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ABSTRACT

Building reduced-order models (ROMs) is essential for efficient forecasting and control of complex dynamical systems. Recently,
auto encoder-based methods for building such models have gained significant traction, but their demand for data limits
their use when the data is scarce and expensive. We propose aiding a model’s training with the knowledge of physics
using a collocation-based physics-informed loss term. Our innovation builds on ideas from classical collocation methods
of numerical analysis to embed knowledge from a known equation into the latent-space dynamics of a ROM. We show
that the addition of our physics-informed loss allows for exceptional data supply strategies that improves the performance
of ROMs in data-scarce settings, where training high-quality data-driven models is impossible. Namely, for a problem of
modeling a high-dimensional nonlinear PDE, our experiments show x5 performance gains, measured by prediction error, in a
low-data regime, x10 performance gains in tasks of high-noise learning, x100 gains in the efficiency of utilizing the latent-space
dimension, and x200 gains in tasks of far-out out-of-distribution forecasting relative to purely data-driven models. These
improvements pave the way for broader adoption of network-based physics-informed ROMs in compressive sensing and control
applications.

1 Introduction
Forecasting the behavior of a large-scale real-world system directly from first principles often requires solving highly-nonlinear
governing equations such as high-dimensional ordinary differential equations (ODEs) or partial differential equations (PDEs).
High-fidelity simulations of such dynamical systems can become intractable, especially if an online control algorithm requires
multiple forecasts per second using a low-powered embedded device1–3. A situation like this arises, for example, when a
smart heating, ventilation, and air conditioning (HVAC) system attempts to optimize the temperature distribution of the air in a
room using only partial measurements4, 5. At the time of writing this paper, such systems are incapable of real-time complex
simulations, but they can already run low-dimensional pre-trained models, which invites the development of high-quality
reduced order models (ROMs)6. Therefore, ROMs are essential for enabling the design optimization, uncertainty propagation,
predictive modeling, and control for such dynamical systems1, 7–9

In order to enable control of high dimensional dynamical systems, a ROM training method needs to identify a low-
dimensional manifold along with dynamics on the manifold that together yield high-accuracy predictions and long-term
stability10, 11. Most traditional ROMs are projection-based, e.g. dynamic mode decomposition (DMD)8, 12 and proper
orthogonal decomposition (POD)13, which transform the trajectories of a high-dimensional dynamical system into a suitable,
and in some sense optimal, low-dimensional subspace. This projection leads to truncation of higher order modes and parametric
uncertainties, which result in large prediction errors over time due to the deterioration of the basis functions (spatial modes)3.
One challenge for POD methods is their intrusive nature, i.e. requiring access to the solver codes. To overcome this, operator
inference approaches14, 15 utilize SVD-based model reduction and exploit lifting to fit the latent space dynamics data into
polynomial, typically quadratic, models. These models, however, are (i) limited in representation power (up to quadratic, e.g.
for lift and learn approach) and (ii) require a custom-tailored SVD-based optimization technique.

In a thrust to overcome these challenges, significant effort has been invested into developing autoencoder-based reduced-
order models, as a popular nonlinear ROM technique, which can yield both accurate and stable ROMs16–19. In practice,
however, autoencoder-based ROMs require datasets that densely cover a hypothetical infinite dimensional phase portrait of
the dynamical system. Moreover, the large demand for training data significantly limits the use of such models in physics
applications where the data can be expensive to obtain.

Another severe challenge of utilizing ROMs comes from their poor out-of-distribution performance17, 20, 21, especially when
it is fundamentally impossible for a practitioner to obtain data that covers the entire distribution of possible data inputs. For
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example, in HVAC applications, one may collect data from a room with two windows but not from a room for every possible
number of windows. In atmospheric LiDAR applications, we may conduct experiments on a certain terrain but we can never
conduct experiments on all sorts of terrains22. In such situations embedding the knowledge of physics into a model becomes
necessary to improve the extrapolation performance, and for which several approaches have recently been proposed. For
instance, the seminal works23, 24 have tried to determine the underlying structure of a nonlinear dynamical system from data
using symbolic regression. Recently, Cranmer et al.21 employed symbolic regression in conjunction with graph neural network
(GNN), while encouraging sparse latent representation, to extract explicit physical relations. They showed that the symbolic
expressions extracted from the GNN generalized to out-of-distribution data better than the GNN itself. However, symbolic
regression also suffers from excessive computational costs, and may be prone to overfitting.

Another example of incorporating physics in ROMs is the use of parametric models at the latent space, e.g. by using the
sparse identification of nonlinear dynamics (SINDy)18, 25. For instance,20, 26 used a chain-rule based loss that ties latent-space
derivatives to the observable-space derivatives for simultaneous training of the auto-encoder and the latent dynamics. However,
such loss is highly sensitive to noise in the data, especially when evaluating time-derivatives with finite differences is required27.
Collocation-based enforcement of the physics, i.e. projection of the candidate functions in the governing equations to enforce
the chain rule instead of finite difference, could address such numerical difficulties. Recently, Liu et al.28 used an auto-encoder
architecture and Koopman theory to demonstrate that combining autoencoders with enforcing linear dynamics in the latent
space may result in an interpretable ROM. However, linearity may not be expressive enough for complex dynamics with
multiple basins of attraction29. Finally, recent works on NeuralODE (NODE)30, 31 show a way to fit an arbitrary non-linear
model (e.g. a network) as a latent space dynamics model, significantly extending the set of models for the latent dynamics that
one can train efficiently.

In this paper, we employ autoencoders to perform nonlinear model reduction along with NODE in the latent space to
model complex and nonlinear dynamics. We choose Neural ODEs in the latent space dynamics representation because of their
ability to model highly non-linear dynamics, which is especially important when applications limit the size of the latent space
dimension. Our goal is to reduce the demand for training data and improve the overall forecasting stability under challenging
training conditions. To that end, we build on ideas from classical collocation methods of numerical analysis to embed knowledge
from a known governing equation into the latent-space dynamics of a ROM, as described in Section 2. In Section 3, we show
that the addition of our physics-informed loss allows for exceptional data supply strategies that improves the performance of
ROMs in data-scarce settings, where training high-quality data-driven models is impossible. We demonstrate that such an
approach not only reduces the need for large training data-sets and produces highly-accurate and long-term stable models, but
also leads to the discovery of more compact latent spaces, which is especially important for applications in compressed sensing
and control.

2 Methods
Reduced-Order Model with Non-Linear Latent Dynamics We consider an autonomous dynamical system on a finite space
X ⊆ Rn given by

d
dt

x(t) = f (x(t)). (1)

In real-world applications, it is often expensive to solve equation (1) directly because x(t) can be very high-dimensional.
However, a variety of works provided both theoretical13 and empirical11, 32 evidence that many physical systems evolve on
a manifold Z ⊆ Rm of a lower dimension m << n. In that space, the dynamics evolve according to a (generally unknown)
function h(z):

d
dt

z(t) = h(z(t)) (2)

We call the space X an observable space, and Z a latent space. When an invertible mapping ψ : Z → X between the
observable and the latent spaces is known, one can predict the dynamics of the system x at a future time T by projecting the
initial condition x(0) into the latent space, integrating the dynamics in the latent space, and mapping the resulting trajectory
back to the observable space:

z(0) = ψ
−1(x(0))

z(T ) = z(0)+
∫ T

0
h(z(t))dt

x(T ) = ψ(z(T ))

(3)
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Figure 1. Illustration of the autoencoer structure with neural ODE in the latent space. The data-driven part of the loss function
aims to minimize a sum of two objectives: the prediction loss and the reconstruction loss. The prediction loss minimizes the
difference between the data trajectories and their model predictions to ensure temporal consistency of the latent space dynamics.
The reconstruction loss ensures accurate reconstruction of individual snapshots, ensuring that the autoencoder behaves as an
invertible mapping on all snapshots.

When m << n we refer to the triplet (ψ,ψ−1,h) as a Reduced-Order Model (ROM) of f . It is often the case that for a
given system f , there exists no ROM (ψ,ψ−1,h) such that the relation (3) holds exactly. In this case, we seek an approximation
ROM (ψθ∗ ,φθ∗ ,hθ∗) that minimizes the difference between the data x(t) and the prediction x̂(t) over a chosen class of models
(ψθ ,φθ ,hθ ) parameterized by θ .

Multiple real-world applications necessitate using ROMs instead of integrating the relation (1) directly. For example,
integrating (1) may be computationally intractable especially on platforms with limited computing capability such as embedded
and autonomous devices. For instance, in an HVAC system, solving (1) means solving a Navier-Stokes equation on a fine grid
in real time, which exceeds the computing capabilities of current-generation appliances. On the other hand, integrating (3) may
be cheap when m << n. Finally, even when solving (1) is possible in real time (e.g. by utilizing a remote cluster), executing
control over the resulting model, which is an end-goal for an HVAC system, may still be intractable. Indeed, executing control
requires multiple evaluations of (1) for each iteration of control even for the most efficient algorithms known to date33.

Architecture In this work we model ψ , ψ−1, and h with fully-connected neural networks ψθ , φθ , and hθ , respectively.
Specifically, the pair (ψ , ψ−1) is modelled with an auto-encoder (ψθ ,φθ ), and h is modelled with a fully-connected network
hθ . Figure 1 visualizes the architecture of the model.

Data-Driven Loss Similar to prior works17, 34, 35, we define a data-driven loss Ldata as a sum of reconstruction and prediction
losses. The former ensures that φθ and ψθ are inverse mappings of each other, whereas the latter matches the model’s predictions
to the available data, as illustrated on Figure 1.

Formally, for a given set of trajectories xi, i ∈ [1 . . .k], where each trajectory xi ∈Rn×p is a set of p snapshots that correspond
to the recorded states of the system for p time-steps, t j, j ∈ [1, . . . , p], the loss function L data

θ
is defined as:

L data
θ =

1
2σ2

k

∑
i=1

[
ω1

p

p

∑
j=1

∥∥xi(t j)−ψθ (φθ (xi(t j)))
∥∥2

+ (4)

+
ω2

p

p

∑
j=1

∥∥∥∥ψθ

(
φθ (xi(t1))+

∫ t j

t1
h(z(t))dt

)
− xi(t j)

∥∥∥∥2
]

(5)

where σ is the standard deviation of the observation noise. We note that each trajectory xi may be captured over its own
time-frame and may use a distinct, possibly non-uniform, step-size, in which case the loss function should be modified
accordingly [The implementation is affected only in evaluating the integral in (4). This part is handled by torchdiffeq36

library, which supports non-uniform time-frames within a batch]. To simplify the notation, without loss of generality, in the
rest of the paper we assume that all trajectories are recorded over the same time-frame with the same uniform step-size. To
forecast the behavior of the system in the latent space, we apply the technique of Neural Ordinary Differential Equations
(Neural ODEs or NODEs)30, which utilizes the adjoint sensitivity method to back-propagate the gradients through the integral
in (4). Neural ODEs have demonstrated a better ability to model highly non-linear dynamics compared to linear models when
the dimensionality of the dynamics variable is limited. This is especially useful in applications where the size of the latent
space dimension needs to be small16–19.

Physics-Informed Loss In their recent work, Liu et al.28 proposed a method for utilizing knowledge of the governing
equations dx/dt = f (x) as a finite-dimensional approximation of Koopman eigenfunctions for linear latent dynamics. To extend
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Figure 2. The physics-informed loss function compares gradient fields in the current latent space with what a
correctly-learned field should be in this latent space on set of collocation points.

this approach to the non-linear regime, we note that for a true mapping φ the following holds:

dz(x(t))
dt

=
dz
dx

dx
dt

= ∇φ(x(t))T f (x(t)) (6)

On the other hand, by the definition of ψ and h we have that

dz(x(t))
dt

= h(φ(x(t)) (7)

Combining Equations (6) and (7) we get that

h(φ(x(t)) = ∇φ(x)T f (x) (8)

Equation (8) links the dynamics h(z) and the encoder φ(x) with the known equation f (x) and is true for all z ∈ Z and
x ∈ X . Hence, as shown on Figure 2, knowledge of f can be assimilated into the model by evaluating Equation (8) on a set of
N carefully sampled points x̄i ∈ X , i ∈ [1, . . . ,N]:

L physics
θ

=
N

∑
i=1

[
ω3

N
∥hθ (φθ (x̄i))−∇φθ (x̄i) f (x̄i)∥2 +

ω4

N
∥x̄i −ψθ (φθ (x̄i))∥

]
(9)

We refer to the points x̄i as collocation points.

Collocation Points We define a collocation as pair (x̄, f (x̄)). collocation points are samples from the space X × Im f (X ),
and they should satisfy three conditions, ordered by importance:

1. Simplicity: f (x̄ j) should be computationally cheap to evaluate. It is especially important for PDE systems, where f may
involve high-order derivatives.

2. Representativeness: x̄ j should cover the space of states where one aims to improve the model’s performance or stability.
Collocation points that a model might encounter and that are not represented by data snapshots are the best candidates.

3. Feasibility: x̄ j ∈ X . In other words, x j should be an attainable state of the system. Collocation points outside of X may
downgrade the performance of the autoencoder by forcing it to be an invertible function on a domain outside of X .

Thus, an optimal sampling procedure for collocation points x̄ j is domain-specific and should be designed given a particular
system f and available data xi. We show examples of how these conditions can be implemented for real systems in the following
sections.

The above definition of collocation points is not to be confused with a classic notion of collocation points for finding
numerical solutions for differential equations37, 38. The classic notion refers to a set of points in time [t0, t0+c1h, t0+c2h, . . . , t0+
h], 0 < c1 < c2 < · · ·< 1 which are chosen to obtain an optimal local interpolant of a solution of a differential equation for a
time-period between t0 and t0 +h. For example, s collocation points for Runge-Kutta methods are defined to provide an optimal
Gauss-Legendre interpolant of order s; the coefficients c1, . . . ,cs come from a respective Butcher table. In contrast, we define
collocation points as pairs (x̄, f (x̄)) which are examples of mapping x → f (x). Our definition is built around solving an inverse
problem of approximating ẋ = f (x) with fθ (x) and follows a recent work28 which develops upon a definition from39 with the
difference being the sample space: instead of sampling from the spatiotemporal domain we sample them from an appropriate
function space.

4/14



Figure 3. We use a toy example – a Lifted Duffing Oscillator – to show that it is possible to “fill the gaps” in data with
collocation points. Specifically, the Hybrid model is able to learn the dynamics of two additional basins of attraction that were
not represented in the dataset. As shown in the top-rightmost frame, without the collocation points the model does not infer the
dynamics in the unseen regions correctly.

Combined Loss Function We train the model by optimizing a sum of the physics-informed loss (9) and the data-driven
loss (4):

min
θ

[
L physics

θ
+L data

θ

]
(10)

When ω1 = ω2 = 0 we have L data
θ

= 0, so we say that the model is (purely) Physics-Informed. Similarly, when ω3 = ω4 = 0
we have L physics

θ
= 0 and we say that the model is (purely) Data-Driven. When ωi ̸= 0, ∀i, we say that the model is Hybrid.

The coefficients ωi are hyper-parameters which need to be tuned using a validation dataset. However, in all experiments
of this paper we set ωi to be either 0 or 1, and we balance L physics

θ
and L data

θ
the choice of samples in a batch of training

data. Specifically, we set the number of collocation points per batch Nbatch to be equal to the number of trajectories per batch
kbatch times the number of time-stepsT : Nbatch = T kbatch. In this way both L physics

θ
and L data

θ
represent the loss for T kbatch

snapshots of the system, providing on average a similar contribution of information to the overall loss function. More laborious
approaches of hyper-parameter tuning did not yield sufficient systematic advantage to justify the labour compared to this simple
strategy.

We use a pytorch40 implementation of the Adam algorithm41 for optimization. To evaluate ∇θ L physics
θ

and ∇θ L data
θ

we
use torchdiffeq36 – a pytorch-compatible implementation of the Neural ODE framework.

To the best of our knowledge, this is the first framework that combines non-linear latent-dynamics (Neural ODE),
autoencoders, and a physics-informed loss term (9). Thus, we call our framework Physics-Informed Neural ODE, or PINODE.

3 Experiments
The experiments section is organized as follows. First, to illustrate the ideas behind the framework we study its performance on
a high-dimensional ODE – a lifted Duffing oscillator. We show how a non-linear latent dynamics h(z) overcomes the limitations
of DMD and Koopman networks from28 by handling multiple basins of attraction within one model. We also show that using
physics-informed loss is sufficient for reconstructing the behaviour for basins of attraction that are not represented by the data.
Finally, we demonstrate that a purely data-driven model may be highly-accurate in the short-term and highly unstable in the
long-term, even when the data is abundant, and show that the physics-informed approach improves long-term stability of such
models by multiple orders of magnitude.

Next, we study the framework’s performance on Burgers’ equation. We show that (i) the non-linear latent dynamics model
yields more compact latent space representations than its linear counterpart for the same accuracy; (ii) the compact latent space
representations allow for more stable long-term predictions; (iii) in the presence of significant noise in the data, the use of
collocation points improves stability by providing an extra source of information that is noise-free, and (iv) in certain scenarios,
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training only on collocation points yields better models than training on data, even when a vast amount of data is available.
The last observation shows that the contribution of the physics-informed loss (9) may surpass that of the data-based loss (4),
especially when the data is severely limited or noisy.

3.1 Lifted Duffing Oscillator
A Duffing oscillator is a dynamical system dz/dt = h(z) such that

dz1

dt
= z2

dz2

dt
= z1 − z3

1

(11)
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Figure 4. Non-linearity in the
latent dynamics and the
autoencoder employed in teh
PINODE Hybrid model are
important for accurate
long-term extrapolation. The
DMD model and PIKN Hybrid
model were unable to
extrapolate the dynamics from
collocation points.

A phase portrait for 300 randomly sampled trajectories from this system is visualized
on Figure 3, left frame. Depending on the total energy, each trajectory always stays in one
of three regions: the left lobe, the right lobe, or the outer area, visualized in red, green, and
blue, respectively. To create a synthetic high-dimensional system that retains this property,
we lift the Duffing trajectories into a higher-dimensional space by applying an invertible
transformation A (z):

x := A (z) = Az3, A ∈ R128×2, Ai j ∼i.i.d. N (0,1) (12)

Hence, for this system z ∈ Z = R2 and x ∈ X = span{A:,1,A:,2} ⊆ R128. We treat X
as an observable space, in which the dynamical system (11) obeys the following:

dx
dt

= f (x) = ∇((AT A)−1AT x1/3)T h((AT A)−1AT x1/3) (13)

Thus, we created a high-dimensional dynamical system with multiple basins of attraction
for which the dynamics f are known.

For the experiment, we generate 6144 trajectories xi, t = [0,1], ∆t = 0.1, all taken from
the left lobe region (in red). We also sample 50000 collocation points x̄ j from the right
(green) and the outer (blue) regions each by sampling z̄ j ∈U ([−3/2, 3/2]× [−1,1]) and
then applying the transformation (12). For this example the conditions for collocation points
discussed in Section 2 are trivially satisfied.

We train two PINODE models: a Data-Driven model that only uses the trajectories,
and a Hybrid model that uses both trajectories and collocation points. The models share
the same architecture and training parameters that are detailed in Appendix (A.1). After
training, we invert the mapping (12) to project the models’ high-dimensional predictions
for unseen initial conditions onto the true low-dimensional manifold; those are visualized
in Figure 3.

We make two observations from the results displayed in Figure 3. First, a purely data-
driven model is unable to extrapolate outside its training region using only the data from
that region. This observation is consistent with the conclusions from related works17 that
neural networks interpolate well but struggle with extrapolation tasks. Second, we see
that collocation points provided enough extra information for the model to predict nearly
perfectly in regions from which no trajectories were provided. This observation suggests
that one can use collocation points to “cover the gaps” in data and improve the extrapolation
accuracy of the model.

The ability of Neural ODE to model nonlinear dynamics in the latent space is demon-
strated in Figure 4. The figure shows a comparison between the Hybrid PINODE model,
the Hybrid PIKN model28, and DMD, all of which have been trained using the same dataset.
PIKN differs from PINODE in that it uses linear latent dynamics dz

dt = Lz, where L is a
finite-dimensional approximation of the Koopman operator, instead of a general non-linear
dynamics operator dz

dt = hθ (z). For PIKN, we set z ∈ R16, an 8 times expansion of the dimension of the true manifold. We
observe in Figure 4 that PIKN is unable to extrapolate the dynamics to unseen areas correctly using the collocation points:
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Figure 5. Box plots of the prediction error for three PINODE models: Data-Driven, Physics-Informed, and Hybrid. The time
is measured in multiples of the training time period, i.e. x = 3T refers the time-range between two and three training
time-periods away.

eventually, all trajectories "collapse" onto the same attractor. It can also be seen that DMD shows even worse performance
which could be attributed to its linear model reduction.

In the next experiment, we show that collocation points stabilize long-term predictions of the model even when data from
all parts of the space are available. To illustrate, we generate a dataset of 6144 trajectories (2048 trajectories per red, green,
and blue area) and 50000 collocation points uniformly distributed among all three lobes. We train three models: Data-Driven,
Physics-Informed, and Hybrid versions of PINODE. The relative performance of the three models is evaluated in Figure 5,
where the x-axis represents the test time-horizon as multiples of the training trajectory length T . The y-axis shows box plots of
the prediction mean squared error (MSE) corresponding to 300 unseen trajectories within the specific period. For example,
x = 2T represents the time-period [2T,3T ), and the y-axis shows the distribution of the prediction errors within the period
[2T,3T ). Figure 5 shows that the performance of the Data-Driven model degrades quickly when the forecasting time-period
increases despite its excellent performance when forecasting within its training time-period. The Physics-Informed model starts
with modest performance over the training time horizon but maintains a stable performance when forecasting far ahead. The
Hybrid model, in its turn, combines both near-term accuracy with long-term stability, yielding the best results over each time
period.

3.2 Burgers’ equation
We now study the performance of our framework on Burgers’ equation with [−π,π]-periodic boundary conditions:

ut +uux = νuxx

u(−π, t) = u(π, t), ∀t ∈ [0,T ]
(14)

where ut , ux, and uxx represent partial derivatives in time, the first, and second spatial derivatives, respectively. Burgers’ equation
is a PDE occurring in applications in acoustics, gas and fluid dynamics, and traffic flows42. When ν is significantly smaller than
one, the system exhibits strong non-linear behaviour and is called “advection-dominated”, otherwise when ν is large the system
is called “diffusion-dominated”. In the case of the former, linear projection methods such as POD become inaccurate as the true
solution space has a slow decaying Kolmogorov n-width, manifesting itself in slow decaying singular values43. Therefore, in
this section we focus on the advection-dominated Burgers’ equation for which we set ν = 0.01.

To generate trajectories, we discretize the spatial domain [−π, π] into 128 grid-points, and solve Equation 14 for t ∈ [0,2]
with ∆t = 0.1 using a spectral solver44. To generate a diverse set of initial conditions we sum the first 10 harmonic terms with
random coefficients:

u(x,0) =
1
10

10

∑
k=1

ak cos(kx)+bk sin((k+1)x), ak,bk ∼ N (0,1) (15)

To generate collocation points we use the same family of functions as we used for the initial conditions in Equation (15),
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Figure 6. PINODE Hybrid model utilized the latent space dimension 5 times more efficiently in terms of MSE than PIKN
Hybrid model when modelling low-viscosity (highly-nonlinear) Burgers’ equation (left frame). The difference in performance
grows to x100, when forecasting two times farther than the training period (central frame). PIKN suffers from long-term
instability due to the presence of eigenvalues with positive real part in the latent dynamics matrix (right frame). In this frame
we plot all the eigenvalues of the latent-space matrix for each PIKN model from frames 1-2. The legend in the right frame
refers to the dimension of the latent space used by the corresponding PIKN model.

and additionally randomize the presence of individual frequencies in the sum:

ū(x) =
1

10

10

∑
k=1

pkak cos(kx)+qkbk sin((k+1)x), ak,bk ∼ N (0,1), pk,qk ∼ Be(1/2). (16)

We choose this family of collocation points to meet the conditions (2). First, this family is representative of the state space
X × Im f (X ) in the region of interest (moving wave-fronts). Second, (16) is a smooth set of functions that does not contain
unattainable states. Finally, and more importantly, the values ux and uxx and, consequently ut can be computed analytically,
which makes it especially cheap to sample large numbers of collocation points.

3.3 Compressibility of the Latent Space
In Section 3.1, we showed that a non-linear finite-dimensional latent dynamics model can be necessary for building a compact
ROM for the high-dimensional lifted Duffing system. That is not necessarily the case for Burgers’ equation since there exists
the Cole-Hopf transformation that linearizes the dynamics for Burgers’ equation. However, a latent-space non-linearity can, in
principle, be utilized for finding a more compact latent space representation, or for increasing the forecast accuracy for a fixed
latent space dimension. In this section, we demonstrate how PINODE can achieve both goals.

For this experiment we generate 16384 trajectories as described in (15). We also generate 100000 collocation points
as described in (16). The purpose of using such a large amount of data is to allow the trained models to achieve the best
performance for the specified latent space dimension. We evaluate the performance of the models on test data with two
different time-frames: (1) same as that of training data (interpolation), and (2) two times longer than that of the training data
(extrapolation). More details on the experimental setup are provided in Appendix (A.4).

In Figure 6, we compare the performance of the three models: DMD, PIKN Hybrid, and PINODE Hybrid. First, we notice
that DMD does not perform well on the test data, despite achieving a training loss (∼ 10−3). This observation is consistent with
earlier works (8, 45); and illustrates well that a combination of a linear encoder and a linear latent dynamics operator may not
be sufficient for modelling highly-nonlinear phenomena. Second, we notice that PINODE achieves better performance for a
given latent space dimension compared to PIKN. For instance, for m = 16 (Figure 6, left pane), PINODE achieves ∼ 5 times
lower mean squared error than PIKN, which achieves the same performance only when m = 512. More importantly, PINODE
maintains a low prediction error over a longer-term horizon (extrapolation in time), which is not the case for PIKN (Figure 6,
center pane). This is a consequence of the latent-dynamics matrix (h(z) = Lz) of PIKN having eigenvalues with positive real
parts, which implies long-term instability (Figure 6, right pane). Although there has been progress in the literature46, further
research is needed to understand (i) how to enforce stability constraints for PIKN, and (ii) why one does not need the same
enforcement for PINODE to exhibit stable behaviour.

3.4 Training in Low-Data Regime with Collocation Points
In the next experiment, we study the relative efficiency of using collocation points against using data in a low-data regime.
It is frequently the case that only a small number of simulations (or measurements) can be obtained for a physical system
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of interest due to the computational, time, or budget constraints. We would like to compensate the lack of sufficient data
with providing collocation points which are considerably cheaper to generate. In this section, we show that, when chosen
appropriately, collocation points can be effectively used for training a model in the low-data regime, and their contribution to a
model’s accuracy may even surpass the contribution of the data.
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Figure 7. Examples of "harmonic", "bell-curve", and "bump" initial conditions, as well as the resulting solutions, in columns
1, 2, and 3, respectively.
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Figure 8. Comparison of the achievable MSE relative to the full data regime (1024 trajectories). When the data is scarce,
collocations-based physics-informed loss improves the forecasting accuracy of ROMs by an average of 5 times lower MSE
compared to the data-only regime, as shown in this experiment with Burgers’ equation. When other types of initial conditions
(“harmonic”, “bell-curve”) are used, the physics-only model (top-right corner of the right frame) outperformed the most
data-rich model in our experiment (bottom-left corner).

To illustrate the trade-off between data and collocations, we train one model using varying combinations of the number of
trajectories vs collocation points in their training datasets. To gauge the extrapolation power of our models, we use trajectories
with three types of initial conditions: “harmonic”, “bell-curve”, and “bumps” (see Figure 7 for illustrations). We generate
1024 trajectories with “bumps” initial conditions for the training data, and use the harmonic family of initial conditions as
described in (16) for generating the training collocations. We use two test datasets: (1) 100 trajectories with “bump” ICs to
assess within-distributuion performance, left frame), and (2) a mix of trajectories with “bump”, “bell-curve”, and “harmonic”
initial conditions, 100 trajectories each, to assess out-of-distribution performance. All test data trajectories are two times
longer than the training trajectories. More details on the experimental setup are provided in Appendix A.5. Figure 8 presents
the reconstruction MSE of the test datasets obtained from a PINODE models that were trained on varying combinations of
trajectories and collocation points as a percentage of the MSE achievable by a PINODE model that was trained on the full 1024
trajectories alone (no collocations). The PINODE models all use a latent space dimension m = 16.

Figure 8 demonstrates that adding collocation points consistently improves the model performance in our experiments.
Moreover, when a sufficient number of collocation points is added in training, the model with fewer training trajectories was
always able to outperform the model that was trained on all the available trajectories and no collocations. On average, a
collocation-aided model was 5 times better at both within-distribution and out-of-distribution reconstruction relative to a purely
data-driven version of the model. In addition, we noticed that a model that used only collocation points can perform better than
a data-rich model, especially when predicting the dynamics of the unseen initial conditions (Figure 8, right pane, top-right vs
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bottom-left corner).
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Figure 9. The first subplot shows the relative error of solving Burgers’ equations on 100 test (unseen) initial conditions for
two models: PINODE Hybrid and PINODE Data-Driven. Both models interpolate well but a purely data-driven model fails to
extrapolate past the training time-horizon (left of the red vertical line). PINODE-Hybrid provides stable long-term predictions
that points to its ability to correctly discover the low-dimensional manifold dynamics.

We also notice that the Hybrid models yield more stable and accurate predictions, relative to their purely data-driven
counterparts, when forecasting far beyond the training time-period. In Figure 9 we visualize the predictions for a test IC for two
models: Data-Driven model from the bottom-left corner of Figure (8), and a Hybrid model from the bottom-right corner of
Figure (8). The red line separates the time-period of training from the time-period of forecasting. The hybrid model’s errors
stay below 10−2 even when forecasting 10 times farther than what it was trained on. In contrast, the Data-Driven model shows
low errors within its training time-region but the forecast errors grow quickly when forecasting beyond that.
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Figure 10. Collocation points improve results of all three models but they don’t fix models’ inherent shortcomings like
instabilities in linear latent dynamics.

Finally, we observe that using collocation points can benefit other models, like DMD and PIKN. To illustrate, we replicate the
experiments from Figure 8 where the number of trajectories is 256 and with Bump ICs for PINODE, PIKN, and DMD.Figure 10
shows the root mean squared error (RMSE) for the test data predictions as a function of the number of collocation points that
were used in training. The figure illustrates the prediction error for increasing prediction horizons going from left to right, and
demonstrates that in all cases, PINODE benefits from the available collocation points. The leftmost panel shows that every
model improves its one-step-ahead predictions, with DMD quickly achieving near-optimal performance. However, once the
forecast horizon is increased to 20 timesteps ahead (length of the training trajectories) and above, DMD failed to correctly
forecast the long-term trajectories and was removed from those figure to improve legibility. The PIKN models improved
the one-step-ahead (1st pane) and interpolation performance (2nd pane) by a factor of 4. It also improved the extrapolation
performance for 40-steps prediction (3rd pane) but failed to extrapolate for 80 steps (4th pane, removed for legibility). We
attribute this behavior of PIKN to the possibility that the latent dynamics operator of PIKN contains positive eigenvalues despite
the use of collocation points.
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Figure 11. Physics-informed loss works as a safeguard that prevents unbounded performance drop when quality of the data
degrades due to noise. Namely, the solution of the hybrid loss (10) converges to the solution of the physics-informed loss (9),
when the data-driven loss (9) becomes uninformative. The performance of purely data-driven methods (Data-Driven, DMD)
grows unbounded since these models don’t have an alternative noise-independent source of information.

3.5 Robustness to Noise in the Low-Data Regime
In this section we show that the use of collocation points improves the ROMs’ robustness to noise in the data by providing an
alternative, noise-free, source of information.

For this experiment, we use the Burgers’ equation dataset containing 1024 trajectories with "bump" initial conditions, and
65536 "harmonic" collocation points as defined in Equation 16. We then add i.i.d. Gaussian noise to the trajectories, with
variance ranging from σ = 10−4 to σ = 10. For reference, most of the data values lie between 0 and 1, so a noise level with
σ > 1 dominates the data. We train four models: PINODE Hybrid, PINODE Data-Driven, PINODE Physics-Informed, and
DMD. To measure the models’ out-of-distribution prediction errors, we use the test dataset with Bump, Gaussian, and Harmonic
initial conditions, as described in the previous subsection. The prediction errors are displayed in Figure 11, left pane. The
prediction error of a purely Physics-Informed model (in red) is flat because the collocation points are noise-free.

Figure (11) shows that in the high noise setting, the error of purely data-driven models (DMD and PINODE Data-Driven)
grows unbounded, whereas the performance of the hybrid model converges to the performance of the Physics-Informed model
as the noise level increases. We hypothesise that such behavior is due to the second part (L data

θ
) of the combined loss (Eq. 10)

turns into noise, and so its derivative also turns into noise.

∇Lθ = ∇L physics
θ︸ ︷︷ ︸

informative

+∇L data
θ︸ ︷︷ ︸

noise

(17)

Thus, one can think about optimizing a hybrid model (10) as about training a Physics-Informed model (9) using a noisy
gradient descent with a fixed-variance noise. From the optimization literature47–49 we know that, under certain conditions, such
SGD converges to a neighbourhood of a local minimum of its loss (in this case L physics

θ
) with high probability. So instead

of diverging, a hybrid model turns into a Physics-Informed model; where the latter works as a performance safeguard in the
high-noise regime. On the right hand-side of Figure (11), we show an example of the prediction performance of each of the
models described above. The data-driven and hybrid models yield visually similar solutions when σ = 10−3. However, the
former provides inadequate performance when the data is dominated by noise, whereas a hybrid model in this regime produces
a solution that is visually similar to the one that the Physics-Informed model produces. A more rigorous analysis of this
phenomenon seems possible but lies outside of the scope of this paper.

4 Discussion and Conclusions
In this work, we demonstrated how a collocation point-based technique can improve the performance of an emerging class of
continuous-time physics-informed neural-network based reduced-order models. First, we demonstrated that the incorporation
of collocation points in training data can “cover the gaps” in training trajectories and inform the model about underrepresented
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basins of attraction. Such an approach alleviates the demand for large volumes of data that is common in network-based
models, which is crucial in applications where data is scarce and expensive. Second, the physics-informed loss may work as a
safeguard, providing a noise-free source of underlying dynamics. Third, collocation points can stabilize the model’s long-term
predictions, allowing for accurate forecasting far beyond the training time horizon. Finally, together with using a NODE-based
non-linear latent dynamics, adding physics-informed loss leads to the discovery of more compact latent space representations
that also yield more accurate models. Simultaneous stability and compactness is especially important if one aims to use models
together with compressive sensing and control algorithms. With respect to the computational complexity, we note that adding
T k collocation points to the training imposes less of a computational burden than adding k data trajectories because collocation
points do not require computing integrals forward in time as in the case of data trajectories.

One clear limitation of the current work is that the choice of an efficient collocation family is a design decision that a
practitioner makes. The authors believe that such decisions can be automated by adopting existing approaches from classic
works on numerical approximations of PDEs, which we leave for future research. Another automation that prompts future
research is deriving efficient ways of sampling collocation points, possibly via applying modern adaptive learning techniques50.
Finally, although Section 3.5 provides some rationale for why one may expect robustness of Hybrid models under noise, the
authors believe that a more rigorous analysis is possible; particularly one that provides conditions under which such robustness
is guaranteed.
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