCL.12 BEATs is

10. Version 2.1, as available at zenodo.org/record/4783391.
11. The Cnn14_16k_mAP=0.438.pth checkpoint on zenodo.org/

record/3987831.
12. Checkpoint provided in DCASE 2023 AAC challenge official baseline:

zenodo.org/record/7752975. ATCL is learned on Clotho dataset.

either pretrained on MALM only,13 or on MALM+MLAC.14

4.3 Text Decoder
To all 4 audio encoders we include in our experiments, we
attach the BART [12] Transformer text decoder, which learns
pθ(yn |y1:n−1; fϕ(x)) (cf. Eq. (7)) to generate captions. The
BART decoder shares a nearly identical attention mechanism with
the BEATs audio encoder, but in addition to self-attending to the
partially completed caption text tokens, it cross-attends to the
sequence of audio features produced by the encoder fϕ, to access
and summarize the information in the audio. We utilize the open-
source HuggingFace BART implementation15 (and hence its text
generation pipeline) and train the BART weights from scratch.16

During inference, we use the beam search algorithm [30]
implemented in HuggingFace model.generate() method17

and set the beam width to 4, which greedily keeps 4 most likely
(determined by the log-probabilities

∑
n log pθ(yn| . . . )) partial

captions at any given time, and finally returns the most likely one
as the estimated caption.

4.4 Training (Finetuning) Details
Across all of our settings (i.e., 4 audio encoders), we finetune our
AAC models first for 10 epochs on the AudioCaps [3] dataset, then
for 100 epochs on the Clotho [4] dataset.18 The objective function
used to optimize the models was detailed in Eq. (9). We apply the
AdamW optimizer [31], which adaptively adjusts the step size of
model weight updates based on gradient history, and automatically
decays model weights to mitigate overfitting.

Some important hyperparameters used during finetuning are:
batch size = 32; base learning rate = 2×10−4 for the AudioCaps
stage, and 2×10−5 for the Clotho stage.

4.5 Evaluation Metrics
We compute various metrics to examine the quality of generated
captions, namely, BLEU, ROUGE-L, METEOR, CIDEr, SPICE,
SPIDEr, and SPIDEr-FL, which compare model generations to
human-written references in different ways.

BLEU [32] is a precision-based metric, which calculates the
percentage of n-grams (i.e., substrings of n words) that also
appears in real data. We use BLEU-4 here, which computes the
score over 4-grams. ROUGE-L [33], on the other hand, aligns
more with the concept of recall. It computes the ratio between the
length of the longest common subsequence between generated and
reference texts, and the reference text’s length. METEOR [34] not
only considers the harmonic mean of n-gram precision and recall,
but also penalizes text fragmentation that occurs when aligning
generated and reference texts word-to-word. CIDEr [35] and
SPICE [36] were particularly developed for image captioning [37]
tasks, and were generally found to correlate better with human per-
ception of quality than BERT, ROUGE-L, and METEOR. Similar

13. The BEATs_iter3+ (AS2M) checkpoint on github.com/
microsoft/unilm/tree/master/beats.

14. The Fine-tuned BEATs_iter3+ (AS2M) (cpt1) checkpoint
on github.com/microsoft/unilm/tree/master/beats.

15. huggingface.co/docs/transformers/model_doc/bart
16. This is due to the fact that pretrained BART models cross-attend to

encoded text features, not audio features.
17. huggingface.co/docs/transformers/main/main_

classes/text_generation.
18. An epoch is a full pass through all samples in the dataset.
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TABLE 1: Characteristics and performance (on Clotho [4] evaluation split) of audio captioning models with different pretrained
audio encoders. All metrics are the higher the better. All systems use BART Transformer [12] text decoder. Acronyms for pretraining
tasks—MALM: masked audio language modeling; MLAC: multi-label audio classification; ATCL: audio-text contrastive learning.

Pretraining tasks Captioning quality metrics
Audio encoder fϕ (backbone) MALM MLAC ATCL BLEU-4 ROUGE-L METEOR CIDEr SPICE SPIDEr SPIDEr-FL

PANN [9] (CNN)
✗ ✓ ✗ .148 .366 .170 .387 .117 .252 .248
✗ ✓ ✓ .154 .371 .173 .415 .123 .269 .263

BEATs [10] (Transformer)
✓ ✗ ✗ .156 .375 .176 .406 .122 .264 .261
✓ ✓ ✗ .170 .383 .184 .448 .129 .289 .287

TABLE 2: Tradeoff in captioning quality and inference speed, affected by feature frame rate, feature downsampling factor, and audio
encoder backbone. The BEATs encoder here uses MALM+MLAC pretraining tasks, while the PANN uses MLAC+ATCL. RTF stands
for real time factor, which means how many seconds of audio a model can process in one second of wall-clock time.

Feature Characteristics Inference speed (RTF) Captioning quality metrics
Audio encoder fϕ Downsample× Frame rate Mean Median 10th %tile BLEU-4 ROUGE-L METEOR CIDEr SPICE SPIDEr-FL

BEATs [10]

1 50 42.9 45.3 33.5 .170 .383 .184 .448 .129 .287
2 25 45.7 47.4 42.7 .165 .384 .183 .434 .128 .279
4 13 46.5 47.8 43.6 .162 .379 .183 .423 .126 .273
8 6 46.5 47.7 43.2 .164 .378 .180 .420 .122 .269

PANN [9] 1 1 104.6 108.4 81.9 .154 .371 .173 .415 .123 .263

to BERT and METEOR, CIDEr also measures n-gram overlap, but
it upweights more informative words and downweights general
ones. For example, in “rain splashes on the ground,” the word
splashes could be the most informative, and the or is could be
the most general/unimportant ones. Meanwhile, SPICE focuses on
the overlap computed on semantic graphs constructed by objects,
object attributes, and relations. SPIDEr [38], which is the simple
mean of CIDEr and SPICE, had been the official evaluation metric
in DCASE AAC challanges until 2022. SPIDEr-FL [39] became
the DCASE official metric in 2023. It is largely the same as
SPIDEr, but requires training an additional binary classifier [40]
to recognize and penalize disfluent generations.

In addition to quality, how quickly the model can generate
captions is also a crucial aspect, especially in life-critical use cases
like self-driving cars. Therefore, we also compute the real-time
factor (RTF) during inference, which is defined as the ratio of the
duration of the input audio to the duration taken by the model to
generate a caption for it. For instance, an RTF of 40 means the
model can generate captions for 40 seconds of audio in 1 second.

5 RESULTS AND DISCUSSION

Table 1 displays our models’ performance metrics on the Clotho
[4] evaluation split (with 1,045 samples in total). Holding the text
decoder (i.e., BART [12]) and inference search algorithm (i.e.,
beam search [30]) constant, using a BEATs Transformer [10]
that was pretrained on both masked audio language modeling
(MALM) and multi-label audio classification (MLAC) as the
audio encoder fϕ leads to the overall best performance. On
SPIDEr-FL, it outperforms the worst setting (PANN [9] with only
MLAC pretraining) by 3.9 percentage points, or 15% relatively.
If we pay attention to different pretraining settings for the same
encoder architecture (i.e., first 2 rows for PANN, and last 2 rows
for BEATs), we can see that additional pretraining tasks help
with audio captioning performance in general: adding the audio-
text contrastive learning (ATCL) task gives PANN an extra 1.5
percentage points on SPIDEr-FL, while applying MLAC on top
of MALM in BEATs leads to an even larger improvement of 2.6

SPIDEr-FL points. We encourage readers to check out some of the
captions generated by our models.19

However, here, we note that direct comparison across BEATs
and PANN encoders involved in our experiments is not fair due to
their stark differences in network architecture and time resolution
of output audio features (50 frames/sec for BEATs, and only
∼1 frames/sec for PANN). The fact that there is not a pair of
publicly released PANN and BEATs pretrained on the same task
combination makes the comparison even more challenging, as
we cannot isolate how much advantage comes from BEATs’s
Transformer architecture and higher-resolution features. Mean-
while, it is reasonable to limit our experiments to readily available
pretrained models, as pretraining on large-scale datasets requires a
tremendous amount of compute resources, and also deep expertise
in audio machine learning, which practitioners who just need to
build an audio captioning application might not have.

Therefore, to understand how much high-resolution features
help with BEATs’ performance, we attempt to downsample
BEATs output audio features (i.e., H(x), cf. Eq. (6)) by 2∼8
times, which can be done with just one line of array striding
code,20 before the BART decoder cross-attention, to compare them
with the better PANN setup (i.e., with both MLAC and ATCL
pretraining). This helps us know how much the performance
would drop with lower-resolution audio features from BEATs.
Additionally, to get a sense of how much extra time BEATs takes
despite its better performance, we also check the real-time factor
(RTF) in this set of comparison. The results are shown in Table 2.
We can see that BEATs’s performance degrades steadily with more
aggressive downsampling, with the 8x-downsampled setting being
just 0.6 percentage point (on SPIDEr-FL) ahead of PANN, which
still outputs encoded audio features at the much lower resolution.
Focusing on inference speed, PANN is more than twice as fast
as any BEATs version, likely due to its more simple network
architecture and lower feature resolution. Downsampling BEATs
features does not accelerate the model by much as it does not

19. Generated samples: https://bit.ly/3DZJBFa.
20. e.g., in Python, arr = arr[::2], works as 2x downsampling.
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reduce the computation within BEATs audio encoder, but only
those in BART decoder cross-attention.

Given that models achieving a SPIDEr-FL score over 0.25 are
able to generate captions that accurately describe input audios in
most cases, we suggest that developers who are building time-
sensitive audio captioning systems opt for the faster PANN audio
encoder. Moreover, systematic testing measures for deep learning
systems [41] should be incorporated to ensure that the model
returns correct captions in time in critical scenarios. Taking the
self-driving car use case as an example, important test cases may
be detecting a fast-approaching ambulance, and children playing
or running around the car.

6 CONCLUSION

In this paper, we first formulated the automated audio captioning
problem (AAC) as estimating a conditional probability distribu-
tion, which can be learned with sequence-to-sequence (seq2seq)
neural network models. Then, we described 3 relevant pretraining
tasks for the audio encoder in seq2seq AAC models that may
leverage a wider range of data and improve the downstream audio
captioning performance. These tasks are: masked audio language
modeling (MALM), multi-label audio classification (MLAC), and
audio-text contrastive learning (ATCL), in the order of increasing
supervision from text. In our experiments, we finetuned 2 publicly
available audio encoders, i.e., PANN and BEATs, with a total of
4 pretraining task combinations. Considering both captioning per-
formance and inference speed, we recommended that practitioners
choose the faster PANN encoder pretrained on more tasks for time-
critical use cases like self-driving cars.

As a concluding note, our work specifically attempted to
elucidate the impact on audio captioning performance caused by
different pretrained audio encoders, and hence only used the basic
negative log-likelihood loss function for AAC finetuning. Readers
should be aware that utilizing auxiliary loss functions and various
data augmentation techniques [7], [8] during AAC finetuning is an
active area of research, and has achieved SPIDEr-FL scores over
0.30 without causing significant inference-time overhead.
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