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Abstract—We present a multi-agent cooperative estimation
method for improving the performance of global navigation
satellite systems (GNSSs). The proposed method uses existing
receiver technology, avoids inter-agent communication, and min-
imizes the computational overhead in the agents. The method
is based on recursive mixed-integer Kalman filtering for a
system characterized by several agents in a bipartite star graph
structure, where the nodes in one of the vertex sets perform
local filtering based on local information, and a single node in
the other vertex set estimates all of the system states using inter-
agent error correlations in the context of partially overlapping
local state spaces. We conduct extensive Monte-Carlo simulation
studies in an urban driving scenario using a road map from an
actual city, incorporating real satellite trajectories and realistic
ionospheric bias modeling. In addition, we perform a hardware-
in-the-loop study. The results indicate that the method can correct
erroneous estimates in faulty agents by leveraging cooperation
with other agents, improving accuracy from decimeter level to
centimeter level for that particular agent. When all agents have
similar residual biases, expected improvements in the root-mean-
square position error typically range between 20–100%.

I. INTRODUCTION

The classical GNSS positioning problem concerns the esti-
mation of a single (hereafter referred to as local) receiver’s
states from a set of code and carrier-phase measurements,
acquired from one or several constellations of satellites [1].
The measurement equation, from which the receiver state
is inferred, is time-varying, nonlinear in the position of the
receiver, and incorporates biases [2]. For the carrier-phase
measurements, some of the biases are integer-valued, com-
monly referred to as ambiguities [3]. If leveraging that these
are integer-valued, the estimator can significantly increase the
estimation accuracy at the cost of a more computationally
complex (mixed-integer) estimation problem [1].

In this paper, we focus on the case of multiple receivers and
propose an algorithm for cooperative estimation of multiple
agents. We envision GNSS receivers that can stream relevant
local statistics from various agents to a fusion center (FC),
where the information is fused, before being propagated back
to improve the local receiver estimates. With this cooperative
estimation approach, we reuse existing GNSS technologies
and minimize computational overhead in the receivers. The
objective is to use the FC to fuse the local receiver estimates,
simultaneously including modeled inter-receiver noise covari-
ance and shared biases, thereby improving the local estimates
by having additional information available. In the proposed
strategy, the local receivers use their own internal estimation
method and each has a nominal performance even during a
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Fig. 1. Left: Communication graph for a completely decentralized scheme.
Right: The star communication graph for the cooperative positioning strategy
considered in this paper, partitioned into the vertex sets A and C.

complete loss of communication, and the FC adds perfor-
mance improvement whenever communication is enabled. The
works [4] and [5] have developed consensus algorithms by
assuming static receivers whose states are configured in the
same state-space. Our proposed solution, however, provides
an estimation method for dynamic receivers with partially
overlapping local state-spaces, for example, when the receivers
share some bias states. The proposed solution also avoids
additional burden of the receivers’ onboard processors, which
have limited computational capabilities [6]. In the following,
we interchangeably refer to a receiver as an agent denoted by
Ai with an internal state xi

k ∈ Di. The set of N agents is
denoted by A = {Ai}Ni=1 and the FC is denoted by C with a
global state vector xg

k ∈ D where Di ⊂ D.

A. Prior Work

Many solutions have been proposed for the GNSS position-
ing problem, with seminal works in [1], [3], [7]–[9], showing
that the optimal solution to the mixed-integer least-squares
(MILS) problem can be computed by solving a relaxed LS
problem generating a real-valued solution, with the subsequent
solution of an NP-hard integer LS (ILS) problem using various
integer search methods (see [9] and references therein). If
a sufficiently good integer ambiguity hypothesis is found,
often determined by a ratio test [10], the real-valued solution
can be conditioned on this integer hypothesis, resulting in
a fixed solution and a reduction in estimate variance. This
highlights the importance of integer fixation and spurred work
on various filtering methods [2], [11]–[13], where nonlinear
Kalman filters (KFs) are employed in combination with integer
fixation, which is the state-of-the-art in high-precision GNSS
implementations, such as the Real-Time Kinematic (RTK)
software library [13]. However, alternative filtering methods
have been proposed, for example, particle filters [14] and
mixture KFs with marginalized ambiguities [15]–[17].

An improvement of single-receiver solutions can be done in
two ways: (i) acquisition of more informative measurements,
or (ii) improved filtering methods for inference based on
current code and carrier-phase measurements. While there is
significant concurrent work being done on improving the mea-
surement quality in line with (i), such as launching the QZSS
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constellation in the Japan-Oceania region [18], a compatible
and less costly source of high-quality measurements can be
found by sharing data among the receivers. This is true if the
receivers are in close geographical proximity, since then the
biases associated with the same satellite are correlated.

To illustrate this, consider the distributed estimation of
the parameters of a regional single-layer ionospheric delay
model (see [19]), as done in [4], [5], where data from a
large number of static receivers are shared over a sparse
communication graph. Due to the significant correlation in the
receiver biases, these parameters are approximately the same
for each satellite in each receiver, enabling a filtering solution
that significantly improves the ionospheric bias estimates [4].
This idea of leveraging geographical proximity of the receivers
in the construction of the estimation algorithms can be done in
a mobile receiver setting as well, but introduces complications.

B. Contributions

Fig. 1 shows the communication graph in a decentralized
scheme (left), as considered in [4], [5], and a bipartite star
communication graph considered in this paper (right). Posing
the multi-agent GNSS positioning problem for dynamic re-
ceivers in this manner facilitates a solution where data are not
directly shared between agents, where the agents do not incur
additional, possible large-scale, computations, and where the
FC (here C) can fully utilize the local information. However,
such an approach results in three significant technical hurdles,
especially when considering moving receivers that are to
function independently if communication with the FC fails:
P1: The agents have different and partially overlapping state-

spaces due to different visible satellites in the agents. The
local state-spaces relate to the global state vector as in the
third subplot in Fig 2, not as in the first subplot assumed
in the cited works. This complicates operations such
as the averaging of local estimates, rendering standard
consensus filters (see, e.g., [4], [5], [20]) and intersection
methods (see e.g, [21], [22]) nontrivial to implement.

P2: Optimal fusion of the local estimates requires knowledge
of the inter-agent estimate cross-covariance, which is
complicated by the different local integer fixation em-
ployed in high-performance GNSS positioning [13].

P3: With an FC computing correction terms for the local
estimators, there may be non negligible delays in the
communication between A and C. The data may arrive
asynchronously in C, and the filters in A will run at
different rates than in C. Properly dealing with this is
essential to ensure numerical robustness in practice.

In contrast to previous work, we model cross-covariance in
the GNSS measurements under certain assumptions, as well
as combining solutions to P1, P2, and P3, facilitating a coop-
erative GNSS positioning service that can be implemented to
enhance the local estimates of moving receivers. The novelties
of the approach are; (i) the use of partially overlapping local
state-spaces and subsequent use of optimal fusion, addressing
P1; (ii) the explicit computation of the local error covariance of
the relaxed estimates, which is made possible by the use of the
dual density mixed-integer Kalman filters (MIKFs) in [23] and
thereby addressing P2; and (iii) a method for back-propagation

Fig. 2. Three agents with states {x1,x2,x3}, with global state vector xg ∈
D = R9 including all unique local states. All states that are shared among the
agents are highlighted in blue in the global state vector. Left: Local states and
global states reside in the same spaces D1 = D2 = D3 = D, i.e., each agent
is estimating the same state vector. Center: Local and global states reside in
different spaces, and D1×D2×D3 = D, i.e., each local state is unique, but
when stacked they reside in the global state space. Right: Local state spaces
are partially overlapping, that is, D1 ×D2 ×D3 ̸= D and Di ̸= Dj .

of the improved estimates from the FC to the local agents,
addressing P3. The method is evaluated in a Monte-Carlo
study using an urban driving example that includes a car
simulator, real GPS constellation trajectories, and ionospheric
corrections realized from a perturbed Klobuchar model [24].
In addition, we validate the method using an Orolia hardware-
in-the-loop (HIL) simulator [25], showing similar results as in
the simulation study and validating our modeling assumptions.

C. Outline and Notation
Sec. II describes the general GNSS measurement mod-

els, estimation models, and underlying assumptions. Sec. III
develops the proposed cooperative positioning solution by
addressing problems P1, P2, and P3. Sec. V presents a
numerical evaluation of the proposed algorithm for vehicle
positioning, and the conclusions in Sec. VI closes the paper.

Vectors are denoted by x ∈ Rn with xi being the ith
element of x. Matrices are written as X , and the element on
row i and column j of X is denoted with Xij . The notation
X(i,j) indicates block (i, j) in a block-structured matrix X .
The M ×M identity matrix is denoted by IM , 1M indicates
an M -length column matrix of ones, and A⊗B denotes the
Kronecker product between A and B. The smallest and largest
eigenvalues of a matrix Σ are denoted with

¯
λ(Σ) and λ̄(Σ),

respectively. To make the concatenation of vectors concise,
we let (x; y) ≜ [x⊤ y⊤]⊤ ∈ Rn+m for any x ∈ Rn

and y ∈ Rm. The notation x ∼ N (µ,Σ) indicates that x
is Gaussian distributed with mean µ and covariance Σ. The
notation x̂k|k denotes the estimate of x at time step k given
the set of measurements from time step 0 to time step k,
y0:k ≜ {y0, . . . ,yk}, and x̂k|k−1 is the one-step prediction of
x̂k−1|k−1. With p(x0:k|y0:k), we denote the posterior density
function of the state trajectory x0:k from time step 0 to time
step k given the measurements y0:k, and p(xk|y0:k) denotes
the corresponding marginal (filtering) posterior. diag(·) is a
matrix composition, where the arguments form blocks on the
diagonal, with all off-diagonal blocks set to zero.

II. MODELING AND PROBLEM FORMULATION
In this section, the local and global state vectors and the

GNSS measurement model are introduced, both in context of
the local models in the agents and the global model in the FC.



3

Definition 1 Let Ai be an agent with associated (possibly
time-varying) set of visible satellites Si, which is a subset of
the possibly visible satellites, S = {1, · · · , Ns} ⊂ N, where

Si = {s ∈ S | s is observed by Ai}⊆S, |Si| = N i
s ≤ Ns.

We consider the code and carrier-phase measurements from
satellite s to the agent Ai at a time tk corresponding to
the discrete time step k, using standard GNSS measurement
models [11], [26]–[28]. By utilizing a base receiver (ref-
erence), B, mounted at a known location broadcasting to
the target receiver, Ai, several error sources can be miti-
gated through differencing techniques [28]. Forming single
differenced (SD) or double differenced (DD) measurements
from pairs of satellites and the receivers reduces modeling
errors, either explicitly or approximately. The errors that
remain after the DD operation are estimated using established
methods (e.g., [24], [29]), leading to pseudo-range correction
(PRC) and carrier-phase correction (CPC) terms PRCs

i,k

and CPCs
i,k, respectively, for each combination of agent Ai

and satellite s ∈ Si. In conventional notation, P s
i,k is the

code (pseudo-range) measurement, and ρsi,k = ∥ps
k − pi,k∥2

is the Euclidean distance between agent Ai and satellite s,
where ps

k,pi,k ∈ R3 are the coordinates of satellite s and
agent Ai, respectively, in earth-centered earth-fixed (ECEF)
coordinates [30]. Furthermore, Isi,k is the ionospheric delay;
ϵsi,k is the code observation noise; Φs

i,k is the carrier-phase
observation; λ is the carrier wavelength; Ns

i,k is the integer
ambiguity; and ηsi,k denotes carrier observation noise. The
noise sources are assumed to be zero-mean Gaussian, and we
let Cov(ϵsli,k, ϵ

sm
i,k ) = Cov(ηsli,k, η

sm
i,k ) = 0 if sl ̸= sm, with

Cov(ϵsli,k, ϵ
sm
i,k ) = (σsl

ϵ,k)
2 and Cov(ηsli,k, η

sm
i,k ) = (σsl

η,k)
2 when

sl = sm. When omitting terms that vanish under DD, the code
and phase measurements of a satellite set Si and an agent Ai

at time step k, can be written in vector form as

P Si

i,k = ρSi

i,k + ISi

i,k + PRCSi

i,k + ϵSi

i,k, (1a)

ΦSi

i,k = ρSi

i,k + λNSi

i,k − ISi

i,k +CPCSi

i,k + ηSi

i,k, (1b)

where ρSi

i,k = (ρs1i,k,· · · ,ρ
sNi

s

i,k )⊤ ∈ RNi
s , and the other vectors

in (1) defined in analogous fashion.

Definition 2 Let v ∈ RNs be a vector where each component
is unique to each satellite, and let vi ∈ RNi

s be the vector
corresponding to Si. Then M i : RNs → RNi

s is a binary in-
cidence matrix associated with each Ai such that vi = M iv.

Definition 3 Let Si : RNi
s → RNi

s−1 be a linear difference
operator Si =

[
1(Ni

s−1) −I(Ni
s−1)

]
associated with agent Ai.

These definitions allow the construction of local DD mea-
surement models that can be related in a global model using
linear maps. Considering (1) we let P Si

i,k = M iP S
i,k and

ΦSi

i,k = M iΦS
i,k, and define SD measurements for agent Ai,

∆P Si

iB,k ≜ P Si

B,k − P Si

i,k, ∆ΦSi

iB,k ≜ ΦSi

B,k −ΦSi

i,k. (2)

Using Definition 3, the DD measurements for agent Ai with
respect to a base station B and satellites Si are defined as

Si∆P Si

iB,k = SiM i[P S
B,k − P S

i,k], (3a)

Si∆ΦSi

iB,k = SiM i[ΦS
B,k −ΦS

i,k]. (3b)

A. State-Vector Definitions

The state xi of agent Ai includes real-valued kinematic
states, κi, with the agent’s position pi ∈ R3 contained in κi.
In addition, we consider a set of biases defined for each agent.
Typically, the biases include integer valued ambiguity biases
ni, ionospheric biases θI,i, shared code correction terms θP,i,
and shared phase correction terms θC,i.

Assumption 1 Ionospheric delays from a satellite s are sim-
ilar in agents Ai and Aj (i.e., IsAi,k

≈ IsAj ,k
).

Assumption 2 Each agent Ai only knows the correction
terms for satellites s ∈ Si.
The validity of Assumption 1 depends on several external
factors, but in practice, it is valid when two receivers are
within 3–10km from each other [31]. Assumption 2 relates
to observability, and is essential if the agents are to function
safely in the absence of communication with the FC.

Assumption 1 implies that a subset of the ionospheric biases
in agent Ai, specifically those for s ∈ Si ∩Sj , are shared and
approximately equal to the corresponding biases in agent Aj .
Consequently, we define the residual biases for the set S, as

θI
k ≜ IS

B,k − IS
i,k = IS

B,k − IS
j,k ∈ RNs , (4a)

θP
k ≜ PRCS

B,k − PRCS
i,k = PRCS

B,k − PRCS
j,k, (4b)

θC
k ≜ CPCS

B,k −CPCS
i,k = CPCS

B,k −CPCS
j,k. (4c)

While the ionospheric and correction biases are shared among
various agents, the ambiguities can take any integer value.
A cycle slip in one receiver does not necessarily imply the
presence of a cycle slip in another receiver. The integer
ambiguities are unique to each agent, and we estimate the DD
ambiguities with a unique ambiguity vector for each agent,

ni
k ≜ Si(NSi

B,k −NSi

i,k) ∈ ZNi
s−1. (5)

Hence, the global state vector in the FC is

xg
k = (κ1

k; n
1
k; · · · ; κN

k ; nN
k ; θI

k; θ
P
k ; θ

C
k ) ∈ D. (6)

Similarly, the local state vector of Ai is

xi
k = (κi

k; n
i
k; θ

I,i
k ; θP,i

k ; θC,i
k ) ∈ Di, (7)

where, for instance, θI,i
k = M iθI

k as per Definition 1.

B. Estimation Model

1) Measurement Model: Let ∆ρSi

iB,k = ρSi

B,k − ρSi

i,k. For
agent Ai, the DD measurement is modeled in the local state
xi in defined in (7) as

yP,i
k =Si∆ρSi

iB,k + SiθI,i
k + SiθP,i

k + rP,i
k , (8a)

yΦ,i
k =Si∆ρSi

iB,k +λni
k − SiθI,i

k + SiθC,i
k + rΦ,i

k , (8b)

yI,i
k =θI,i

k + rI,ik , (8c)

yPRC,i
k =θP,i

k + rPRC,i
k , (8d)

yCPC,i
k =θC,i

k + rCPC,i
k , (8e)

rik=(rP,i
k ; rΦ,i

k ; rI,ik ; rPRC,i
k ; rCPC,i

k ), (8f)

where rik ∼ N (0,R(i,i),k) is Gaussian noise. More compactly,

yi
k = (yP,i

k ;yΦ,i
k ;yI,i

k ;yPRC,i
k ;yCPC,i

k ), (9)
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where yi
k ∈ R5Ni

s−2 because of taking difference of satellites
to generate (8a) and (8b). For each agent Ai, the measurement
model in (8) is compactly written as

yi
k = hi(xi

k) + rik. (10)

Equations (8c)–(8e) are nonstandard and included to make
the state vector xi observable with respect to the locally
available information, given assumptions on the number
of visible satellites, the dynamics of xi, and the prob-
lem geometry (to be detailed in Sec. II-B2). Hence, the
shared biases {θI,i

k ,θP,i
k ,θC,i

k } can deviate from their models,
{yI,i

k ,yPRC,i
k ,yCPC,i

k }, permitting adjustments through the
cooperative positioning.

In the FC, all of the available local measurements are
stacked into a global measurement vector, defined by the
composition

yg
k = (y1

k; y
2
k; · · · ; yN

k ) (11)

where yg
k ∈ R

∑N
i=1(5N

i
s−2) and

yg
k = h(xg

k) + rk, (12)

with h(xg
k) = (h1(x1

k); · · · ; hN (xN
k )) and similar for rk.

In (10) and (12), the noise rik is zero-mean Gaussian, with

R(i,i),k=diag(RPP
(i,i),k,R

ΦΦ
(i,i),k,R

II
(i,i),k,R

PRC
(i,i),k,R

CPC
(i,i),k),

where RII
(i,i),k,R

PRC
(i,i),k,R

CPC
(i,i),k reflect the relative uncertainty

of the correction terms computed in agent Ai. Assumption 1
implies that the shared biases are similar in agents sufficiently
close to each other. The covariance in the measurement noise
of shared biases between two agents Ai and Aj , i ̸= j, is

RII
(i,i),k = σ2

II, RII
(i,j),k = 1

2σ
2
IM

i(M j)⊤, (13a)

RPRC
(i,i),k = σ2

PRCI, RPRC
(i,j),k = 1

2σ
2
PRCM

i(M j)⊤, (13b)

RCPC
(i,i),k = σ2

CPCI, RCPC
(i,j),k = 1

2σ
2
CPCM

i(M j)⊤, (13c)

for modeling uncertainty defined by σI , σPRC , σCPC >
0. The following holds for the measurement noise cross-
covariance in rik and rjk.

Proposition 1 Assume that the single difference in (2) of two
agents Ai and Aj with i ̸= j is done with respect to the
same base station B. Then, the measurement noise covariance
matrix of the DD measurements in between Ai and Aj is

Cov



rP,i
k

rΦ,i
k

rP,j
k

rΦ,j
k

,

rP,i
k

rΦ,i
k

rP,j
k

rΦ,j
k


=


RPP

(i,i),k 0 RPP
(i,j),k 0

0 RΦΦ
(i,i),k 0 RΦΦ

(i,j),k

RPP
(j,i),k 0 RPP

(j,j),k 0

0 RΦΦ
(j,i),k 0 RΦΦ

(j,j),k

,
RPP

(i,i),k = 2SiM iRϵϵ
k (M i)⊤(Si)⊤, (14a)

RΦΦ
(i,i),k = 2SiM iRηη

k (M i)⊤(Si)⊤, (14b)

RPP
(i,j),k = SiM iRϵϵ

k (M j)⊤(Sj)⊤, (14c)

RΦΦ
(i,j),k = SiM iRηη

k (M j)⊤(Sj)⊤. (14d)

Proof 1 The proof is sketched in Appendix A.

In this paper, we model the measurement noise covariance

Rϵϵ,k = diag((σ1
ϵ,k)

2, · · · , (σNs

ϵ,k)
2), (15a)

Rηη,k = diag((σ1
η,k)

2, · · · , (σNs

η,k)
2), (15b)

Fig. 3. Structure of the measurement noise covariance matrix in an N = 10
agent model, with the block diagonal elements R(i,i),k in gray. The colors
indicate the magnitude of each element in Rk .

as uncorrelated, but in general the inter-agent measurement
noise covariance can be expressed as in Proposition 1 even
when the measurement noise is correlated and time-varying.

From (13), Proposition 1, Assumption 1, and the model
in (8), the inter-agent noise cross-covariance is

R(i,j),k ≜ Cov(rik, r
j
k)

=diag(RPP
(i,j),k,R

ΦΦ
(i,j),k,R

II
(i,j),k,R

PRC
(i,j),k,R

CPC
(i,j),k).

The resulting structured measurement noise covariance in the
global model is illustrated in Fig. 3, and leveraging this
additional information in the FC will be shown to improve
the estimation accuracy in the numerical results (see Sec. V).

2) Prediction Model: The integer ambiguities in (5) that
appear in the carrier-phase measurements (8b) are constant
over long periods of time before single ambiguities instanta-
neously take new integer values, known as cycle slip. The time
evolution of these ambiguities can be modeled as a random
walk driven by a discrete noise-process. However, instead of
driving the random walk with Gaussian noise, the noise is
defined such that with a small probability b ∈ [0, 1] it attains
a random integer in [−a, a] ⊂ Z\{0}, and with a probability
1− b it is 0 (see the modeling in [23, Sec. IV.B]).

Such noise is radically different from the Gaussian process
noise assumed in Kalman filtering. To address this, one
approach is to solve a relaxed estimation problem, in which
the integer ambiguities are configured on the real numbers,
detect a cycle slip when it occurs and adapt the corresponding
Gaussian process noise accordingly. To this end, we adopt the
cycle-slip detection in [23, Sec. IV.B], which assesses if the
predicted measurement significantly differs from the acquired
measurement. This is done by ascribing all of the variation
in a DD code measurement to specific dimensions j of ni

k,
denoted as δni

j,k, and comparing this to a threshold d > 0.
This gives rise to an incidence vector cik, with elements

cij,k =

{
1 if |δni

j,k| > d

0 otherwise
. (16)
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Hence, in the relaxed estimation model, the ambiguity predic-
tion is described by a random walk with time-varying noise,

ni
k = ni

k−1 + qn,i
k−1, (17a)

qn,i
k−1 ∼ N (0,Qnn

(i,i),k−1), (17b)

Qnn
(i,i),k−1 = diag(cikσ

2
jump + (1− cik)σ

2
stay), (17c)

where the variance σ2
jump reflects the width of the domain of

the integer jump process a and the associated probability b,
and σ2

stay can be seen as regularizing process noise [23].
Since the correction terms are slowly time varying, it is

appropriate to model them as Gaussian-distributed random
walks. Consequently, the local model for agent Ai is

xi
k+1 = F i(xi

k) + qi
k, qi

k ∼ N (0,Qi
k),

F i(xi
k) = (f i(κi

k); n
i
k; θ

I,i
k ; θP,i

k ; θC,i
k ),

(18)

where f i is the ith local state-transition (motion) model, which
in general is nonlinear. The prediction model in the FC is

xg
k+1 = F (xg

k) + qk, qk ∼ N (0,Qk), (19)

F (xg
k) = (f1(x1

k); n
1
k; ...; f

N (xN
k ); nN

k ; θI
k; θ

P
k ; θ

C
k ).

To describe the receiver motion, various prediction models
can be considered (see [32]). Regardless of the motion model
used, let the process noise associated with κi

k be denoted
by Qκκ

(i,i),k, and the noise associated with the bias states
(θI,i

k ; θP,i
k ; θC,i

k ) be denoted by Qθθ
(i,i),k = hσ2

BI . Hence,

Qi
k = diag(Qκκ

(i,i),k,Q
nn
(i,i),k,Q

θθ
(i,i),k), (20)

and the expression for Qk follows from (6) and (7).
Fig. 4 illustrates the relationship between the local and the

global models for a typical N = 10 agent problem (similar to
Fig. 2). Such models are used in the simulations in Sec. V,
indicating both the scale and the complexity of the problem.

Fig. 4. Illustration of how the states in the local estimation models (gray)
relate to the global state vector (blue) with the shared states in the global
model highlighted with the red box. The real-valued states are marked with
"o" and the integer valued ambiguity states are marked with "×".

Given how the biases enter in (8), and with a local model
of the form (18), the local state vector xi

k of agent Ai is
observable in yi

k under mild assumptions.

Remark 1 For instance, take a constant-velocity (CV) model,

f i(κi
k) =

[
I hI
0 I

]
κi
k, Qκκ

(i,i),k =

[
h3

3
h2

2 I
h2

2 I hI

]
, (21)

with the kinematic states of the receiver, κi
k = (pi

k; vi
k) ∈

R6, defined as a composition of the receiver position and
velocity. Consider the measurement equation in (10) at a
point κ = κ0 ∈ R6, and let [(∂∆ρSi

AiB,k)/(∂κk)]|κk=κ0
≜

[J ,0] ∈ RNi
s×6. It follows that rank(SJ) ≥ 3 if N i

s ≥ 4
and the satellites are located at different points in space,
with at least three directions ps

k − pAi,k being nonparallel.
Under these conditions, with A ≜ [(∂F i)/(∂xi

k)]|κk=κ0
and

C ≜ [(∂hi)/(∂xi
k)]|κk=κ0 , for all κ0,

rank

([
C
CA

])
= dim(xi). (22)

C. Problem Formulation
The information sent from an agent Ai to the global center
C contains the code and carrier-phase measurements, as well as
an estimate of the local state xi. The local estimator producing
the state estimate is Bayesian as outlined in Assumption 3.

Assumption 3 Each agent Ai executes a recursive estimator
that at each time step k updates a posterior distribution
p(xi

k|yi
0:k) and extracts a first and second moment estimate,

{x̂i
k|k,Σ

i
k|k}, such that p(xi

k|yi
0:k) ≈ N (x̂i

k|k,Σ
i
k|k). Sim-

ilarly, the recursive estimator updates the posterior with a
virtual measurement described by a first and second moment
{ẑk,Σz,k}, resulting in p(xi

k|yi
0:k, zk). The virtual measure-

ment is elaborated upon in Sec. III-D.

Based on Assumption 3, the measurement model (12), and
prediction models in (18) and (19), we seek a positioning
system where the FC receives the set of code and carrier-
phase measurements from each agent, yi

k, as well as the
first and second moment estimates {x̂i

k|k,Σ
i
k|k}Ni=1 of the

state (7). The FC then determines a first and second moment
{ẑi

k,Σ
i
z,k} for each agent Ai that can be used to update the

posterior distribution of p(xi
k|y0:k), to result in an improved

local posterior distribution p(xi
k|yi

0:k, zk) ≈ p(xi
k|y0:k) that

includes knowledge of partially shared biases states and inter-
agent measurement noise cross-correlation.

Remark 2 Assumption 3 restricts our approach to be used
in combination with statistical estimators. However, GNSS
estimators either produce general posterior distributions (e.g.,
[17], [26]) or are designed to be moment estimators (e.g.,
[12], [23], [33]). The capability to extract a first and second
moment is readily handled by statistical estimators such as
the EKF, LRKFs, and sequential Monte-Carlo methods (e.g.,
particle filters). The capability to include first and second
moments to update the posterior distribution means that the
estimator in each agent needs to incorporate information
that is Gaussian distributed, which is handled already by the
above-mentioned methodologies.
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MIKF Estimate fusion
x̂g,P g

Agent 1

...

x̂1,P 1

Agent N
x̂N ,PN

Positioning System (FC)

zN ,ΣN

z1,Σ1

Fig. 5. Architecture of the proposed cooperative GNSS positioning system.
The proposed positioning solution consists of; (i) an estimator (MIKF) that
has access to all available satellite measurements across the N different agents
and leverage measurement cross-correlation; (ii) an estimate fusion block that
fuses the global estimate with the local estimates using inter-agent cross-
covariance estimation; and (iii) a method for propagating back the updated
estimate to the local agents.

III. COOPERATIVE GNSS POSITIONING SYSTEM

In this section we present the proposed GNSS-based po-
sitioning system. The key ingredients enabling our approach
are; (i), from (13) and Proposition 1, the FC C has an infor-
mation advantage because there is substantial cross-covariance
between the agents that can be leveraged in the FC (see Fig 3);
and (ii), from Assumption 1, there are residual biases that are
similar across multiple agents (see Fig 4).

Fig. 5 shows a high-level diagram of the positioning system.
A set of agents transmits local state and measurement informa-
tion to the FC. The FC consists of three building blocks. First,
an MIKF that utilizes the partially linear structure in the esti-
mation model. In the FC, the MIKF utilizes cross-covariances
between measurements from different agents. Second, the FC
performs fusion between local estimates and the estimates
from the MIKF operating on the global information. This step
is crucial when the local agents operate at different rates than
the FC and/or the local agents use additional onboard sensing
that is not transmitted to the FC. Third, the FC back-propagates
the updated state information by a virtual measurement to the
local agents.

In the following, we explain the different components of the
positioning system. We start with a brief review of the MIKF
that is executed in the local agents and describe the recursive
estimator that produces a global state estimate leveraging all
satellite measurements.1 Then, we describe how to optimally
fuse the local state estimates in Ai with the global state
estimate in C, solving P1. To do this, we derive an expression,
which is exact in the linear case, to recursively estimate
the inter-agent covariance, solving P2. Finally, we provide a
method for propagating the fused estimate from C to Ai by
using virtual measurements, zi, solving P3.

1Note that the MIKF fulfills Assumption 3, but any other method could be
used, as long as it satisfies Assumption 3

A. Mixed-Integer Kalman Filter and the Fusion Center

The dominating paradigm in GNSS positioning is to solve
relaxed estimation problems, where all of the states in the local
state vector are real-valued. Then, based on the most likely
integer ambiguity hypothesis found by an ILS, a state estimate
is determined. For the purposes of this paper, an appealing
method is given in [23], which uses the partially linear
moment approximations proposed in [34] to estimate two
separate densities over the real-valued states. This filter, MIKF,
recursively estimates three separate probability densities,

• Relaxed: p(κi
k,n

i
k,θ

I,i
k ,θP,i

k ,θC,i
k |yi

0:k)≈N (x̂i
k|k,P

i
k|k)

• Fixed: p(κi
k,θ

I,i
k ,θP,i

k ,θC,i
k |yi

0:k,n
I,i
0:k) ≈ N (x̆i

k|k, P̆
i
k|k)

• Integer: nI,i
k = argmax

ni
k∈ZNi

s

p(κi
k,n

i
k,θ

I,i
k ,θP,i

k ,θC,i
k |yi

0:k)

The resulting statistics, {x̂i
k|k,P

i
k|k, x̆

i
k|k, P̆

i
k|k,n

I,i
k }, are

known locally and stored in agent Ai, and are updated
recursively when receiving the measurements yi

k using [23,
Algorithm 1]. This is represented by the function

Ai ← MIKF_update(Ai,y
i
k). (23)

The FC has access to the global model and employs the MIKF
update over the relaxed estimates {x̂g

k|k,P
g
k|k}, written as

C ← MIKF_update(C,yg
k). (24)

In addition, the FC updates a third density, which is the fused
estimates of all of the local and global states, N (xf

k|k,P
f
k|k).

This density is defined in the global state space and its
computation is described in Sec. III-B.

Remark 3 The FC has two main information advantages
compared to each local agent. First, (14) implies that for
satellites measuring more than one agent at the same time and
using the same base station, the measurement covariance has
cross-correlation. Second, the sharing of some of the residual
biases implies there is considerable mutual information in the
states of the local receivers.

Remark 4 The MIKF in [23, Algorithm 1] includes estimat-
ing a Gaussian posterior defined over the complete local state
space in the relaxed density, and is updated by a Kalman-type
update. As such, the MIKF satisfies Assumption 3.

B. Fusing Local and Global Estimates

The estimates {x̂k|k,Pk|k} in Sec. III-A are based on
the global model, making use of known inter-agent noise
correlation and sharing of residual biases that individual agents
cannot utilize. However, the agents might incorporate addi-
tional sensors, and their filters are typically run at faster update
rates. By fusing the local estimates with global estimates,
we can therefore potentially improve performance in a fused
estimate, compared to simply running the MIKF in Sec. III-A
with the global estimation model in (12) and (19).

There exist numerous methods for fusing first and sec-
ond moments of estimates or information items from dif-
ferent agents. For instance, fusing xi ∼ N (µi,Σi) with
xg ∼ N (µg,Σg) into a combined information item xf ∼
N (µf ,Σf ), can be done by convex combinations (CC),
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covariance intersection (CI), or inverse CI (ICI) [21], [22].
These methods do not assume knowledge of a cross-covariance
Σgi = E[(xg − µg)(xi − µi)⊤], which leads to CC, CI, and
ICI overestimating the fused covariance. In addition, these
methods assume that µi and µg are defined in the same space
(i.e., the left-most scenario in Fig. 2). For a known cross-
covariance Σgi, the Bar-Shalom/Campo rule (BC) [35] is the
minimum mean-square error (MMSE) fusion for Gaussian
distributions with known cross-covariance. In its original for-
mulation, the BC rule assumes a fully overlapping state space
(i.e., (xi; xg) = (xf ; xf )). However, it can be extended to
a general case where the local state vectors partially overlap
[21] (i.e., the right-most scenario in Fig. 2). Due to a linear
relationship between the the local-state space of Ai and the
global state space in C, we build a mapping between the global
state xg in the FC and the stacking of the local state xi of
each agent Ai, xl,

x1
k

x2
k

...

xN−1
k

xN
k


︸ ︷︷ ︸

≜xl
k

=



T 1
u 0 · · · 0 0 T 1

s

0 T 2
u · · · 0 0 T 2

s

...
...

. . .
...

...
...

0 0 · · · TN−1
u 0 TN−1

s

0 0 · · · 0 TN
u TN

s


︸ ︷︷ ︸

≜Tg→l

xg
k,

(25a)

where

T i
u ≜

[
INi

u×Ni
u

03Ni
s×Ni

u

]
, T i

s ≜

[
0Ni

u×Ns

13 ⊗M i

]
, (25b)

with N i
u ≜ dim(ki)+dim(ni) denoting the number of states

that are unique to agent Ai. Eq. (25) follows from the state-
space definitions provided in (6) and (7). By Assumption 3 and
assuming that it is possible to estimate the inter-agent cross
covariance Σgl,[

xl

xg

]
∼ N

([
µl

µg

]
,

[
Σl Σlg

Σgl Σg

])
≜ N (µp,Σp). (26)

The local and global state estimates, xl and xg , relate to the
fused information item in the state-space of the FC by[

xl

xg

]
=

[
Tg→l

I

]
xf ≜ Hfxf . (27)

Here, the optimally fused estimate xf ∼ N (µf ,Σf ) is the
solution to the WLS-problem

Kf = ((Hf )⊤(Σp)−1Hf )−1(Hf )⊤(Σl)−1, (28a)

µf = Kfµp, (28b)

Σf = KfΣp(Kf )⊤ = ((Hf )⊤(Σp)−1Hf )−1. (28c)

If Tg→l = I , (28) simplifies to

µf = µl + (Σl −Σlg)Σ̄−1(µg − µl), (29a)

Σf = Σl − (Σl −Σlg)Σ̄−1(Σl −Σgl), (29b)

Σ̄ = (Σl +Σg −Σlg −Σgl). (29c)

However, (28) allows general state-space descriptions and
therefore solves Problem P1. Given (27) defined by (25), we
refer to such a generalized BC fusion through (28) of the
information items in (26), by the function

[µf
k ,Σ

f
k ]← gbc_fusion(µp

k,Σ
p
k,Tg→l). (30)

C. Inter-Agent Covariance Estimation for Optimal Fusion

The generalized BC-fusion (28) relies on knowledge of the
cross-covariance of the estimate errors in forming (26). In the
general case, there is no analytical formula for determining the
cross-covariance of inter-agent estimation errors. However, for
a first-order expansion of the system nonlinearities, we obtain a
recursive method of computing the cross-covariances involved
in the generalized BC-fusion, as summarized in Proposition 2.

Proposition 2 Assume that eachAi estimates a relaxed Gaus-
sian distribution N (x̂i

k|k,P
ii
k|k) of the state xi

k using a MIKF,
with the measurement yi

k incorporated in the relaxed estimate
using a Kalman gain Ki

k. Assume that there exists a global
estimate N (x̂g

k|k,P
g
k|k) where the measurement yk is incor-

porated by a Kalman-type filter with the Kalman gain Kg
k .

Define x̂l
k|k = (x̂i

k|k; · · · ; x̂N
k|k). Then, the cross-covariance

P ll
k|k ≜ E[(xl

k − x̂l
k|k)(x

l
k − x̂l

k|k)
⊤] ≜

P
11
k|k · · · P 1N

k|k
...

. . .
...

PN1
k|k · · · PNN

k|k


can be approximated recursively by a first-order Taylor ex-
pansion of the nonlinearities in F i(xi) and hi(xi) as

Ai
k =

∂F i(xi)

∂xi

∣∣∣
xi=x̂i

k−1|k−1

, Ci
k =

∂hi(xi)

∂xi

∣∣∣
xi=x̂i

k|k−1

,

P ij
k|k−1 ≈ Ai

kP
ij
k|k−1A

j
k + T i

g→lQk(T
j
g→l)

⊤, (31a)

P ij
k|k ≈ (I −Ki

kC
i
k)P

ij
k|k−1(I −Kj

kC
j
k)

⊤+Ki
kR

ij
k (K

j
k)

⊤.

Similarly, the cross-covariance of the joint distribution of local
and global estimates is

P lg
k|k ≜ E[(xl

k − x̂l
k|k)(x

g
k − x̂g

k|k)
⊤] (31b)

≈ (I −Kl
kC

l
k)(A

l
kP

lg
k−1|k−1(A

g
k)

⊤

+ Tg→lQk)(I −Kg
kC

g
k)

⊤ +Kl
kRk(K

g
k)

⊤,

where

Ag
k =

∂F (x)

∂x

∣∣∣
x=x̂g

k−1|k−1

, Cg
k =

∂h(x)

∂x

∣∣∣
x=x̂g

k|k−1

,

Al
k ≜ diag(A1

k, · · · ,AN
k ), Cl

k ≜ diag(C1
k , · · · ,CN

k ),

Kl
k ≜ diag(K1

k , · · · ,KN
k ).

Proof 2 The result follows from writing the estimation errors
of xl

k and xg
k recursively, and is a straight-forward adaptation

of the derivation in [36, Appendix B].

While approximate, the recursive method in (31) facilitates
the implementation of (30), solving Problem P2 but requiring
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extensive bookkeeping. For future reference, we define a set
of relevant inter-agent estimate error covariance matrices, as

P = {P ij
k|k|(i, j) ∈ [1, N ]2 ⊂ N2, i < j} ∪ P lg

k|k, (32)

and we denote an update of the elements of this set by

P ← update_crosscov(k,P,A, C). (33)

D. Back-Propagating the Global Estimates

When the FC has determined an updated fused state es-
timate x̂f,i and associated covariance P f,i for agent Ai,
this information needs to be propagated back for use in the
agent Ai. The straightforward approach is to submit back
the fused state estimate and covariance. Sometimes this is
not the statistically correct approach, since typically the FC
and local agent update at different update rates and with
different sensor information. This implies that; (i) the fused
estimate may correspond to a different time compared to the
current time, such that there needs to be time-correlation
of the fused estimate and the current time; (ii) the fused
estimate may differ from the local estimate such that direct
application of the fused estimate can cause large jumps, which
is unsuitable when using GNSS in a control system; and (iii),
since the local agent estimator relies on recursive updates
from a previous estimate according to systematic Bayesian
principles, when overwriting the local estimator with the fused
estimate, such Bayesian principles are violated. Instead, the
statistically correct approach is to let the local agent treat
the fused estimate as an extra, virtual measurement on the
local states, that, when used in the Kalman update in absence
of other measurements, causes the local agent estimates to
converge to the global estimate. When the local agents utilize
additional onboard sensing, as will typically be the case, the
virtual measurements acts as yet another measurement update.
The is summarized in Proposition 3.

Proposition 3 Consider the system

xk+1 = xk + qk, qk ∼ (0,Qk), (34a)
zk = xk + rk, rk ∼ (0,Rk). (34b)

Then, for any distribution p(xk−1|z0:k−1) =
N (µk−1,Σk−1), there exists a set of measurement
realization and variances {zk,Qk,Rk} such that
p(xk|z0:k) = N (µk,Σk) for any sought posterior {µk,Σk},
zk = µk−1+(Σk−1 +Qk +Rk)N

−1
k (µk − µk−1), (35a)

Rk = −(−Σ−1
k +N−1

k )−1, (35b)
Nk = Σk−1 +Qk. (35c)

Furthermore, the smallest positive semi-definite Qk ⪰ 0 that
yields a positive definite Rk ≻ 0 is

Qk = Σk −Σk−1 + |min(
¯
λ(Σk −Σk−1), 0)|I. (36)

Proof 3 The proof follows from the Woodbury matrix identity.

We denote the generation of a virtual measurement using
Proposition 3 by

zi
k ← set_virtualmeas(µi

k,Σ
i
k). (37)

E. Algorithm Outline

Proposition 3 provides a way to compute a virtual measure-
ment that translates a prior distribution in the local agent to a
posterior produced by the FC. After computing a relaxed fused
density based on all of the available information, we can prop-
agate this to any agent using a virtual measurement update.
Hence, Proposition 3 provides a means to feed back (back-
propagate) the information from C to the local agents Ai. Each
local agent executes with a sampling period δt = tk − tk−1,
usually determined as the sampling period of the fastest sensor
in the local agent. At each time step k, the local agent transmits
its estimated state and code and carrier-phase measurements
to the global agent C. The global agent, however, executes
with a sampling period ∆t > δt, by virtue of solving a high-
dimensional estimation problem. The combination of different
timings, larger sampling period, and communication times in
the central computing unit, can lead to a delay from when
the measurements and estimates from each agent i have been
gathered, until the updated virtual measurements zi has been
transmitted from the FC C to an agent Ai. In such a case, the
virtual measurement can be an out-of-sequence measurement
(OOSM), which is a measurement that arrives after more
recent measurements have already been processed. While it
is possible to have OOSMs both in the communication from
FC to agents, and from agents to FC, we primarily focus on
the former as the FC is likely to be run at lower rates.

There are numerous ways to incorporate an OOSM. If the
local agents store all measurements and the computational
power is large enough, the optimal solution is to rerun the
filter from time tτ up until the current time tk including the
virtual measurement zτ , before the next measurement arrives.
However, in many cases this is impractical, both because of
computational limitations and because storing large buffers
of measurements is not supported in the hardware. In this
case, there are multiple solutions available, which are optimal
in the linear case and readily extendable to the nonlinear
setting (e.g., [37]–[40]). These methods essentially amount to
different versions of smoother implementations.

While we are primarily concerned with the communication
and back-propagation of information from the FC to each
agent, we also note that a similar smoothing approach can
be taken if there are delays in the communication from the
local agents to the global FC. Here, an OOSM update can be
done along the lines of [37]–[40] instead of conducting in-
sequence filtering. However, caution needs to be taken with
respect to the updating of the cross-covariances in (33) using
Proposition 2. Here, it is advised to run the global FC at a
slight delay, and perform a forward pass incorporating the
available measurements prior to the BC fusion in (30).

Algorithm 1 summarizes the proposed cooperative position-
ing solution for the case where the back propagation is done
with a virtual measurement but without OOSMs. We empha-
size that the last step in the algorithm can be implemented in
various ways using OOSMs, but the exact choice of method
will depend on the nature of the communication errors in
a real implementation. Since the choice of OOSM approach
will depend on the delays, local computational complexity,
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additional sensing used in the local estimators, and memory
capabilities of the receivers, we validate Algorithm 1 in sim-
ulations without OOSMs. The effect of introducing OOSMs,
depending on the method used will generally result in a slight
performance degradation, an increase of computational burden,
or both, but it is not a limitation of the method in general.

Algorithm 1 The cooperative estimation algorithm.

Initialize: { ˆ̄xj
−1|−1,P

j
−1|−1}Nj=1

1: for k = 0, 1, . . . do
2: for i = 1, . . . , N do
3: Ai ← MIKF_update(Ai,y

i
k)

4: end for
5: Transmit {yk, x̂

i
k|k,P

i
k|k}Ni=1 from A to C

// Estimate inter-agent cross-covariance
6: P ← update_crosscov(k,P,A, C)

// Fuse and back propagate
7: if Fuse and back propagate then

// Compute MSE-optimal fusion of estimates
8: [µf

k ,Σ
f
k ]← gbc_fusion(µp

k,Σ
p
k,Tg→l)

9: for i = 1, . . . , N do
// Define virtual measurement update

10: zi
k ← set_virtualmeas(µi

k,Σ
i
k)

11: Ai ← MIKF_update(Ai, zk)
12: end for
13: end if
14: end for

IV. EVALUATION PRELIMINARIES

To evaluate the proposed cooperative estimation algorithm,
we present results from two urban-driving vehicle simulation
studies, as well as a simulation study with HIL. The first
study in Sec. V-A is conducted without back-propagation (i.e.,
Algorithm 1 without using virtual measurements) of the global
estimates to the local agents. The purpose is to demonstrate
the advantage of using global information by the reduction
of the variance of the estimates of the global, relaxed solution
when including known global noise correlations, and highlight
performance gains that can be made in the cooperative posi-
tioning. The second study in Sec. V-B includes the fusion and
back-propagation (i.e., the complete Algorithm 1) of informa-
tion from the FC to the agents, showing an improvement in
the local estimate each time a virtual measurement is included,
demonstrating a clear performance improvement among the
agents participating in the cooperative positioning. In the
second study we show how the cooperative positioning can
significantly increase performance of agents that have faulty
and inconsistent ionospheric bias models.

A. Performance Metrics

There are various metrics in which the estimates can be
measured. Here, we consider an empirical mean-square error
(MSE) of the estimates, computed from NMC = 100 Monte-
Carlo (MC) runs. Let N (x̂

(j)
k|k,P

(j)
k|k) be the Gaussian posterior

distribution in any of the local, global or fused, relaxed or fixed

estimates at time step k as computed in stimulation j. Then,
we define

MSE(x̂k) ≜
1

NMC

NMC∑
j=1

∥x(j)
k|k − x̂

(j)
k|k∥22. (38)

This enables investigating estimate consistency. To this end,
we define a measure of average posterior covariance (APC),

APC(Pk) ≜
1

NMC

NMC∑
j=1

Trace(P
(j)
k|k). (39)

If the filter is consistent, we should expect that MSE ≈ APC
when NMC is large enough. Additionally, as the proposed
solution entertains relaxed, fixed, and fused estimates of high-
dimensional state-vectors, we define a convenient scalar error
measure. If a simulation contains K time steps, we let E(x̂) ≜
K−1

∑K
k=1 MSE(x̂k) denote a time-averaged MSE. Finally,

we consider a relative average empirical MSE of two estimates
x̂i in Ai and T i

g→lx̂ in C, as R(x̂i) ≜ E(x̂i)/E(T i
g→lx̂).

B. Evaluation Setup

We consider an N = 10 agent scenario. For simplicity,
we restrict the scope to the GPS satellite constellation in the
evaluation. Of all 32 satellites in the GPS constellation, only
those with an elevation angle greater than 15deg are considered
possibly visible and constitute S, resulting in |S| = 9. Of
these, a random subset of the satellites is seen by the agent Ai,
resulting in a time-varying Si, thereby simulating occlusions
that may occur in an urban environment. The setup leads to
159 states in xg

k and 390 unique measurements in the global
measurement vector yg

k . Synthetic data are generated over
T = 200s and sampled at 10Hz, with the nominal parameters
stated in Appendix B. The estimation model is given by (18)
and (19), and for simplicity a (nearly) CV model in (21) is
used in all agents. However, for data generation, (i) the true
kinematic states of agent Ai, with positions and velocities
κi
k = (pi

k; vi
k) ∈ R6, are sampled from a car movement

simulator, (ii) the ambiguities evolve by an integer random
walk (see [23, Sec. IV.B]), and (iii) the ionospheric biases,
θI,i
k , are sampled from an ionospheric delay simulator. A

complete description of the parameter variation introduced in
each Monte-Carlo simulation is summarized in Appendix B.

1) Car Simulator: To generate the synthetic data, a set
of 10 agents {Ai}Ni=1 are initialized randomly on the streets
of Boston, USA, and made to follow the shortest route to a
random destination (see Fig. 6). The agents are constrained to
follow routes extracted using the open-source routing machine
(OSRM) tool [41], with a path velocity in a local Cartesian
ENU-frame sampled from a Gaussian distribution, with a mean
velocity dictated by the path curvature. For this purpose, let
pi
ENU : R≥0 → R3 be a function that maps a positive

path distance to a coordinate in the ENU frame, and let
c : R≥0 → [0,∞) denote a measure of curvature of a path as
a function of the path distance (0 being a straight path). The
agents are assigned velocity references

vir,k =

{
vmin if maxd∈[di

k,d
i
k+Thvi

k−1]
c(pENU (d)) > cmax

vmax otherwise, (40)
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Fig. 6. Top: Movement of the vehicles in time over the Boston road network,
with paths pi

ENU (black) and trajectories of the vehicles with a tag Ai

identifying each agent. The red color indicates the path of agent A2, and the
green color indicates the trajectory of agent A5. Bottom, left: The nominal
and perturbed ionospheric biases from the Klobuchar model parameterized as
in Sec. IV-B, corresponding to agent A5. Bottom, right: The velocity profiles
of the agents in the local ENU frame with the velocities of agent A2 changing
significantly in time, violating the assumption of constant velocity, and the
velocities of agent A5, being approximately constant in time.

and the mean dynamics of the agent path velocity is

vik = vik−1 + (h/τ)(vir,k−1 − vik−1), (41)

where the path distance at time step k is sampled as

dik ∼ N (dik−1 + hvik−1, σ
2
v). (42)

The kinematic state κi of the agent Ai at time step k is defined
by the position pi

ENU (d
i
k), and the driving behavior of the

vehicles is defined by {Th, τ, σv, vmin, vmax, cmax}. In the
evaluation, we use a horizon length of Th = 10s, with τ =
10s, σv = 0.1m/s, vmin = 1m/s, and vmax = 10m/s. This
results in the behavior in Fig. 6, which clearly differs from
the predicted behavior by the CV motion model. Hence, our
evaluation accounts for a realistic modeling mismatch.

2) Ionospheric Delay Simulator: To generate realistic iono-
spheric delays for the measurements of different agents, the
movement of the GPS constellation is simulated forward in
time using real ephemeris data. The true ionospheric biases
are generated from a Klobuchar model [24], denoted by
K : R12 → R>0. This function takes a time index, a position,
and a set of parameters; in this paper either a set of nominal
parameters (α,β) corresponding to early January of 2007
in [42], or a set of perturbed parameters, (α̃, β̃), given in

Appendix B. Hence, K models an ionospheric delay of a
satellite s ∈ Si at a time step k, with the agent position pi

k,

Isi,k = K(k,pi
k;α,β). (43)

This model is commonly used to correct for ionospheric
delays, but its parameters are never perfectly known. As such,
the correction terms in the receivers are simulated using a set
of perturbed Klobuchar parameters (α̃, β̃). In the synthetic
data, the true ionospheric delay difference terms do not evolve
by the random walk as assumed in the estimation model (18),
(19). Rather, the ionospheric bias term evolves by

Isi,k = K(k,pi
k;α,β)−K(k,pi

k; α̃, β̃), (44)

with the global bias residual vector θI
k in the synthetic data

defined as in (4a). Similarly to the difference between the true
vehicle dynamics and the simplified model in the estimator,
we should expect a prediction error in the ionospheric biases
residuals to degrade the resulting MSE of the estimates.

V. NUMERICAL RESULTS

Here, we present the results using the simulation setup
described in Sec. IV. First, we present the results from a
simulation study where we compare the estimation difference
between having global and local information. Then, we show
the simulation results when including back-propagation of the
global information to the local agents. Finally, we conclude
the evaluation by presenting results including HIL data.

A. Cooperative Estimation Without Back-Propagation

To demonstrate the benefit of including global in relation
to only using local information (i.e., a conventional GNSS
positioning approach), the system states are collaboratively
estimated without back-propagation, cutting off Algorithm 1
after the generalized BC-fusion step. The cooperative estima-
tion scheme is subsequently run with EKF moment approxima-
tions, using adaptive ambiguity priors and cycle-slip detection
as described in [23], implementing the modified LAMBDA de-
correlation scheme in [43] with a bootstrapping method [9].

Since the fusion is based on the estimated variance, an
important aspect of the estimator is its ability to produce
consistent estimates, that is, that the estimated confidence
is consistent with the true confidence. To study this, we
compare the empirical MSE and APC of the estimates in
the MC simulation study. Fig. 7 shows the estimates of
the states in agent A1. The MSE and APC are plotted
for the relaxed estimates {p̂1

k, v̂
1
k, n̂

1
k, θ̂

I,1
k , (θ̂P,1

k ; θ̂C,1
k )}

(having real-valued ambigiuties) and for the fixed estimates
{p̆1

k, v̆
1
k, n̆

1
k, θ̆

I,1
k , (θ̆P,1

k ; θ̆C,1
k )} (when fixing the ambiguities

to integers) in log10 scale. The relaxed estimates are roughly
consistent except for the the velocity estimates. This is due to
the expected modeling errors, as the simple CV motion model
does not perfectly capture receiver motion governed by the
car simulator. However, when investigating the fixed estimate
density in the lower plot, the estimates no longer seem to be
consistent in the second moment of the position estimates.
One explanation for this is that the statistical assumption that
the ILS problem is solved exactly in the MIKF is violated
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Fig. 7. Estimate MSE in time with associated APC (solid and dashed,
respectively) of the states in agent A1. Top: Relaxed estimate density. Bottom:
Fixed estimate density.

in practice, as it is an NP-hard problem, which is actually
solved by heuristic methods. Hence, we should expect to have
some variance in the fixed ambiguity estimate in time. This
is clearly seen by that we do not achieve a perfect ambiguity
fixation (the empirical MSE of ambiguity estimates in black is
nonzero in Fig. 7, lower plot). From Fig. 7, we conclude that
the relaxed estimates are consistent, motivating the approach
of fusing the relaxed estimates prior to fixation, as opposed to
fusing the fixed estimates. Also, note that in the local filters,
the fixed estimates yield a significant improvement in the
empirical MSE, with a tendency to under-estimate the estimate
error variance. Again, this is only shown for agent A1 in Fig. 7
but similar conclusions can be drawn for the other agents.

When evaluating the complete solution in Algorithm 1, the
FC essentially estimates the Cramér-Rao performance bound.
Hence, when investigating performance improvements in the
local agents, the FC is the benchmark to compare against.
To relate Fig. 7 to the other agents and how the introduction
of global information increases performance, we summarize
the results from the MC-study in Table I, which shows the
relative performance decrease for the relaxed estimates relative
to global information when using only local information. There
is a significant variation in the performance decrease between
global and local information for the different agents, especially
in the kinematic states. One reason is the large prediction
errors arising from the relatively simple CV prediction model.
For instance, agent A2, which from Table I gains a lot
from using global information, takes many sharp turns with
significant changes in the velocities, therefore violating the
assumption of a near-constant velocity in (21). Agent A5, on
the other hand, follows Massachusetts avenue, a wide and
fairly straight road, at a near constant speed throughout the
simulation, and its estimate MSE is much lower as a result.
Hence, there is less performance decrease when only relying
on local information. From Table I, it is clear that signifi-
cant performance gains are possible by utilizing the global
information and modeling shared biases in the global state

TABLE I
RELATIVE AVERAGE EMPIRICAL MSE IN A AND C FOR THE EXAMPLE

WITH GOOD BIAS MODELS, NO BACK-PROPAGATION.

Agent R(p̂i) R(v̂i) R(n̂i) R(θ̂I,i) R(θ̂C,i) R(θ̂P,i)

A1 1.00 1.48 0.98 1.70 1.74 1.70
A2 1.83 1.45 1.10 3.39 1.74 1.74
A3 1.32 1.91 1.23 2.75 1.74 1.74
A4 1.62 1.70 1.35 2.00 1.74 1.70
A5 1.12 1.15 1.32 1.70 1.74 1.70
A6 1.66 1.45 1.51 2.04 1.74 1.70
A7 1.32 1.12 1.48 1.66 1.74 1.70
A8 1.12 1.12 1.26 1.78 1.74 1.70
A9 1.35 2.00 1.12 2.69 1.74 1.74
A10 1.32 1.48 1.35 1.86 1.74 1.70

vector, especially for the difficult cases where the estimates
degrade the most. For instance, in the problematic vehicle A2,
the empirical RMSE of the ionospheric residuals is 0.1229m
when using local information, compared with 0.0671m when
using global information However, an even greater strength of
the cooperative positioning solution is its correction of poor
and inconsistently set bias models in the various agents, as
will be shown in the next section.

B. Cooperative Estimation With Back-Propagation

In this subsection, we run Algorithm 1 including the es-
timate fusion proposed in Sec. III-B using generalized BC
fusion from the inter-agent covariance estimates computed
using the recursion proposed in Sec. III-C. The global infor-
mation is subsequently back-propagated to the local agents
at a rate of 2Hz, while the filters in the agents are run at
10Hz. By modeling shared bias states in the global model,
enabled by Assumption 1, locally faulty correction terms
can be adjusted using the global information to enhance the
estimates. For instance, if agent A1 has a faulty ionospheric
bias correction term Is1 for some s ∈ S1, and there exists
other agents participating in the cooperative positioning for
which this satellite is also visible, we should expect the
estimation performance of A1 to be significantly improved
by the cooperative positioning. To this end, we introduce
a local correction term in A1 that is significantly different
from the true bias, which is accurately estimated in the other
participating agents. We introduce the faulty correction term
in A1 by adding a 0.3m effect of ionospheric delay to one of
the biases corresponding to satellite sδ = 2 ∈ S1, as

Isδ1,k ≜ K(k,pi
k;α,β)−K(k,p1

k; α̃, β̃) + 0.3, (45)

in generating the synthetic data for agent A1.
Fig. 8 displays the estimation performance of A1 both

without (upper plot) and with (lower plot) back-propagation
of the global information to the local agent. Without back-
propagation, the estimation performance of the fixed density is
clearly inconsistent with the estimated 2σ confidence interval,
and the empirical RMSE of the ionospheric bias estimates in
agent A1 is roughly 0.3m, about the size of the error intro-
duced in (45). However, when back-propagating the global
estimates to the local agent, the error is significantly reduced
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Fig. 9. Mean estimate position error in one of the Monte Carlo simulations
with an estimated 2σ-confidence interval for the local error (blue), global
error (black). Top: The position estimate error in the E-direction of agent A7.
Bottom, left: Zoom on the estimate errors in A7 and C, which are identical on
each back-propagation. Bottom, right: Zoom on the estimate variance, which
is identical on each back-propagation, before slowly increasing toward the
asymptotic variance of the estimate in the local measurement information.

and of the same size as the estimated 2σ confidence interval,
around 0.08m, a visible and clear performance increase.

To illustrate the back-propagation of global information to
the local agents, Fig. 9 shows the positioning performance of
one of the agents with good bias estimates, A7. The relaxed
estimate mean and variance in A7 (black) and C (blue) are
equal each time the estimates are fused and back-propagated,
and the variance in the local agent increases between each
back-propagation. Performance of the collaborative estimation
improves with the rate at which the back-propagation is done.

The possible performance gains in of the estimates enter-
tained in the agents mainly depend on how the Cramér-Rao

TABLE II
RELATIVE AVERAGE EMPIRICAL MSE IN A AND C FOR THE EXAMPLE

WITH BAD BIAS MODELS IN A1 , NO BACK-PROPAGATION.

Agent R(p̂i) R(v̂i) R(n̂i) R(θ̂I,i) R(θ̂C,i) R(θ̂P,i)

A1 1.79 1.17 5.29 55.78 1.72 1.78
A2 1.09 1.25 1.08 0.76 1.74 2.04
A3 1.11 1.25 1.07 0.72 1.74 1.91
A4 1.52 1.21 1.22 0.74 1.73 1.83
A5 1.43 1.10 1.26 0.68 1.72 1.81
A6 1.14 1.21 1.02 0.74 1.72 1.83
A7 1.10 1.10 0.97 0.68 1.73 1.83
A8 1.00 1.07 0.97 0.79 1.73 1.83
A9 1.26 1.28 1.19 0.73 1.74 1.94
A10 0.94 1.13 0.91 0.78 1.72 1.79

bound differs when using global and local information, and
implicitly on the noise levels of the system, the amount of
inter-agent cross-correlation, and the sampling periods of the
estimators. To investigate this more rigorously, we show the
results from a MC study of 100 runs without back-propagation
in Table II and with back-propagation at 2Hz in Table III.
From these two tables, some conclusions can be drawn. First,
without propagating back the global estimates, A1, which has
the erroneous bias model, has 1.79 times worse positioning
performance than the global agent, but after back-propagation,
the difference has shrunk to 1.09. Second, we note a significant
performance increase of the positional empirical MSE when
enabling the back-propagation of information. This holds
across most agents, but is especially true for the agent with a
poor ionospheric bias model. Consequently, even when there
are unmodeled errors in the correction terms, back-propagation
rates as low as 2Hz can yield significant performance improve-
ments in the position estimates of the local agents. Third, two
out of the ten agents (A8 and A10) have a minor increase
in positional MSE. This can be attributed to the fact that
the simulation includes significant modeling errors, both in
the prediction model and by the inconsistent bias models
introduced for agent A1. It could also be an indicator that
more MC runs are required for the case of inconsistent bias
models. As the rate of back-propagation approaches the rate
at which the local filters are run, the entries in Table III will
approach 1 in every cell, and if making it arbitrarily slow
the entries will approach those in Table II. Thus, even in the
cases where (i) the back-propagation rates are relatively slow,
(ii) there are significant modeling errors, and (iii) some of the
agents have inconsistent bias models violating Assumption 1,
a vast majority of the agents still benefit significantly from
participating in the cooperative positioning.

In the considered simulation, the average computational
time is 2ms/time step in each agent, increasing to 40ms/time
step in the global model (when implemented in nonoptimized
Matlab code and run on a 2.80GHz 11th Gen Intel i7). This
makes real-time execution at 10Hz possible, but additional
computational overhead may be present in practice, making the
algorithm at least quasi-real-time. Due to the computational
complexity scaling with the number of states in the global
model cubed, it is advised to partition the agents into smaller
subsets using the clustering method in [31] for deployment at
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TABLE III
RELATIVE AVERAGE EMPIRICAL MSE IN A AND C FOR THE EXAMPLE
WITH BAD BIAS MODELS IN A1 , WITH BACK-PROPAGATION AT 2HZ.

Agent R(p̂i) R(v̂i) R(n̂i) R(θ̂I,i) R(θ̂C,i) R(θ̂P,i)

A1 1.09 1.67 1.52 22.79 1.58 2.81
A2 1.06 1.11 1.02 1.74 1.59 1.77
A3 1.08 1.14 0.99 0.62 1.58 1.69
A4 1.05 1.13 1.00 0.58 1.58 1.68
A5 1.03 1.11 1.02 0.54 1.58 1.69
A6 1.02 1.16 1.01 0.55 1.59 1.69
A7 1.01 1.09 1.03 1.60 1.59 1.63
A8 1.03 1.05 1.03 1.63 1.59 1.66
A9 1.08 1.14 1.00 0.59 1.58 1.73
A10 1.06 1.08 1.01 0.60 1.59 1.65

a larger scale.

C. Hardware-in-the-Loop Simulation Study

To demonstrate and test the validity of Assumptions 1–3, we
provide an HIL simulation study where the output of the car
simulator in Sec. IV-B1 is passed to the Orolia GSG-5/6 series
GNSS hardware simulator [25], as outlined in Fig. 10. The
Orolia device takes the position trajectories of the receivers
as a set of NMEA files, and and runs a simulation using the
u-blox ZED-F9P chip set. Here, we have no knowledge of the
exact models and noise levels used by the Orolia device, and
each simulation for the 10 agents and the single base station
is done independently. The output of the HIL simulator is a
set of satellite trajectories in a GSG format [25] sampled at
1Hz, GNSS observation and navigation data to a RINEX for-
mat [44] sampled at approximately 10Hz, and a broadcast file
(BRDC) containing the parameters of a Klobuchar model [24].
As each receiver is simulated independently in the Orolia
device, the time-stamping in the RINEX observation files is
nonuniform. This implies that the satellite trajectories are not
the same in the different agents in the GSG data. Consequently,
we preprocess the GSG and RINEX data to associate each
instance of measurement and satellite position with a time
step in the estimation algorithm at 10Hz. Furthermore, in this
processing, we also apply a measurement mask to remove the
DD measurements based on a threshold on an elevation angle
and the signal-to-noise (SNR) ratio associated with the GNSS
measurements. Both of these steps (re-sampling of the satellite
trajectories and measurement masking) are necessary in real
applications to achieve good positioning performance.

From this preprocessing step, we obtain a set of local DD
measurements at 10Hz for each agent. The correction terms
are computed using the delay simulator in Sec. IV-B2, and the
cooperative positioning scheme in Algorithm 1 is subsequently
run on the data corresponding to the GPS constellation and the
L1 frequency band. As the noise statistics used to generate
the data are unknown, the parameters of the filters are hand
tuned and modified slightly from those used in the previous
simulations. In particular, the measurement noise associated
with the code measurements is reduced. The output of the
local receivers are compared with the ground truth in an ENU
frame, yielding the positioning errors summarized in Table IV.
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RINEX
GSG and
RINEX

BRDCBRDC
Preprocess

data

DD data
sat. pos.
DD data
sat. pos.

Delay
simulator

C
A4

A3A2

A1

Correction
data

Correction
data

Error
analysis

True
positions

True
positions

Estimated
positions
Estimated
positions

Fig. 10. Sketch of the setup and information flow in the HIL simulations.

TABLE IV
POSITIONING RMSE FOR THE DIFFERENT AGENTS WITH COOPERATIVE

POSITIONING ON HIL DATA WITH BACK-PROPAGATION AT 2HZ.

Agent
√

E(pi1k) [cm]
√

E(pi2k) [cm]
√

E(pi3k) [cm]

A1 14.1 6.0 22.7
A2 15.8 8.6 9.8
A3 10.2 8.8 31.7
A4 16.1 7.7 24.6
A5 8.9 10.5 16.6
A6 5.8 8.0 26.5
A7 15.2 6.6 27.8
A8 9.6 6.7 24.0
A9 4.5 5.9 22.5
A10 7.9 6.3 25.1

Average 10.8 7.5 23.1

The results in Table IV are similar to the performance seen
in the quantitative simulation study using back-propagation in
ideal conditions (compare the RMSE in Table IV with the fixed
estimate (red) in Fig. 9). The estimation error is significantly
larger in the vertical direction. This is often the case for GNSS
due to the dilution of precision, but is also partly explained
by discretization errors in processing the satellite trajectories.
The previously mentioned GSG files are available at 1Hz,
and to get the required resolution of 10Hz the trajectories are
interpolated linearly, which introduces errors as the satellite
trajectories are far from linear. Such errors are likely to have
a greater impact on the vertical positioning performance. We
emphasize that the results the HIL experiment include:

• data processing artifacts such as interpolation errors in
the satellite trajectories as would be present in practice;

• time-stamping discrepancies between the measurement
data in the agents resulting from the HIL simulator;

• modeling mismatches in the estimation model, as we do
not know the noise statistics used in the Orolia simulator;

• known errors in the prediction model, as the car move-



14

ment generated by the simulator in Sec IV-B1 does not
obey the CV assumption used to define the estimation
model (see Fig. 6).

Despite these sources of errors, the proposed cooperative
positioning method achieves high positioning performance
on the data generated by the Orolia hardware in the loop
simulator. Furthremore, this performance is consistent with the
simulation results reported in Sec. V-A and Sec. V-B.

VI. CONCLUSIONS

This paper presents a cooperative GNSS positioning algo-
rithm where several participating agents collaboratively esti-
mate a set of states. For the mobile receiver case, the state
spaces of the agents are different but partially overlapping.
In addition, the agents use double-difference measurements
with respect to the same base station, there is significant
cross-correlation in the inter-agent carrier-phase and code
measurement noise. Consequently, the agents can greatly ben-
efit from sharing information facilitated by a fusion center.
The proposed algorithm fuses the relaxed estimates of the
agents centrally, incorporating assumptions on shared biases
and global noise models, and propagates this fused estimate
back to the agents. The method improves local estimation
performance with a minimal increase in the computational
overhead of the receivers, since the fusion is done centrally.
Such receivers are often equipped with processors with limited
capabilities. We explicitly quantified the improvements for a
realistic urban driving scenario with 10 agents in Sec. V-A,
showing a significant improvement in the empirical MSE of
the estimates when leveraging the inter-agent noise corre-
lations and assumptions on shared biases. Furthermore, we
verified the method’s robustness with respect to inconsistent
bias models in Sec. V-B. Despite being heavily model-based,
the method is capable of correcting the locally faulty modeled
biases, as Fig. 8 illustrates. Even with the various intentionally
induced modeling errors, the position MSE improves in a vast
majority of the agents and significantly enhanced in the agent
with a poor bias model. The HIL evaluation in Sec. V-C
indicates that our method performs similarly to the simulated
setup, implying that some of our assumptions are realistic also
when including real GNSS hardware in the loop.

In conclusion, it is possible to devise algorithms that utilize
preexisting GNSS hardware and leverage additional central-
ized computational power and communication to enhance
the local estimates in a set of participating receivers. In the
proposed cooperative positioning solution, this is done safely,
as each agent functions independently of the FC during a loss
of communication by design. Naturally, there are difficulties
in scaling up the proposed method to a much larger number
of vehicles. In such a scenario, one approach is to cluster the
agents into smaller groups such that the computation in the
fusion center can be done in quasi real-time. To demonstrate
this, future work will include the evaluation of the cooperative
positioning solution in real urban driving scenarios.

APPENDIX A
PROOF DETAILS

Proof 1 (of Proposition 1) The double difference operator is
a linear operator by (3) as M i and Si are linear. Thus,

SiM iPi,k − E[SiM iPi,k] = SiM i(ϵSB,k − ϵSi,k), (46a)

SiM iΦi,k − E[SiM iΦi,k] = SiM i(ηS
B,k − ηS

i,k). (46b)

Therefore, as Rϵϵ
k = Cov(ϵSB,k, ϵ

S
B,k) = Cov(ϵSi,k, ϵ

S
i,k) and

Cov(ϵSB,k, ϵ
S
i,k) = 0, standard Gaussian algebra yields

RPP
(i,i),k = Cov(SiM iPi,k,S

iM iPi,k) (47a)

= E[SiM iPi,k − E[SiM iPi,k])(⋆)
⊤] (47b)

= SiM i(Cov(ϵSB,k, ϵ
S
B,k) + Cov(ϵSi,k, ϵ

S
i,k))(M

i)⊤(Si)⊤

= 2SiM i(Rϵϵ
k )(M i)⊤(Si)⊤. (47c)

For the inter-agent measurement cross-covariance, we also get
terms Cov(ϵSi,k, ϵ

S
j,k) = 0, yielding the cross-covariance

RPP
(i,j),k = Cov(SiM iPi,k,S

jM jPj,k) (48a)

= SiM iCov(ϵSB,k, ϵ
S
B,k)(M

j)⊤(Sj)⊤ (48b)

= SiM iRϵϵ
k (M j)⊤(Sj)⊤, (48c)

as the base station is shared among the agents. The same
applies to the carrier phase measurements, resulting in (14)
and the block-structured noise in the proposition.

Proof 2 (of Proposition 3) With the premise and notation of
Proposition 3, we seek a triple {zk,Rk,Qk} such that

µk = µk−1 +K(zk − µk−1) (49a)
Σk = (I −K)(Σk−1 +Qk) (49b)

K = (Σk−1 +Qk)(Σk−1 +Qk +Rk)
−1. (49c)

Let Nk = (Σk−1 +Qk), then

(N−1
k −N−1

k ΣkN
−1
k )−1 −Nk = Rk (50)

From the Woodbury matrix identity (see, e.g., [45]),

(N−1
k −N−1

k ΣkN
−1
k )−1 = Nk− (−Σ−1

k +N−1
k )−1. (51)

Insertion into (50) yields

Rk = −(−Σ−1
k +N−1

k )−1 = −(−Σ−1
k + (Σk−1 +Qk)

−1)−1

(52)

Picking any Qk of sufficient magnitude, yields Rk ≻ 0, as

¯
λ(Σk−1 +Qk) < λ̄(Σk)⇒ −Σ−1

k + (Σk−1 +Qk)
−1 ≺ 0

⇔ Rk ≻ 0. (53)

Therfore,

Rk ≻ 0⇔ I ≺ (Σk−1 +Qk)Σ
−1
k , (54)

which holds for all Qk = Σk − Σk−1 + ϵI , with ϵ ≥
|min(

¯
λ(Σk −Σk−1), 0)|. Furthermore, we have that

µk = µk−1 +Nk(Nk +Rk)
−1(zk − µk−1)⇔ (55a)

zk = µk−1 + (Nk +Rk)N
−1
k (µk − µk−1) (55b)

which always exists, as Nk ≻ 0. In summary, a triple
{zk,Rk,Qk} solving (49) is given by (52), (55b), and defining
Qk with ϵ = |min(

¯
λ(Σk −Σk−1), 0)|.
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APPENDIX B
NOMINAL SIMULATION PARAMETERS

In each MC run, the initial estimation errors of the real
valued states are sampled uniquely for each run in accordance
with the filter prior, and the car movement is realized differ-
ently (the routes remain the same, but the starting point and
movement along the routes differ). The initial DD ambiguities
are sampled from a uniform distribution from −10 to 10,
independently in each dimension. The realization of these
initial errors is different in each MC run, and all measurement
and process noise as well as the true ambiguity trajectories are
realized differently in each MC run. The modeling errors with
respect to the Klobuchar delay model were realized differently
for each run, and this model was parameterized by

α = (1.7;−1.7;−6.0; 7.2) · 10−8, α̃ ∼ N (α̃, 0.1diag(|α|))
β = (0.9;−0.9;−2.0; 5.1) · 105, β̃ ∼ N (β, 0.1diag(|β|))
where the absolute value | · | is taken element-wise.

For the HIL experiments, a single simulation was carried out
for each agent using the vehicle simulator, and this generated
one set of GNSS measurements per agent. In this study, only
the initial estimation errors were sampled differently.
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