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Abstract
A key challenge in holographic-type communication is transmitting point cloud signals to users
across diverse channel quality and bandwidths. Digital based point cloud coding efficiently
reduces point cloud traffic. In contrast, the quantization and entropy coding in digital-based
schemes causes quality degradation owing to channel quality fluctuations and diversity. This
study proposes a novel scheme for point cloud delivery over wireless channels. The proposed
scheme consists of a graph auto-encoder (GAE) architecture to compress the point cloud into
coded symbols and restore the point cloud from the received symbols. The proposed scheme
addresses the quality degradation due to channel quality fluctuations and bandwidth diversity
via, the following two steps. First, the coded symbols are directly mapped onto transmission
symbols, analog modulation, to ensure that the point cloud quality follows the instantaneous
channel quality of each user. Second, a non-uniform dropout is introduced to realize a rateless
property in the GAE architecture for gradually improving the point cloud quality according to
the available bandwidth. Evaluation results demonstrate that the proposed GAE architecture
can yield better point cloud quality than digital-based and analog-based schemes, even when
users have varying available bandwidths.
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Abstract—A key challenge in holographic-type communica-
tion is transmitting point cloud signals to users across diverse
channel quality and bandwidths. Digital based point cloud
coding efficiently reduces point cloud traffic. In contrast, the
quantization and entropy coding in digital-based schemes causes
quality degradation owing to channel quality fluctuations and
diversity. This study proposes a novel scheme for point cloud
delivery over wireless channels. The proposed scheme consists of
a graph auto-encoder (GAE) architecture to compress the point
cloud into coded symbols and restore the point cloud from the
received symbols. The proposed scheme addresses the quality
degradation due to channel quality fluctuations and bandwidth
diversity via, the following two steps. First, the coded symbols are
directly mapped onto transmission symbols, analog modulation,
to ensure that the point cloud quality follows the instantaneous
channel quality of each user. Second, a non-uniform dropout is
introduced to realize a rateless property in the GAE architecture
for gradually improving the point cloud quality according to
the available bandwidth. Evaluation results demonstrate that the
proposed GAE architecture can yield better point cloud quality
than digital-based and analog-based schemes, even when users
have varying available bandwidths.

I. INTRODUCTION

Among the latest innovations in communication technology,
holographic-type communication is an attractive technique to
seamlessly merge virtual and physical worlds. Holographic-
type communication provides unparalleled immersion, en-
gagement, and realism by transmitting volumetric content,
such as point clouds, over wireless and mobile channels. In
such channels, each user’s device may experience different
channel quality and have different available bandwidths owing
to mobility and ambient environments. A key challenge in
holographic-type communication is to deliver high quality
point clouds to multiple users, even under varying channel
quality and available bandwidth.

A typical solution is to employ, namely digital joint
source-channel coding, where the point cloud undergoes se-
quential digital compression and transmission, as shown in
Fig. 1 (a). For example, octree-based coding in Point Cloud
Library (PCL) [1] and Kd-tree-based coding in Draco [2] can
be used for digital compression. Previous studies have reported
graph-based point cloud compression (PCC), which treats a
point cloud as a graph signal and uses graph signal process-
ing [3] for 3D coordinates [4] and color components [5],
such as graph Fourier transform, for compression. In these
studies, the 3D coordinates of a point cloud are compressed
into the bitstream in a lossy manner. The transmission part
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Fig. 1. Schematics of conventional and proposed schemes for point cloud
delivery.

adds redundancy to the bitstream, i.e., channel coding, and
then performs bit-to-symbol mapping for reliable transmission.
Here, the transmitter sets source and channel coding parame-
ters based on the measured channel quality of multiple users to
fit the number of transmission symbols to the lowest available
bandwidth across the users.

The combination of digital compression and transmission
is optimal in point-to-point communication, as proved in
Shannon’s separation theorem [6]. However, it causes quality
degradation of the reconstructed point cloud for multiple users
owing to bandwidth heterogeneity among users and unstable
wireless channel quality for each user. As mentioned above,
the coding parameters were set to adjust the number of
transmission symbols to the lowest available bandwidth across
users to prevent playback stalls at the user. This means that,
even if some users have more bandwidth, the free bandwidth
is not the source of the point cloud quality improvement.
The wireless channel quality instability can degrade and sat-
urate the point cloud quality. Specifically, despite employing
channel coding, the user will fail to decode the point cloud
if the signal-to-noise ratio (SNR)/signal-to-interference-plus-
noise ratio (SINR) of the channel falls below a certain thresh-
old. In addition, even though some users may experience better
wireless channel quality than others, the channel quality does
not improve the users’ point cloud quality. This is because
quantization errors are not recovered on the user side.

In recent years, deep joint source-channel coding (DJSCC)
schemes [7], [8] motivated by analog joint source-channel
coding [9]–[13] have been proposed to overcome the prob-
lems of channel quality fluctuations. The existing DJSCC
schemes use an autoencoder (AE) architecture based on deep
convolutional neural networks (DCNNs) [14]–[16]. The AE



architecture encodes each image into a predefined number
of coded symbols. The coded symbols are directly mapped
to in-(I) and quadrature-(Q) phases as analog modulation
for transmission. Next, the AE architecture reconstructs the
image from the received symbols. We designed a graph
AE (GAE) architecture [17] based on deep graph neural net-
works (GNNs) [18], [19] to perform DJSCC for holographic-
type communication as shown in Fig. 1 (b). The DJSCC
schemes simultaneously conduct energy compression using
the AE architecture and linear mapping between the coded
and transmitted symbols. Thus, the DJSCC schemes prevent
decoding failure and provide good reconstruction quality ac-
cording to the instantaneous channel quality.

However, in the existing AE architecture, all coded symbols
have the same significance, leading to quality degradation, es-
pecially in multi-user scenarios. When the available bandwidth
varies among users, the number of coded symbols in the AE
architecture should be set to the widest bandwidth. In this case,
users with insufficient bandwidth receive a limited number of
coded symbols, resulting in a significant degradation of the
reconstruction quality.

As mentioned above, the existing digital-based point cloud
delivery and DJSCC schemes over wireless and mobile chan-
nels have critical issues. First, channel quality fluctuations
can cause decoding failure and quality saturation Second,
bandwidth diversity among multiple users can cause quality
saturation and degradation. To address these problems, this
paper proposes a novel DJSCC scheme for point-cloud deliv-
ery. To handle bandwidth diversity among users, the proposed
scheme possesses a rateless property in the GAE architecture
inspired by the weighted dropout [20]. The proposed GAE
architecture employs weighted dropout during model training
to adjust the importance of each coded symbol. The weighted
dropout makes the significance of the coded symbols unequal.
The proposed scheme can then progressively transmit the
coded symbols to the users. As a result, each user gradually
improves the point cloud quality according to the available
bandwidth.

Evaluations using the point cloud dataset show that the
linear mapping of the proposed scheme solves the quality
degradation and saturation of digital-based schemes such as
PCL and Draco. In addition, the rateless property in the
proposed scheme gradually improves the point cloud quality
according to the available bandwidth. In contrast, while the
existing DJSCC scheme significantly degrades the point cloud
quality for users with insufficient bandwidth to transmit all
coded symbols.

The contributions of this study are four-fold:

• Our work introduces the first GAE architecture designed
to handle channel quality fluctuations and bandwidth
heterogeneity in holographic-type communication.

• The proposed scheme introduces the weighted dropout
based on the power cumulative distribution func-
tion (CDF) during the training phase to carry out the
rateless property in the proposed GAE architecture.
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Fig. 2. Proposed end-to-end transmitter and receiver in training and testing
phases for wireless point cloud delivery.

• The proposed scheme adds a random feature [21] to each
node and builds a GAE architecture with the random
features further to improve the point cloud quality without
additional traffic.

• A black-box optimization framework, Optuna [22], is
adopted to optimize the proposed GAE architecture for
point cloud quality.

II. SYSTEM MODEL

We first introduce the considered model and the perfor-
mance metric of holographic-type communication. The con-
sidered holographic-type communication system transmitted
a point cloud with N 3D points at the transmitter and
reconstructed the point cloud with the same number of 3D
points at the receiver. The main tasks of this holographic-
type communication are 1) to compress and decompress the
point cloud using traditional or neural network (NN)-based
encoding and decoding modules, and 2) to reconstruct the
point cloud while mitigating the effects of wireless channels,
such as dynamic channel quality and bandwidth diversity.

A. Transmitter

The proposed system model is shown in Figs. 2 (a) and (b).
The input to the transmitter was a graph signal. Specifically,
the transmitter considered a 3D point cloud as a weighted and
undirected graph G = (V , E ,W ). Here, V and E are the
sets of vertices and edges of G, respectively. The proposed
system considered 3D points as vertices in the graph, and the
3D coordinates of each 3D point p = [x, y, z]T ∈ R3 as an
attribute of the vertex. In addition, a K-nearest neighbor graph
was used to connect the vertices in the graph. The W is an
adjacency matrix with positive edge weights. We used a binary
adjacency matrix where the entry is either 1 (connection) or
0 (no connection).

The input signal is the attribute of 3D coordinates for N
3D points P = [p1,p2, . . . ,pN ]T ∈ RN×3. The input signal
was then mapped into symbols, x, to be transmitted over
physical channels. The transmitter consisted of the point cloud



encoder and the rateless encoder. The point cloud encoder was
implemented based on graph convolutional NNs (GCNNs),
and the rateless encoder was implemented based on weighted
dropout. We note that the rateless encoder was only adopted in
the training phase as shown in Fig. 2 (a). By using the rateless
encoder during the training phase, the coded symbols of the
point cloud encoder will have a rateless property in the testing
phase, as shown in Fig. 2 (b). Let the GCNN parameters of the
point cloud encoder be α, and the distribution of the weighted
dropout be d. The encoded symbol sequence, x, in the training
and testing phases can then be expressed as

x =

{
T

(C)
d (T

(S)
α (P)), training phase

T
(S)
α (P), testing phase

(1)

where T
(S)
α (·) and T

(C)
d (·) denote the point cloud encoder

and the rateless encoder with respect to the parameter α and
the distribution d, respectively. Here, the transmitted symbols
x should be normalized to satisfy the total transmit power
constraint E||x||2 = P .

The normalized symbols, x, were transmitted over a phys-
ical channel. The proposed system skipped the bit-to-symbol
mapping and maps the symbols directly to I and Q symbols for
analog modulation. The wireless channel, denoted by η, took
the input x and produced the output as the received signal
y. If h is the channel coefficient, then the channel transfer
function from the transmitter to the receiver can be modeled
as

y = η(x) =

{
hx+ n received

0 missed
(2)

where n ∼ CN (0, Iσ2) is a vector of additive white Gaussian
noise (AWGN) with an average noise variance of σ2, I is
an identity matrix, ∼ means “distributed as”, and CN (a, b)
is a complex Gaussian distribution with a mean of a and a
variance of b. Here, the symbols missed because of insufficient
bandwidth were treated as zeros by the receiver.

B. Receiver

The receiver was equipped with a point cloud decoder re-
sponsible for reconstructing the point cloud from the received
symbols. Let the NN parameters of the point cloud decoder be
β. In this case, the decoded signal, P̂, can be obtained from
the received signal, y, by the following operations:

P̂ = R
(S)
β (y) (3)

where R
(S)
β (·) is the point cloud decoder with respect to the

parameters β.
The objective of the proposed system is to reconstruct the

3D coordinates of the point cloud signal as close as possible to
the original ones. The proposed system treats the point cloud
decoding task as a signal reconstruction task to minimize the
errors between the 3D coordinates of the point cloud P and
the reconstructed ones P̂. The chamfer distance LCD(α,β) is

used as the loss function of the proposed system to measure
the distance between P and P̂ as follows:

LCD(α,β)

=
1

2

{
1

|P|
∑
p∈P

min
p̂∈P̂

∥p− p̂∥2 +
1

|P̂|

∑
p̂∈P̂

min
p∈P

∥p− p̂∥2
}
,

(4)

The term minp̂∈P̂ ||p−p̂||2 enforces that each 3D coordinate p
in the original point cloud P has a matching 3D point p̂ in the
reconstructed point cloud P̂, and the term minp∈P ||p− p̂||2
forces the matching vice versa.

III. PROPOSED SYSTEM

We designed a GAE architecture for holographic-type com-
munication to solve the challenging problems due to varying
channel quality and available bandwidth among multiple users.
Specifically, a set of GCNNs was used for the point cloud
encoder, power distribution-based weighted dropout was used
for the rateless encoder, and multi-layer perceptron (MLP) was
used for the point cloud decoder.

A. Point Cloud Encoder

The input of the proposed point cloud encoder, denoted as
P ∈ RN×3, is the 3D coordinates of the point cloud with
N 3D points. The point cloud is drawn from the point cloud
dataset D. In this study, the dataset D consists of point clouds
categorized into the same category, such as airplane, car, and
bag.

Furthermore, the proposed scheme generated random fea-
tures r ∈ RNr with the number of features Nr followed
by a uniform distribution. In [21], it was proven that adding
random features improved the theoretical capability of GNN
architectures for various tasks. Inspired by these results,
random features R = [r1, r2, . . . , rN ]T to the input P as
CONCAT([P,R]) ∈ RN×(3+Nr), where CONCAT([·, ·])
denotes concatenation along the feature dimension.

The concatenated features were fed into the GCNN-based
point cloud encoder. The point cloud encoder consists of
graph convolutions and a leaky rectified linear unit (ReLU)
activation function with a trainable parameter set α. The graph
convolution layers extracted the graph signal features based
on the adjacency matrix W . The nonlinear activation function
allows us to learn a nonlinear mapping from the source signals
to the coded symbols. The point cloud encoder output the
L channel features b ∈ RN×L from P. Here, the number
of channels L depended on the graph convolutions of the
proposed point cloud encoder.

B. Rateless Encoder

The rateless encoder then transformed the features b into
coded symbols x ∈ RNL and fed the coded symbols to the
normalization layer to normalize the power such that ∥x∥2 =
P .

To realize the rateless property for the coded symbols, the
rateless encoder used a non-uniform dropout for the coded



symbols during the training phase. Analogously, the non-
uniform dropout was performed across the width direction of
the coded symbols, where independent dropouts with increas-
ing rates are set for each coded symbol. Thus, it imposed
a higher priority on the upper coded symbols during the
testing phase. We note that the desired dropout rates can be
achieved by adjusting the probability distribution for the non-
uniform dropout. In a previous study [20], the power CDF
Pr(D < τNL) = τγ , where D is the number of least principal
components, τ was the compression rate, and γ was an order,
was found to perform well in most cases. Accordingly, we
focus on the power distribution for the dropout in the following
evaluations.

The channel transfer function η took the reshaped coded
symbols x as input and produced y at the receiver, which
is defined in Eq. (2). In the training phase, the proposed
scheme synthetically analyzed all potential distortions due
to channel coefficients and additive noise. This analysis is
aimed at learning optimized weights that minimize the chamfer
distance over wireless channels.

C. Point Cloud Decoder

The received signal y ∈ RNL is inputted into the point
cloud decoder, where it is transformed into b̂ ∈ RN×L. The
point cloud decoder comprises a series of fully connected
layers and leaky ReLU activation functions with a trainable
parameter set β. In addition, the activation function for the
last layer uses the hyperbolic tangent (tanh). The point cloud
decoder maps the received symbols b̂ into an estimate of
the 3D coordinates P̂ ∈ RN×3. The chamfer distance loss
function is then computed at the receiver and propagated
back to the transmitter. In this way, the trainable parameters
of the point cloud encoder and decoder can be updated
simultaneously.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

Datasets: We use a benchmark dataset from ShapeNet [24] for
experiments. ShapeNet contains about 17,000 3D shape point
clouds from 16 shape categories. In our experiments, we select
point clouds from the “Airplane” category as an example. We
sample 2,115 point clouds for training and 234 for testing. The
training data is used for learning the network weights, and the
testing data is used for reconstruction quality comparison.
Quality Metric: We use the chamfer distance in Eq. (4) as
the quality metric of the 3D coordinate attributes.
Wireless Environment: We consider AWGN channels with
additive noise ni for wireless environments. Here, the range
of noise power σ2 is from 0 dB to −30 dB. The point cloud
encoder and decoder are trained in the deep graph joint source-
channel coding schemes at a wireless channel SNR of 20 dB.
A detailed analysis of different channel coefficients h, such
as Rayleigh and Rician fading coefficients, will be performed
in future work.
GAE Architecture: We use PyTorch Geometric (PyG) [25] to
implement our GAE architecture. Table I lists the parameter
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settings of the point cloud encoder, rateless encoder, and point
cloud decoder in the deep graph joint source-channel coding
schemes, such as the proposed scheme, the proposed scheme
without random features, and GNNCast [17] found by a black-
box optimization architecture Optuna [22]. The parameters
minimized the chamfer distance in Eq. (4) between the original
and reconstructed 3D coordinates during the training phase.
Specifically, we found that GraphConv [23] was the optimal
graph convolution filter among all graph convolution filters
in PyG for the point cloud encoder. Additionally, the number
of random features Nr was set to two. We used an adaptive
momentum (ADAM) optimizer for weight learning with an
initial learning rate of 0.005, batch size of 10, a momentum
of 0.9, and a momentum2 of 0.999 for 200 epochs.

B. Performance in Point-to-Point Environments

We first compare the baseline performance of the pro-
posed scheme with other deep graph joint source-channel
coding schemes. We prepared two baselines of the deep
graph joint source-channel coding schemes: GNNCast [17]
and the proposed scheme without random features. GNNCast
consists of the GCNN-based point cloud encoder and MLP-
based point cloud decoder. The performance improvement



TABLE I
OPTIMIZED PARAMETER SETTINGS OF THE EXISTING AND PROPOSED DEEP GRAPH JOINT SOURCE-CHANNEL CODING.

Point cloud encoder Rateless encoder Point cloud decoder

graph convolutions output channels
in each layer activation order γ output channels

in each layer activation

Proposed GraphConv [23] [96,32,112] LeakyReLU 1.5 [80,128,64,64,64,32] Leaky ReLU
Proposed w/o

random features GraphConv [23] [80,64,32,48,128] Leaky ReLU 1.0 [128,64,96] Leaky ReLU

GNNCast GraphConv [23] [112,16,112] Leaky ReLU 0.0 [80,96,32,48] Leaky ReLU

from GNNCast represents the benefits of the integration with
the proposed rateless encoder. The proposed scheme without
random features uses the GCNN-based point cloud encoder,
rateless encoder, and MLP-based point cloud decoder. The key
difference between this scheme and the proposed scheme is
adding random features to the input signals.

Fig. 3 shows the chamfer distance as a function of the
number of transmission symbols. It is assumed that the SNR
of the wireless channel is fixed at 20 dB in the testing phase.
The evaluation results yield the following findings:

• GNNCast achieves the best point cloud quality with the
most transmission symbols. However, the point cloud
quality is significantly degraded when the number of the
received symbols is limited.

• The proposed schemes with the rateless encoder can
reconstruct a high-quality point cloud even though the
transmitter transmits a limited number of analog modu-
lated symbols.

• Adding random features to the input signals improves
reconstruction quality for band-limited receivers.

The conducted evaluation experiments showed that the
existing GNNCast is difficult to deal with the bandwidth
heterogeneity, while the rateless encoder in the proposed
scheme can accept the bandwidth diversity at the fixed wire-
less channel SNR. In practical wireless communication, the
wireless channel quality often fluctuates, and the fluctuation
causes quality degradation in digital-based holographic-type
communication.

Here, we evaluate the effect of channel quality fluctuation
on the reconstruction quality of the proposed and digital-based
schemes. For performance comparison, we consider the base-
line digital-based schemes based on PCL 1.12.0 [1] and Draco
1.4.3 [2]. In the digital-based schemes, each point cloud is first
compressed into a bitstream using the digital encoder of PCL
and Draco. The bitstream is then modulated for transmission
using binary phase shift keying (BPSK) and quadrature phase
shift keying (QPSK). The modulated symbols are transmitted
over wireless channels and the receiver decodes the point cloud
from the received modulated symbols. If the receiver fails
to decode the point cloud due to bit errors, we consider the
chamfer distance of the scheme to be 1.

Fig. 4 shows the chamfer distance as a function of the
wireless channel SNRs. Here, the number of transmission
symbols fits less than 17 K symbols in all comparison schemes
for a fair comparison. The following key observations are
noted:

• The proposed scheme gradually improves the chamfer
distance by improving the wireless channel quality. The
proposed scheme prevents decoding failure and quality
saturation by skipping the digital compression and trans-
mission.

• Draco with QPSK modulation format has better quality
than the proposed scheme in high channel SNR regimes.
In contrast, it fails to decode the point cloud in low SNR
regimes, i.e., less than 15 dB of the channel SNR.

• PCL schemes suffer from low quality even at high
channel SNRs due to low compression efficiency.

These results show that the proposed scheme may have the
potential to provide a point cloud for users with low-channel
SNRs.

C. Performance in Multicast Environments

The above evaluations assumed that each user requests an
individual point cloud for the transmitter. In this section, we
consider that multiple users request the same point cloud over
wireless channels to discuss the effect of the rateless property
of the proposed scheme on multicast environments. Here, there
are four users and the number of receivable symbols in each
user is 10, 15, 30, and 45 Ksymbols, respectively.

Figs. 5 (a) and (b) show the chamfer distance in each
receiver under the wireless channel SNRs of 10 dB and
20 dB, respectively. As mentioned above, Draco needs to set
the coding parameters to adjust the number of transmission
symbols to the lowest available bandwidth across all users
to avoid playback stalls. Even if some users can receive more
digitally modulated symbols, the chamfer distance is saturated.
As the proposed scheme realizes a rateless property in the
analog modulated symbols. Users with narrow bandwidth,
such as 10 Ksymbols, can not only reconstruct point clouds of
similar quality to Draco but also users with wider bandwidth,
such as 30 and 45 Ksymbols, can reconstruct better quality
point clouds.

V. CONCLUSION

We have proposed a novel deep graph joint source-channel
coding scheme for future holographic-type communication.
Specifically, the proposed scheme integrates a GCNN-based
point cloud encoder, a power CDF-based rateless encoder, an
MLP-based point cloud decoder, and analog modulation to
simultaneously achieve: 1) prevention of decoding failure, 2)
prevention of quality saturation due to quantization, and 3) pre-
vention of quality saturation due to bandwidth diversity among
multiple users. In addition, the proposed scheme concatenates
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Fig. 5. Chamfer distance in multicast environments with four users under the
different available bandwidth.

random features along the input graph signals to enhance the
rateless property realized by the proposed rateless encoder.
It has been demonstrated that the proposed scheme gradually
improves both the point cloud quality, with the improvement
of channel quality, and the point cloud quality with wider
available bandwidth in multicast environments by realizing the
rateless property.
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