
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

BANSAC: A dynamic BAyesian Network for adaptive
SAmple Consensus
Miraldo, Pedro; Piedade, Valter

TR2023-124 October 02, 2023

Abstract
RANSAC-based algorithms are the standard techniques for robust estimation in computer
vision. These algorithms are iterative and computationally expensive; they alternate be-
tween random sampling of data, computing hypotheses, and running inlier counting. Many
authors tried different approaches to improve efficiency. One of the major improvements is
having a guided sampling, letting the RANSAC cycle stop sooner. This paper presents a
new adaptive sampling process for RANSAC. Previous methods either assume no prior in-
formation about the inlier/outlier classification of data points or use some previously com-
puted scores in the sampling. In this paper, we derive a dynamic Bayesian network that
updates individual data points’ inlier scores while iterating RANSAC. At each iteration, we
apply weighted sampling using the updated scores. Our method works with or without prior
data point scorings. In addition, we use the updated inlier/outlier scoring for deriving a
new stopping criterion for the RANSAC loop. We test our method in multiple real-world
datasets for several applications and obtain state-of-the-art results. Our method outperforms
the baselines in accuracy while needing less computational time. The code is available at
https://github.com/merlresearch/bansac.

IEEE International Conference on Computer Vision (ICCV) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus

Valter Piedade
Instituto Superior Técnico, Lisboa

valter.piedade@tecnico.ulisboa.pt

Pedro Miraldo
Mitsubishi Electric Research Labs

miraldo@merl.com

Abstract

RANSAC-based algorithms are the standard techniques
for robust estimation in computer vision. These algorithms
are iterative and computationally expensive; they alter-
nate between random sampling of data, computing hypothe-
ses, and running inlier counting. Many authors tried dif-
ferent approaches to improve efficiency. One of the ma-
jor improvements is having a guided sampling, letting the
RANSAC cycle stop sooner. This paper presents a new
adaptive sampling process for RANSAC. Previous methods
either assume no prior information about the inlier/outlier
classification of data points or use some previously com-
puted scores in the sampling. In this paper, we derive
a dynamic Bayesian network that updates individual data
points’ inlier scores while iterating RANSAC. At each itera-
tion, we apply weighted sampling using the updated scores.
Our method works with or without prior data point scor-
ings. In addition, we use the updated inlier/outlier scor-
ing for deriving a new stopping criterion for the RANSAC
loop. We test our method in multiple real-world datasets
for several applications and obtain state-of-the-art results.
Our method outperforms the baselines in accuracy while
needing less computational time. The code is available at
https://github.com/merlresearch/bansac.

1 Introduction
Outliers are one of the primary causes of poor perfor-

mance in computer vision. Robust estimators are essential
since imaging sensors suffer from several types of noise and
distortions. Removing outliers is one of the initial and more
relevant steps in many computer vision tasks, such as rel-
ative pose estimation [12, 28, 32, 35, 39, 50], camera local-
ization [10, 42, 43, 51], and mapping [22, 26, 29, 36, 44, 45].
The gold-standard robust estimator is RANSAC (RANdom
SAmple Consensus), introduced in [23]. RANSAC-based
algorithms are iterative methods that, at each iteration: sam-
ple minimal sets, estimate a model, and run inlier counting.
The output is the solution with the largest consensus.

The original RANSAC dates back to 1981. Over the

Initialization 10th iteration

100th iteration 1000th iteration

Figure 1. We run BANSAC in a homography estimation prob-
lem. We took a pair from the HPatches dataset [2] and show the
updated inlier probabilities of data points (feature matches with
color code at the right) over iterations. In the first row, from left
to right, we show the probabilities at the start and iteration 10.
The second row shows iterations 100 and 1000. For visualization
purposes, we show only 250 randomly chosen matches.

years, many authors changed the original loop to allevi-
ate some of its limitations. All these alternatives focus on
improving the sampling process, getting a better hypoth-
esis, improving the stopping criteria, or changing the in-
lier counting. Most modifications add significant gains in
computational efficiency. This paper focuses on improv-
ing the sampling efficiency even further. The main question
we want to tackle in this paper is: Will changing the scor-
ing weights over iterations help in sampling and defining
the stopping criteria? To answer this question, we propose
BANSAC, a new sampling strategy for the RANSAC loop.
Figure 1 illustrates our approach.

Previous methods such as [4, 11, 16, 37, 47, 48] focus
on exploiting scoring priors or considering some geomet-
ric relationships. However, the best-performing methods

1

mailto:valter.piedade@tecnico.ulisboa.pt
mailto:miraldo@merl.com
https://github.com/merlresearch/bansac

keep these scores fixed while running RANSAC. We focus
on updating the scores online and using them for sampling
minimal data. By modeling the problem with probabilities,
we propose a new sampling strategy that uses a dynamic
Bayesian network for updating the scores. These are the
paper’s main contributions:

– A novel adaptive sampling strategy that uses a dynamic
Bayesian network to update data points’ inlier scores.
Our method does not need any prior information about
the quality of the data, although it can use it;

– A new simple and intuitive stopping criterion using the
updated scores; and

– Several experiments with multiple datasets show that
our approach outperforms the best baselines in accu-
racy, being also more efficient.

We implemented BANSAC using C++, within the OpenCV
USAC framework [1].

2 Related Work
Over the years, RANSAC has been improving in a va-

riety of areas. [40] offers a single universal framework
(USAC) that unites several improvements. Below we sum-
marize some RANSAC improvements split into sampling
and non-sampling strategies.

2.1 Sampling strategies

The original RANSAC [23] assumes that every data
point has the same likelihood of being an inlier. Several
new sampling improvements have been proposed. We split
these methods into: heuristic [4, 14, 16, 27, 37, 48], proba-
bilistic [8,24,33,47,49], and learning approaches [9,11,15].

Heuristic-based strategies: Heuristic-based strategies take
advantage of problem-specific characteristics to guide sam-
pling. NAPSAC [48] assumes that points in high-density
areas are more likely to be inliers. The algorithm chooses
the first point randomly and completes the sample within
a certain distance from the first. NAPSAC often leads to
local or degenerate models for more complex problems. P-
NAPSAC [4] improves some of NAPSAC issues by itera-
tively increasing the search space. One of the most used
sampling strategies is PROSAC [16]. Using, e.g., similar-
ity scores between point matches, PROSAC prioritizes the
sampling of points with better scores. A drawback of this
method is that it cannot be applied in general since it re-
quires some previously computed score. CS-RANSAC [27]
argues that the matched features should neither be collinear
nor adjacent to avoid degeneracies. CS-RANSAC defined
the problem using a Constraint Satisfaction Problem (CSP)
for homography matrix estimation. GroupSAC [37] as-
sumes that data can be split into groups according to their

coordinates or based on the number of images observing the
points.

Probability-based strategies: Probabilistic-based sam-
pling strategies such as [24,34,47] focus on estimating prior
probabilities for the data. These probabilities guide data se-
lection during the sampling step. MLESAC [49] improves
the hypotheses verification process in fundamental matrix
estimation. Guided-MLESAC [47] further develops MLE-
SAC by introducing a guided sampling modeled by two dis-
tinct distributions, one for matches and the other for mis-
matches. EVSAC [24] uses a Gamma and a Generalized
Extreme Value distribution to model inliers and outliers, re-
spectively. Although the problem differs from ours, [33]
derives an approach that uses a probability for modeling
inlier/outlier classification over iterations utilizing multiple
match hypotheses (a single feature on an image matches
more than one feature on the second image).

The closest work to ours is BAYSAC [8], which updates
the inlier probabilities iteratively, using it to guide the sam-
pling. At each iteration, after choosing a minimal set of
data points and computing the respective model hypothe-
sis, the method updates the probability of the data points
in the minimal set based on how good the hypothesis was.
Although this method updates the inlier probability at each
iteration, these updates are limited to the sampled points,
which do not perform well without a good prior. In this pa-
per, we propose a new approach in which all the data points’
inlier probabilities are updated every iteration based on the
inlier/outlier classifications.

Learning-based strategies: There has been widespread
use of neural networks in many areas of computer vi-
sion, RANSAC sampling being no exception. NG-
RANSAC [11] focuses on sampling by learning to estimate
matching scores for the input correspondences for relative
pose problems. Instead of scoring data points, DSAC [9]
learns to score a set of previously computed hypotheses.
NeFSAC [15] predicts the probability that a minimal sample
leads to an accurate solution, thus preventing the estimation
of models using bad minimal samples.

Our method does not require training. However, pre-
computed matching scores from learning-based solutions
can be given as input to BANSAC.

2.2 Non-sampling strategies

Below we list some key works on improvements to
RANSAC concerning the inlier threshold, inlier counting,
local optimization, and stopping criteria.

Inlier threshold: RANSAC uses the inlier ratio to select
the best model (largest consensus). To compute the inlier
ratio, a problem-dependent threshold is required. To avoid
setting this parameter, MINPRAN [46] proposes to model

2

it using the model parameters. Alternatively, MAGSAC [6]
and MAGSAC++ [7] reformulate the problem to use a
weighted least squares fitting for model evaluation, using
point scores as weights.

Inlier counting: Inlier/outlier classification is computa-
tionally heavy since, in each iteration, all the data needs
to be checked. Some authors have developed strategies to
avoid scoring all the points every iteration, [3,13,17,30,31].
Others check if the estimated models are valid, avoiding the
scoring process for invalid models, such as [3, 19–21, 25].
To avoid scoring unnecessary data points, a bail-out test
is proposed in [13]. The scoring stops when the current
model fails to have a higher inlier count than the best model.
SPRT [17, 31] estimates a likelihood ratio to decide if a
model is good using the minimum possible amount of data.

Local optimization: To improve accuracy, some authors
added a new step called local optimization. LO-RANSAC
in [18] recomputes the model parameters when a new best
model is found, using only the inliers. In [5], a method
called Graph-Cut RANSAC is proposed. It takes advantage
of the spatial coherence of the data to refine the estimated
model by assuming that close neighbor points should have
an equal classification in inlier/outlier. The data is arranged
in a graph with edges between nearby points and is mini-
mized by an energy cost function that penalizes neighbor
points with different classifications.

Stopping criteria: The stopping criterion checks if
RANSAC found a good enough solution and can exit the
loop. The vanilla RANSAC in [23] estimates how many it-
erations are needed until one all-inlier model hypothesis is
selected based on the inlier ratio of the so-far best model. It
stops when the current number of iterations is higher than
the one needed for getting one all-inlier model. Instead of
attempting to guarantee the best solution, [38] sets a real-
time limit to get an estimate. PROSAC [16] adds to the
RANSAC criterion a condition to end when the probability
of having a certain number of outliers in the current best
set is lower than a predefined threshold. Finally, SPRT [31]
terminates when the likelihood of missing a solution with a
higher inlier set than the best solution found so far is below
a certain threshold.

3 Background and Notations
RANSAC is an iterative method for solving a generic

problem of type f(x, θ) = 0, where x is some data satis-
fying the model θ. For simplicity, with a small abuse of
notation, we call x a data point, because it can represent
other types of features such as matches. The method iterates
for a maximum of K iterations while alternating between,
1) sampling Sk ⊂ Q data points, where Q ≜ {x1, ...,xN};
2) computing model hypothesis θk; and 3) doing inlier

Table 1. Summary of some important notations used in this paper.

Notation Description

X k ≜ {xk1 , ..., xkN} Inlier/outlier guesses per iteration.
Xn ≜ {x0n, ..., xkn} All inlier/outlier guesses for xn.
X ≜ {X k,Xn} All data point inlier/outlier guesses.
Cn ≜ {c1n, ..., ckn} Set of inlier evidences per iteration.
C ≜ {Ck, Cn} All data point inlier/outlier evidences.

A0:m ≜ {A0, ..., Am} Order subset. A can be a variable or set.
Pk ≜ {P (xk1 | C1:k

1), ...,

P (xkN | C1:k
N)}

Set of guesses for data points inlier/outlier
probabilities at k, given the evidence c1:kn .

counting, i.e., get Ck ≜ {ck1 , ..., ckN}, where ckn is the in-
lier/outlier classification of xn at iteration k. The output is
the best-scored model and best inlier/outlier classification
set, here denoted as {θ∗, C∗}.

4 BANSAC Method
This paper focuses on deriving an efficient sampling of

data points, i.e., getting Sk. We note that getting θk from
Sk is problem-dependent; BANSAC is independent of the
problem. We take two simple assumptions:

1. We assume that sampling data points with higher inlier
scores gives a better model hypothesis; and

2. As we iterate through RANSAC, we get a better sense
of whether xn is an inlier or outlier.

An intuitive way of deriving a sampling technique with
the above assumptions is to have changeable inlier/outlier
scores of data points per iteration. Our method updates the
scores based on inlier/outlier classifications from previous
iterations. For modeling changeable scores over iterations,
we define unknown variables, namely xkn representing the
best guess for inlier/outlier classification for a data point xn
at iteration k. For modeling the scores for each data point
at each iteration, we use probabilities, i.e., P (xkn), where
xkn can take the values of inlier and outlier. Unfortunately,
we do not have a direct way of measuring P (xkn = inlier).
Instead, in this paper, we use inliers/outliers classifications
obtained from previous iterations as evidence, i.e., for sam-
pling we use P (xkn = inlier | C1:k

n), where Ckn ≜ ckn =
inlier/outlier. Table 1 lists some important notations we use
in our derivations.

In the following subsection, we give a method overview.

4.1 Algorithm outline

Algorithm 1 outlines the proposed method. The
RANSAC-based loop starts with an optionally given P0,
which can be obtained from matching scores (or other ini-
tial guesses), or set to a predefined value (i.e., not using
previously pre-computed scores). At each iteration k, we
generate a minimal set Sk ∈ Q via weighted sampling,

3

Algorithm 1: BANSAC algorithm outline
Input – DataQ, and (optional) pre-computed scores P0

Output – Best model θ∗, and C∗

1 k ← 1;
2 while k < K do
3 Sk ← weighted sampling

(
Q,Pk−1

)
; ▷ Sec. 4.3

4 θk ← hypothesis
(
Sk

)
;

5 Ck ← model evaluation
(
Q, θk

)
;

6 θ∗, C∗ ← best model
(
Ck, θk

)
;

7 Pk ← update probabilities
(
Ck,X 0:k−1

)
; ▷ Sec. 4.2

8 if stopping criteria
(
Pk

)
break; ▷ Sec. 4.4

9 k ← k + 1;

using Pk−1 as weights (see notations in Tab. 1), which is
shown in Line 3. Next, we compute the hypothesis model
θk, run inlier counting, and update the best model if needed,
as described in Lines 4 to 6. Line 7 updates the probabili-
ties for the next iteration, i.e., computes Pk. In addition to
the new sampling and updating the probabilities, using Pk,
we derive a new stopping criterion for our RANSAC-based
loop, which we use at Line 8.

Section 4.2 derives the probabilistic model, Sec. 4.3 de-
scribes the weighted sampling strategy, and Sec. 4.4 intro-
duces the new stopping criterion.

4.2 Probabilistic model and inference

We describe our method by modeling data points’ in-
lier/outlier probability.

Probabilistic model: Since we want the data point prob-
abilities to change over iterations, we use a dynamic
Bayesian network (DBN) as our probabilistic model. A
DBN is a probabilistic graphical model that uses variables
(nodes representing states and observations) and their con-
ditional dependencies (edges) in a directed acyclic graph
(see [41]). Starting with the variables, at each iteration k,
we have the data points state and the inlier/outlier classifi-
cations (evidence) obtained so far (i.e., from 1 to k). So, for
iteration k, we have nodes X and C (see notations in Tab. 1).

For the graph edges, we have the following constraints:

1. We want our sampling to be general. Then, for a cer-
tain iteration k, we assume that the inlier/outlier prob-
abilities of different data points and the classifications
are independent of each other. At each iteration k, the
probability of xkn is updated based on the xn’s previ-
ous probabilities and the previous inlier/outlier classi-
fications (our evidence needs to constrain only the next
probability estimate);

2. The inlier/outlier evidence at each iteration, ckn, de-
pends only on the model θk, which depends on Sk and,
by consequence, on xk−1n .

x0n x1n

c1n

x2n

c2n

· · ·

· · ·

xkn

ckn

k RANSAC iterations

Sampling + Hypothesis + Inlier Counting

Figure 2. Dynamic Bayesian network proposed to model the data
inlier/outlier probabilities for data point xn.

Formally, for iteration k, we have the following constraints:

xkn ⊥ X \ Xn, C \ ckn | Xn, ckn (1)

ckn ⊥ X \ xk−1n , C | xk−1n . (2)

The first important consequence of these conditionally in-
dependent constraints is that we have an independent DBN
for each data point, xn, each with its own weights. Then,
for iteration k, we define the DBN per data point as shown
in Fig. 2.

Markov assumptions: The DBN derived above has the un-
bounded problem of increasing exponentially with the num-
ber of iterations1. To solve this problem, we follow the
typically used Markov assumptions. For simplicity, here
we derive the first-order Markov assumption for our prob-
lem. The second and third-order assumptions are tested in
Sec. 5.1, and the derivations are provided in the supplemen-
tary materials; they are similar but slightly more intricated.
In addition to the conditionally independent constraints de-
rived above, we have

xjn ⊥ x0:j−2n | xj−1n , cjn, ∀j, (3)

which means

P (xjn | x0:j−1n , cjn) = P (xjn | xj−1n , cjn), ∀j. (4)

Now, by applying the chain rule of probabilities, we
write the joint probability at iteration k as

P (x0:kn , c1:kn) = P (x0n)

k∏
j=1

ϕj(x
0:k
n , c1:kn), (5)

where

ϕj(x
0:k
n , c1:kn) = P (xjn | xj−1n , cjn)P (c

j
n | xj−1n). (6)

1Would need huge conditional probability tables (CPT) and the in-
crease in computational cost.

4

Exact inference: In our sampling strategy, we use P (xkn =
inlier | C1:k

n), for all n. This means that we are doing in-
ference of xkn = inlier, with evidences Cn, and hidden vari-
ables Xn\xkn. Given Eq. 6, after some derivations, the exact
inference is given by (see [41, Sec.14.4]):

P (xkn = inlier | C1:k
n) = αΦ(xkn = inlier, x0:k−1n , C1:k

n),
(7)

where α is a normalization factor2, and

Φ(xkn, x
0:k−1
n , C1:k

n) =∑
xk−1
n

ϕk(x
0:k
n , c1:kn)

∑
xk−2
n

ϕk−1(x
0:k
n , c1:kn)

· · ·
∑
x1
n

ϕ2(x
0:k
n , c1:kn)

∑
x0
n

ϕ1(x
0:k
n , c1:kn). (8)

Notice xkn can take two values; it can be either inlier or out-
lier. This means that Φ(.) is a 2-dimension tuple; in Eq. 7
we pick the case xkn = inlier. In addition, the summations
for xjn have two terms for all j.

A convenient result of Eq. 8 is that Φ(.) can be computed
recursively as follows:

Φ(xkn, x
0:k−1
n , C1:k

n) =∑
xk−1
n

ϕk(x
0:k
n , c1:kn)Φ(xk−1n , x0:k−2n , C1:k−1

n) (9)

for k ≥ 1, and Φ(x0n,−,−) = P (x0n). This means that at
each iteration k, we can use the Φ(.) computed from the pre-
vious iteration, with no additional computational cost when
increasing the number of iterations. The pseudo-code for
the probability update is in the supplementary materials.

We tried several alternatives for the Conditional Prob-
ability Tables (CPT) in Eq. 6. In our experiments, for
P (ckn | xk−1n), we use a Leaky ReLU, weighted using the
inlier counting. For the CPT of P (xkn | xk−1n , ckn), we get
the probabilities empirically. Due to space limitations, we
present more details about the CPTs in the supplementary
material, including some experiments.

4.3 Weighted sampling

Weighted sampling aims at getting the minimal set Sk ⊂
Q for computing hypothesis θk. To increase the chances
of only selecting inliers, we take the estimated probabili-
ties Pk−1 and create a weighted discrete distribution. Data
points with a higher probability of being an inlier will have
a higher chance of being sampled.

In addition to directly using Pk−1 for weighting the dis-
crete distribution, we tested using various activation func-
tions such as leaky ReLU, sigmoid, and tanh functions. In

2From complementary rule, α is such that
P (xk

n = inlier, x0:k−1
n , C1:k

n) + P (xk
n = outlier, x0:k−1

n , C1:k
n) = 1

the experiments, we directly use Pk−1. Due to space con-
straints, we show results with other activation functions in
the supplementary materials.

4.4 Stopping criterion

Besides using the probabilities Pk in sampling, we also
exploit them in defining a stopping criterion. We know that
Pk will influence the sampling, meaning that, after reach-
ing a low probability threshold (which we denoted as τ),
we can say that a data point will not be considered for sam-
pling. Based on this idea, we derive a new, simple stopping
criterion. At each iteration k, we add the following steps to
Algorithm 1:

1. In Line 6, we keep the smallest number of outliers (best
case scenario so far), denoted as O∗; and

2. After updating the probabilities in Line 7, we compute
the number of data points with P (xkn = inlier | C1:k

n)
lower than a predefined threshold τ , which we denote
here as Õk.

Our stopping criterion is triggered when Õk >= O∗, which
we check at each iteration in Line 8. This means that the
current best model has a bigger or equal number of inliers
than the set of P (xkn = inlier | C1:k

n) being selected for
sampling; it can be assumed we have only inliers in the sam-
pling set. We exit the loop because there is a low chance of
getting a better solution.

Our stopping criterion can be used alone or added to
existing ones, such as the RANSAC [23], SPRT [31] or
PROSAC [16]. We do experiments on the combinations of
these criteria in the supplementary materials.

4.5 Degenerative configurations

Degenerate configurations in minimal solvers can lead to
poor RANSAC estimates. BANSAC is susceptible to such
settings as other RANSAC-based methods. In a worst-case
scenario, since the probability updates depend on the inlier
ratio, after sampling degenerate configurations, BANSAC
can create a bias towards degenerative sampling. However,
it may take several iterations of consecutive degenerate con-
figurations before that bias has some impact on the sam-
pling. Moreover, since each data point always has a chance
of being selected, even if it is minimal, BANSAC can re-
verse that bias as soon as new non-degenerative solutions
are obtained.

Although possible, we highlight that we did not expe-
rience any issues with degenerative configurations during
our experiments. In addition, we are using the OpenCV
USAC framework that has built-in methods to handle many
of those cases. When those degenerative configurations are
detected, the probabilities are not updated.

5

5 Experiments
We evaluate BANSAC in three computer vision prob-

lems: calibrated relative pose, uncalibrated relative pose,
and homography estimation. We start our experiments with
an ablation study to access the need for different Markov
assumption orders in Sec. 5.1. Next, we evaluate the effi-
ciency of our method concerning a varying number of fixed
iterations (no stopping criterion is used) and for a varying
inlier ratio, in Secs. 5.2 and 5.3, respectively. Section 5.4
offers results for 1) calibrated relative pose, 2) uncalibrated
relative pose, 3) homography estimation, and 4) same as 1),
2) and 3) with the addition of local-optimization.

Evaluation metrics: We use the mean Average Accuracy
(mAA) with thresholds at 5 and 10 degrees for the cali-
brated and uncalibrated relative pose problems, and at 5 and
10 pixels for homography estimation. We borrow the eval-
uation scripts for rotation, translation, and homography er-
ror metrics from the “RANSAC in 2020” tutorial package3.
Additionally, we show the average execution time.

Methods: We utilize two variations of our method: with
and without pre-computed scores. Without pre-computed
scores, we refer to our method as BANSAC, and we use a
combination of BANSAC (Sec. 4.4) and SPRT [31] stop-
ping criteria. When using pre-computed scores, we refer to
our method as P-BANSAC, and we use a combination of
BANSAC and PROSAC’s stopping criteria [16]. The stop-
ping criteria for BANSAC and P-BANSAC are chosen for
better accuracy (keeping a reasonable speed) and computa-
tional efficiency, respectively. In addition, BANSAC and P-
BANSAC have some parameters that need to be set, namely
the CPT values, which we kept fixed for all experiments.

As baselines, we use RANSAC [23] and NAPSAC [48]
when not using pre-computed scores, and P-NAPSAC [4]
and PROSAC [16] otherwise. Only the sampling and the
stopping criterion vary between all methods. All the re-
maining RANSAC components are the same.

For all methods, at the end of the RANSAC cycle, the
inliers of the best model are used to refine the final solution
using a non-minimal solver, following a typical robust es-
timation pipeline. By default, no local optimization is run
inside the RANSAC loop, unless we explicitly say so.

Experiments evaluating BANSAC using different stop-
ping criteria and CPT parameters are present in the sup-
plementary materials. BaySAC [8] is not shown in the pa-
per since its results do not differ much from RANSAC. In
the supplementary materials, we evaluate BANSAC against
RANSAC and BaySAC using synthetic data.

Settings: For the calibrated relative pose problem, we use
an error threshold of 1e−3 (normalized points), 1000 max-
imum iterations, and a confidence of 0.999. For the uncal-

3github.com/ducha-aiki/ransac-tutorial-2020-data [August 18, 2023]

Table 2. Ablation study on the Markov assumption. We run
BANSAC using the 1st, 2nd, and 3rd Markov assumption orders
on a calibrated relative pose problem.

Metrics Markov assumptions

1st Order 2nd Order 3rd Order

Rotation mAA (5◦) ↑ 0.836 0.822 0.808
Rotation mAA (10◦) ↑ 0.864 0.853 0.843
Translation mAA (5◦) ↑ 0.775 0.755 0.739
Translation mAA (10◦) ↑ 0.825 0.811 0.798
Avg. execution time [ms] ↓ 13.9 12.2 11.8

ibrated relative pose problem, we use an error threshold of
0.5 pixel, 10000 maximum iterations, and a confidence of
0.999. For the homography estimation problem, we use an
error threshold value of 1 pixel, 1000 maximum iterations,
and a confidence of 0.999. In all these problems, we set our
proposed stopping criteria threshold τ to 0.01 in BANSAC
and 0.1 in P-BANSAC (see Sec. 4.4).

Datasets: For the relative pose problems (essential and fun-
damental matrices estimation), we use the dataset “CVPR
IMW 2020 PhotoTourism challenge”4, which has 12 scenes
with around 100K pairs and 2 sequences with around 5K
pairs (inlier rates vary between 30 and 60%, approxi-
mately). For the homography estimation problem, we use
the EVD5 and HPatches [2], with 7 and 145 pairs of images,
respectively (we used the validation set since the test set
does not provide ground-truth). Matches and pre-computed
weights were obtained with RootSIFT features and nearest-
neighbor matching. Dataloaders were borrowed from the
“RANSAC in 2020” tutorial webpage.

For both relative pose problems, results were obtained
by taking, for each scene, the first 4K pairs and repeating
each trial 5 times to ensure we have replicable accuracy and
computational time readings for different runs. In the ho-
mography matrix results, we use all the available pairs and
repeat each trial 10 times. For the experiments with differ-
ent Markov order assumptions, varying number of fixed it-
erations, and varying inlier ratio, we use the sacre coeur
sequence entirely (around 5K pairs). We also use this se-
quence to tune our BANSAC parameters (stopping criterion
and probability update model).

5.1 Different Markov assumption orders

We start the experiments by running an ablation study
on the Markov assumption described in Sec. 4.2. We use
the 1st, 2nd, and 3rd Markov assumption orders (the 2nd
and 3rd are derived in the supplementary materials) and run
BANSAC for a calibrated relative pose problem. Results

4https://www.cs.ubc.ca/research/image-matching-challenge/current/
[August 18, 2023]

5http://cmp.felk.cvut.cz/wbs/ [August 18, 2023]

6

https://github.com/ducha-aiki/ransac-tutorial-2020-data
https://www.cs.ubc.ca/research/image-matching-challenge/current/
http://cmp.felk.cvut.cz/wbs/

Figure 3. Results for a fixed number of iterations, i.e., without
stopping criterion. We vary the number of iterations between 1000
and 10000.

are shown in Tab. 2.
We observe that there are minor differences between the

different Markov assumption orders. Rotation and transla-
tion errors are lower on the 1st-order assumption, and exe-
cution time is lower on the 3rd-order assumption. This oc-
curs because probabilities converge more rapidly for higher
orders, activating the stopping criterion faster. Prioritizing
accuracy, in the following experiments, both BANSAC and
P-BANSAC use the 1st-order Markov assumption in the
probability modeling.

5.2 Varying number of fixed iterations

In this experiment, we aim to evaluate the efficiency of
the sampling process. We run experiments fixing the num-
ber of iterations for all the methods; no early stopping cri-
terion is used. We vary the number of iterations between
1000 and 10000 on an uncalibrated relative pose problem
and measure the rotation error, translation error, and execu-
tion time. The results obtained are shown in Fig. 3.

As expected, overall, we verify that with an increasing
number of iterations, the error decreases for all the meth-
ods. We observe that BANSAC and P-BANSAC have the
lowest rotation and translation errors. Concerning execution
time, although both our methods require additional steps to
update the probabilities every iteration, we notice that the
results are marginally the same.

5.3 Varying inlier ratio

The inlier ratio has a strong impact on RANSAC-based
methods performance. To evaluate how each method per-
forms for different inlier ratios, we vary the confidence
threshold for filtering matches from 0.82 to 0.92, which
gives us inlier rates ranging between around 60% to 30%,
respectively. Results for rotation and translation errors and
execution time for an uncalibrated relative pose problem are
shown in Fig. 4.

In contrast to the baselines, we observe that the decrease
in the inlier ratio (by filtering fewer matches) increases the
accuracy for BANSAC and P-BANSAC. Concerning exe-

Figure 4. Results varying the quality of the input data. As the
matching score increases from 0.82 to 0.92, the inlier ratio de-
creases from 60% to 30%.

cution time, it increases in all methods similarly, except in
PROSAC where it grows less.

5.4 Results

Next, we present results for three computer vision prob-
lems with and without a local-optimization step.

Calibrated relative pose: Results for the calibrated relative
pose (essential matrix estimation) are shown in Tab. 3. They
show that BANSAC is the most accurate method, followed
by P-BANSAC across all the scenes. In execution time,
P-BANSAC is the fastest method, followed by BANSAC,
indicating that the pre-computed scores help BANSAC on
exiting the RANSAC loop earlier.

Uncalibrated relative pose: Results for the uncalibrated
relative pose (fundamental matrix estimation) are shown in
Tab. 3. Similarly to the previous results, we observe that
BANSAC is consistently the most accurate method, and P-
BANSAC is the second most accurate in most scenes. In
runtime, P-BANSAC is the fastest and BANSAC the second
fastest. Figure 5 shows the probabilities values after 10,
100, 1000, and 10000 iterations in an image pair from the
sacre coeur sequence, using BANSAC.

Homography estimation: Results for homography estima-
tion are shown in Tab. 3. In this experiment, P-BANSAC
is the best in accuracy, with BANSAC being second best.
In runtime, RANSAC is the fastest. We note that BANSAC
requires an additional loop over all data points per iteration
for updating scores (see the discussion in Sec. 6) when com-
pared with RANSAC. This extra computational effort is vis-
ible when BANSAC does not exit the loop sufficiently ear-
lier than the baselines, as shown in Fig. 3. Figure 1 shows
the initial probabilities of some randomly chosen matches
(all started at 0.5) and the updated probabilities after 10,
100, and 1000 iterations in an image pair from the HPatches
dataset using BANSAC, demonstrating the probability up-
dates over iterations. The ground truth and the estimated
homography are marked in green and red, respectively.

7

Table 3. Experimental results for the calibrated relative pose, uncalibrated relative pose, and homography estimation. We compare
BANSAC and P-BANSAC with RANSAC [23], NAPSAC [48], P-NAPSAC [4], and PROSAC [16]. We show results with and without the
local-optimization step of LO-RANSAC [18].

Without Local Optimization With Local Optimization

RANSAC NAPSAC P-NAPSAC PROSAC BANSAC P-BANSAC RANSAC NAPSAC P-NAPSAC PROSAC BANSAC P-BANSAC

Calibrated Relative Pose Estimation (essential matrix estimation)
Rotation mAA (5◦) ↑ 0.568 0.158 0.551 0.569 0.610 0.603 0.569 0.216 0.557 0.570 0.611 0.604
Rotation mAA (10◦) ↑ 0.645 0.226 0.641 0.653 0.680 0.675 0.645 0.292 0.645 0.655 0.680 0.675
Translation mAA (5◦) ↑ 0.422 0.0810 0.402 0.417 0.460 0.454 0.423 0.114 0.409 0.419 0.461 0.454
Translation mAA (10◦) ↑ 0.532 0.137 0.514 0.527 0.566 0.559 0.532 0.176 0.520 0.528 0.566 0.560
Avg. execution time [ms] ↓ 25.5 40.1 20.9 21.5 15.6 15.2 27.6 42.9 26.6 22.6 18.0 17.4

Uncalibrated Relative Pose Estimation (fundamental matrix estimation)
Rotation mAA (5◦) ↑ 0.467 0.206 0.460 0.464 0.500 0.478 0.514 0.499 0.517 0.511 0.526 0.501
Rotation mAA (10◦) ↑ 0.559 0.308 0.557 0.560 0.589 0.571 0.595 0.572 0.600 0.595 0.610 0.589
Translation mAA (5◦) ↑ 0.267 0.0780 0.260 0.264 0.292 0.274 0.308 0.300 0.309 0.307 0.317 0.294
Translation mAA (10◦) ↑ 0.353 0.129 0.345 0.349 0.380 0.360 0.394 0.381 0.396 0.392 0.405 0.381
Avg. execution time [ms] ↓ 14.4 26.3 12.2 12.5 9.80 7.88 15.4 18.4 13.6 13.5 11.4 8.87

Homography Estimation
Homography mAA (5 px) ↑ 0.422 0.152 0.158 0.210 0.443 0.446 0.513 0.498 0.488 0.333 0.542 0.517
Homography mAA (10 px) ↑ 0.552 0.208 0.235 0.291 0.569 0.573 0.647 0.617 0.617 0.426 0.672 0.650
Avg. execution time [ms] ↓ 2.30 2.78 2.96 3.09 4.04 3.07 3.24 5.94 6.43 2.89 4.09 4.33

Metrics

10th iteration 100th iteration

1000th iteration 10000th iteration

Figure 5. Data inlier probabilities over iterations for a funda-
mental matrix estimation problem using BANSAC (color code at
the right). Image pair is from the PhotoTourism sacre coeur
scene. For visualization purposes, we show only 250 randomly
chosen matches.

Local optimization: We add the local-optimization (LO)
step in [18] to all methods and repeat the previous experi-
ments. Results are present in Tab. 3. We observe that LO
improves the accuracy for every method, with an increase
in execution time. We also note that the improvement in
accuracy is significant for some of the baselines, e.g., NAP-
SAC and P-NAPSAC. Overall, BANSAC and P-BANSAC
continue to outperform the baselines by some margin.

6 Conclusion

This paper proposes BANSAC, a new sampling strat-
egy for RANSAC using dynamic Bayesian networks. The
method performs weighted sampling using probabilities for
scoring data points. These probabilities are adaptively up-
dated every iteration based on the successive inlier/outlier
classifications. Additionally, we propose a stopping crite-
rion using the estimated probabilities.

We present results on challenging real-world datasets
showing that the proposed algorithm can learn the data in-
lier probability and that these probabilities can guide the
sampling efficiently; the updates to RANSAC bring im-
provements in accuracy and execution time.

We note that BANSAC updates the scoring weights de-
pending on the quality of the hypothesis, which is obtained
from inlier counting. This means that we need an extra loop
cycle every iteration for updating the scores. Although we
do not observe a significant increase in computational cost
compared to the best baselines, there is room for improve-
ment. In future work, we plan to include a more efficient
hypothesis prediction for incorporating the probability up-
date in the inlier counting loop.

Acknowledgments

Valter Piedade was supported by the National
Centre for Research and Development under the
Smart Growth Operational Programme as part of
project POIR.01.01.01-00-0102/20 and by the
LARSyS−FCT Project UIDB/50009/2020. We thank
all the reviewers and ACs for their valuable feedback.

8

References
[1] Opencv: Open source computer vision library. https://

github.com/opencv/opencv. 2
[2] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-

tian Mikolajczyk. Hpatches: A benchmark and evaluation
of handcrafted and learned local descriptors. In IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR),
2017. 1, 6

[3] Daniel Barath, Luca Cavalli, and Marc Pollefeys. Learning
to find good models in ransac. In IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition (CVPR), pages 15744–
15753, 2022. 3

[4] Daniel Barath, Maksym Ivashechkin, and Jiri Matas. Pro-
gressive napsac: sampling from gradually growing neighbor-
hoods. arXiv preprint arXiv:1906.02295, 2019. 1, 2, 6, 8

[5] Daniel Barath and Jiri Matas. Graph-cut ransac. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 6733–6741, 2018. 3

[6] Daniel Barath, Jiri Matas, and Jana Noskova. Magsac:
marginalizing sample consensus. In IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition (CVPR), pages 10197–
10205, 2019. 3

[7] Daniel Barath, Jana Noskova, Maksym Ivashechkin, and Jiri
Matas. Magsac++, a fast, reliable and accurate robust es-
timator. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), pages 1304–1312, 2020. 3

[8] Tom Botterill, Steven Mills, and Richard D Green. New con-
ditional sampling strategies for speeded-up ransac. In British
Machine Vision Conference (BMVC), pages 1–11, 2009. 2, 6

[9] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten
Rother. Dsac-differentiable ransac for camera localization.
In IEEE/CVF Conf. Computer Vision and Pattern Recogni-
tion (CVPR), pages 6684–6692, 2017. 2

[10] Eric Brachmann and Carsten Rother. Learning less is more-
6d camera localization via 3d surface regression. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 4654–4662, 2018. 1

[11] Eric Brachmann and Carsten Rother. Neural-guided ransac:
Learning where to sample model hypotheses. In IEEE/CVF
Int’l Conf. Computer Vision (ICCV), pages 4322–4331,
2019. 1, 2

[12] Dingding Cai, Janne Heikkila, and Esa Rahtu. Ove6d: Ob-
ject viewpoint encoding for depth-based 6d object pose es-
timation. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), pages 6803–6813, 2022. 1

[13] David P Capel. An effective bail-out test for ransac consen-
sus scoring. In British Machine Vision Conference (BMVC),
volume 1, page 2, 2005. 3

[14] Luca Cavalli, Viktor Larsson, Martin Ralf Oswald, Torsten
Sattler, and Marc Pollefeys. Handcrafted outlier detection re-
visited. In European Conf. Computer Vision (ECCV), pages
770–787, 2020. 2

[15] Luca Cavalli, Marc Pollefeys, and Daniel Barath. Nefsac:
neurally filtered minimal samples. In European Conf. Com-
puter Vision (ECCV), pages 351–366, 2022. 2

[16] Ondrej Chum and Jiri Matas. Matching with prosac-
progressive sample consensus. In IEEE Conf. Computer Vi-
sion and Pattern Recognition (CVPR), volume 1, pages 220–
226, 2005. 1, 2, 3, 5, 6, 8

[17] Ondrej Chum and Jiri Matas. Optimal randomized ransac.
IEEE Trans. Pattern Analysis and Machine Intelligence (T-
PAMI), 30(8):1472–1482, 2008. 3

[18] Ondrej Chum, Jiri Matas, and Josef Kittler. Locally op-
timized ransac. In Joint Pattern Recognition Symposium,
pages 236–243, 2003. 3, 8

[19] Ondrej Chum, Tomas Werner, and Jiri Matas. Epipolar
geometry estimation via ransac benefits from the oriented
epipolar constraint. In IEEE Int’l Conf. Pattern Recognition
(ICPR), volume 1, pages 112–115, 2004. 3

[20] Ondrej Chum, Tomas Werner, and Jiri Matas. Two-view ge-
ometry estimation unaffected by a dominant plane. In IEEE
Conf. Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 772–779, 2005. 3

[21] Hongyi Fan, Joe Kileel, and Benjamin Kimia. On the in-
stability of relative pose estimation and ransac’s role. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), pages 8935–8943, 2022. 3

[22] Maxime Ferrera, Alexandre Eudes, Julien Moras, Martial
Sanfourche, and Guy Le Besnerais. Ov2slam: A fully online
and versatile visual slam for real-time applications. IEEE
Robotis and Automation Letters (RA-L), 6(2):1399–1406,
2021. 1

[23] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 1, 2, 3, 5, 6, 8

[24] Victor Fragoso, Pradeep Sen, Sergio Rodriguez, and
Matthew Turk. Evsac: accelerating hypotheses generation
by modeling matching scores with extreme value theory. In
IEEE Int’l Conf. Computer Vision (ICCV), pages 2472–2479,
2013. 2

[25] Maksym Ivashechkin, Daniel Barath, and Jiřı́ Matas. Vsac:
Efficient and accurate estimator for h and f. In IEEE/CVF
Int’l Conf. Computer Vision (ICCV), pages 15243–15252,
2021. 3

[26] Michal Jancosek and Tomas Pajdla. Multi-view reconstruc-
tion preserving weakly-supported surfaces. In IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pages
3121–3128, 2011. 1

[27] Geun Jo, Kee-Sung Lee, Devy Chandra, Chol-Hee Jang, and
Myung-Hyun Ga. Ransac versus cs-ransac. In AAAI Confer-
ence on Artificial Intelligence, volume 29, 2015. 2

[28] Viktor Larsson, Zuzana Kukelova, and Yinqiang Zheng.
Making minimal solvers for absolute pose estimation com-
pact and robust. In IEEE Int’l Conf. Computer Vision
(ICCV), pages 2316–2324, 2017. 1

[29] Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Larsson,
and Marc Pollefeys. Pixel-perfect structure-from-motion
with featuremetric refinement. In IEEE/CVF Int’l Conf.
Computer Vision (ICCV), pages 5987–5997, 2021. 1

[30] Jiri Matas and Ondrej Chum. Randomized ransac with td, d
test. Image and Vision Computing (IVC), 22(10):837–842,
2004. 3

9

https://github.com/opencv/opencv
https://github.com/opencv/opencv

[31] Jiri Matas and Ondrej Chum. Randomized ransac with se-
quential probability ratio test. In IEEE Int’l Conf. Computer
Vision (ICCV), volume 2, pages 1727–1732, 2005. 3, 5, 6

[32] Andre Mateus, Srikumar Ramalingam, and Pedro Miraldo.
Minimal solvers for 3d scan alignment with pairs of inter-
secting lines. In IEEE/CVF Conf. Computer Vision and Pat-
tern Recognition (CVPR), pages 7234–7244, 2020. 1

[33] Paul McIlroy, Edward Rosten, Simon Taylor, and Tom
Drummond. Deterministic sample consensus with multiple
match hypotheses. In British Machine Vision Conference
(BMVC), pages 1–11, 2010. 2

[34] Antoine Meler, Marion Decrouez, and James L Crowley. Be-
tasac: A new conditional sampling for ransac. In British Ma-
chine Vision Conference (BMVC), 2010. 2

[35] Pedro Miraldo, Tiago Dias, and Srikumar Ramalingam. A
minimal closed-form solution for multi-perspective pose es-
timation using points and lines. In European Conf. Computer
Vision (ECCV), pages 474–490, 2018. 1

[36] Raul Mur-Artal and Juan D. Tardos. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. IEEE Trans. Robotics (T-RO), 33(5):1255–1262, 2017.
1

[37] Kai Ni, Hailin Jin, and Frank Dellaert. Groupsac: Efficient
consensus in the presence of groupings. In IEEE Int’l Conf.
Computer Vision (ICCV), pages 2193–2200, 2009. 1, 2

[38] David Nister. Preemptive ransac for live structure and motion
estimation. Machine Vision and Applications, 16(5):321–
329, 2005. 3

[39] Linfei Pan, Marc Pollefeys, and Viktor Larsson. Cam-
era pose estimation using implicit distortion models. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), pages 12819–12828, 2022. 1

[40] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas,
and Jan-Michael Frahm. Usac: A universal framework for
random sample consensus. IEEE Trans. Pattern Analysis and
Machine Intelligence (T-PAMI), 35(8):2022–2038, 2012. 2

[41] Stuart J. Russell and Peter Norvig. Artificial Intelligence: a
modern approach. Pearson, 3 edition, 2009. 4, 5

[42] Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson,
Hugo Germain, Carl Toft, Viktor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, et al.
Back to the feature: Learning robust camera localization
from pixels to pose. In IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), pages 3247–3257, 2021. 1

[43] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-
based localization using direct 2d-to-3d matching. In IEEE
Int’l Conf. Computer Vision (ICCV), pages 667–674, 2011.
1

[44] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), pages 4104–4113, 2016. 1

[45] Johannes L Schonberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for un-
structured multi-view stereo. In European Conf. Computer
Vision (ECCV), pages 501–518, 2016. 1

[46] Charles V. Stewart. Minpran: A new robust estimator for
computer vision. IEEE Trans. Pattern Analysis and Machine
Intelligence (T-PAMI), 17(10):925–938, 1995. 2

[47] Ben J Tordoff and David William Murray. Guided-mlesac:
Faster image transform estimation by using matching priors.
IEEE Trans. Pattern Analysis and Machine Intelligence (T-
PAMI), 27(10):1523–1535, 2005. 1, 2

[48] Philip Hilaire Torr, Slawomir J Nasuto, and John Mark
Bishop. Napsac: High noise, high dimensional robust
estimation-it’s in the bag. In British Machine Vision Con-
ference (BMVC), volume 2, page 3, 2002. 1, 2, 6, 8

[49] Philip HS Torr and Andrew Zisserman. Mlesac: A new ro-
bust estimator with application to estimating image geom-
etry. Computer Vision and Image Understanding (CVIU),
78(1):138–156, 2000. 2

[50] Alexander Vakhitov, Jan Funke, and Francesc Moreno-
Noguer. Accurate and linear time pose estimation from
points and lines. In European Conf. Computer Vision
(ECCV), pages 583–599, 2016. 1

[51] Brian Williams, Georg Klein, and Ian Reid. Automatic re-
localization and loop closing for real-time monocular slam.
IEEE Trans. Pattern Analysis and Machine Intelligence (T-
PAMI), 33(9):1699–1712, 2011. 1

10

BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus
(SUPPLEMENTARY MATERIALS)

Valter Piedade
Instituto Superior Técnico, Lisboa

valter.piedade@tecnico.ulisboa.pt

Pedro Miraldo
Mitsubishi Electric Research Labs

miraldo@merl.com

These supplementary materials present new quantitative ex-
periments (Appendix A) and some additional derivations
and pseudo-code (Appendix B).

Contents

A Additional Experiments 11
A.1 Calibrated relative pose 11
A.2 Uncalibrated relative pose 11
A.3 Synthetic data 12
A.4 Ablation studies 12

A.4.1 Conditional probability tables . . . 13
A.4.2 Weighted sampling 13
A.4.3 Stopping criteria 14

B Other Markov Assumptions 14
B.1 Second-order Markov assumption 14
B.2 Third-order Markov assumption 15
B.3 Probability Updates Pseudo-code 16

A Additional Experiments
This section provides additional experiments with real-

world and synthetic data. Appendices A.1 and A.2 show
results with each scene from the PhotoTourism dataset for
the essential and fundamental matrices estimation. Ap-
pendix A.3 offers results for curve and circle fitting prob-
lems using synthetic data. Appendix A.4 contains ablation
studies on the conditional probability tables (CPTs), sam-
pling weights, and stopping criteria.

For both of the relative pose problem experiments
(Appendices A.1 and A.2), we use the following scenes
from the PhotoTourism dataset, with a matching score
cutoff of 0.85: 0) brandenburg gate with 43% inliers;
1) palace of westminster with 32% inliers; 2)
westminster abbey with 49% inliers; 3) taj mahal
with 57% inliers; 4) prague old town square
with 32% inliers; and 5) st peters square with
46% inliers; 6) buckingham palace with 45%
inliers; 7) colosseum exterior with 36% in-
liers; 8) grand place brussels with 31% in-

liers; 9) notre dame front facade with 46%
inliers; 10) pantheon exterior with 62% in-
liers; 11) temple nara japan with 60% inliers;
12) trevi fountain with 33% inliers; and 13)
sacre coeur with 51% inliers. As in the main docu-
ment, we use 4K pairs for each scene and repeated each
trial 5 times.

All experiments presented in this document and on the
main paper were performed on an Intel(R) Core(TM) i7-
7820X CPU @ 3.60GHz processor.

A.1 Calibrated relative pose

This subsection presents additional results for the
calibrated relative pose estimation problem, compar-
ing BANSAC and P-BANSAC against the baselines
(RANSAC, NAPSAC, P-NAPSAC, and PROSAC). As es-
timation parameters, we use an error threshold of 1e−3
(normalized points), 1000 maximum iterations, and a con-
fidence of 0.999, and set the BANSAC stopping criteria
threshold τ to 0.01 in BANSAC and 0.1 in P-BANSAC
(same parameters as in the main paper’s results). Results
are shown in Tab. A.4.

We observe that, in accuracy, BANSAC and P-BANSAC
are the best methods overall. In execution time, P-BANSAC
is the best, with BANSAC second best in most scenes.

A.2 Uncalibrated relative pose

This subsection presents further results for the uncal-
ibrated relative pose estimation problem, using the same
baselines as in the previous subsection. As estimation pa-
rameters, we use an error threshold of 0.5, 10000 maximum
iterations, and a confidence threshold of 0.999, and set the
BANSAC stopping criteria threshold τ to 0.01 in BANSAC
and 0.1 in P-BANSAC (same parameters as in the main pa-
per’s results). Results are shown in Tab. A.4.

The results obtained are similar to those obtained in es-
timating the essential matrix. BANSAC is the best method
in accuracy, followed by P-BANSAC in most scenes. Both
are also the fastest methods overall.

11

mailto:valter.piedade@tecnico.ulisboa.pt
mailto:miraldo@merl.com

Table A.4. Experimental results for the calibrated and uncalibrated relative pose estimation problems for each scene in the PhotoTourism
dataset.

Calibrated Relative Pose Estimation (essential matrix estimation) Uncalibrated Relative Pose Estimation (fundamental matrix estimation)

RANSAC NAPSAC P-NAPSAC PROSAC BANSAC P-BANSAC RANSAC NAPSAC P-NAPSAC PROSAC BANSAC P-BANSAC

Rotation mAA (10◦) ↑

0 0.711 0.245 0.740 0.754 0.773 0.775 0.574 0.260 0.585 0.593 0.608 0.593
1 0.555 0.218 0.604 0.612 0.624 0.625 0.482 0.253 0.504 0.514 0.546 0.537
2 0.714 0.417 0.709 0.714 0.719 0.717 0.686 0.455 0.684 0.686 0.693 0.689
3 0.866 0.259 0.797 0.820 0.866 0.848 0.863 0.567 0.859 0.857 0.883 0.863
4 0.322 0.142 0.290 0.302 0.331 0.311 0.269 0.111 0.267 0.246 0.280 0.264
5 0.759 0.251 0.745 0.772 0.803 0.804 0.628 0.336 0.617 0.617 0.661 0.642
6 0.684 0.216 0.658 0.693 0.730 0.724 0.569 0.275 0.566 0.571 0.605 0.576
7 0.434 0.136 0.448 0.449 0.467 0.468 0.374 0.191 0.375 0.377 0.409 0.394
8 0.357 0.133 0.359 0.368 0.380 0.379 0.301 0.186 0.295 0.300 0.317 0.306
9 0.669 0.271 0.698 0.716 0.730 0.731 0.582 0.258 0.593 0.599 0.635 0.625
10 0.762 0.204 0.718 0.707 0.786 0.784 0.467 0.306 0.420 0.434 0.480 0.438
11 0.829 0.255 0.797 0.815 0.838 0.816 0.762 0.484 0.746 0.744 0.783 0.728
12 0.532 0.217 0.568 0.579 0.605 0.598 0.458 0.212 0.468 0.471 0.501 0.490
13 0.827 0.201 0.836 0.844 0.867 0.862 0.804 0.418 0.819 0.819 0.846 0.839

Translation mAA (10◦) ↑

0 0.581 0.150 0.599 0.613 0.643 0.647 0.363 0.0970 0.360 0.377 0.394 0.376
1 0.504 0.162 0.548 0.558 0.565 0.567 0.418 0.183 0.436 0.446 0.480 0.466
2 0.494 0.184 0.480 0.486 0.506 0.501 0.377 0.121 0.373 0.377 0.390 0.384
3 0.641 0.116 0.544 0.570 0.649 0.626 0.610 0.265 0.597 0.596 0.635 0.609
4 0.282 0.0970 0.244 0.253 0.292 0.267 0.176 0.0390 0.167 0.153 0.192 0.167
5 0.601 0.141 0.570 0.601 0.642 0.635 0.351 0.121 0.328 0.331 0.379 0.357
6 0.622 0.178 0.590 0.627 0.661 0.651 0.274 0.110 0.281 0.287 0.311 0.294
7 0.403 0.107 0.409 0.409 0.432 0.434 0.257 0.100 0.252 0.259 0.296 0.279
8 0.274 0.0850 0.267 0.277 0.297 0.296 0.140 0.0590 0.137 0.140 0.151 0.141
9 0.592 0.209 0.614 0.631 0.655 0.662 0.413 0.150 0.416 0.430 0.461 0.456
10 0.611 0.114 0.540 0.524 0.620 0.620 0.213 0.0770 0.169 0.180 0.214 0.185
11 0.617 0.0830 0.549 0.563 0.630 0.600 0.378 0.108 0.338 0.332 0.389 0.323
12 0.417 0.122 0.446 0.453 0.491 0.486 0.217 0.0460 0.215 0.215 0.247 0.235
13 0.798 0.173 0.792 0.800 0.837 0.832 0.757 0.329 0.761 0.759 0.792 0.777

Avg. execution time [ms] ↓

0 26.6 40.3 19.9 20.5 17.3 17.4 15.4 29.4 10.9 11.8 12.6 9.75
1 34.9 43.3 29.1 31.1 21.7 20.6 21.9 30.2 18.8 20.1 14.6 12.3
2 17.9 35.8 15.4 15.2 10.1 10.7 10.1 25.9 12.6 9.67 5.84 5.43
3 13.0 37.1 9.48 9.49 9.02 8.02 7.90 25.5 5.76 5.60 6.72 4.49
4 33.5 42.4 28.8 28.8 17.2 15.9 20.7 28.8 18.4 18.1 11.6 8.82
5 22.1 37.9 17.3 16.8 15.8 15.6 12.7 24.6 9.39 9.29 11.5 8.92
6 28.0 39.9 21.7 23.5 18.1 17.8 14.4 27.1 9.17 12.1 10.6 8.29
7 32.4 42.2 28.1 29.9 17.1 16.5 19.4 27.5 18.5 18.8 9.86 8.81
8 37.6 43.2 32.7 34.4 19.7 19.4 22.3 26.3 20.1 21.2 11.7 10.3
9 26.6 40.1 21.2 22.0 16.4 16.4 14.7 28.3 12.1 12.4 10.1 8.12
10 13.4 38.2 8.96 10.7 9.41 9.73 5.67 12.3 4.43 4.72 5.08 3.34
11 13.8 36.9 8.90 8.98 9.33 8.85 5.16 16.3 3.71 3.45 4.51 2.61
12 37.1 43.2 32.0 32.6 22.7 23.2 21.4 30.8 19.2 19.4 14.4 13.0
13 21.4 41.3 17.1 16.8 14.7 14.8 11.3 35.0 9.74 9.15 8.61 7.12

Seq.

A.3 Synthetic data

We consider two simple problems: curve and circle-
fitting. For each, we ran several experiments, varying the in-
lier rate between 15 and 50%. Each experiment has 300 data
points ranging between [−1, 1]. Inliers are disturbed by a
Gaussian noise of mean 0 and variance 0.02, and outliers are
modeled by a uniform distribution with a maximum abso-
lute value of 1.0. We evaluate BANSAC against RANSAC
and BaySAC, which we implemented from scratch since no
code is available. As estimation parameters, we use an er-
ror threshold value of 0.02, 3000 maximum iterations, and
an estimation confidence of 0.99. In BANSAC, the initial
probabilities P0 are set to 0.5 for all data points, and the
stopping criterion threshold τ is set to 0.01. We measure

the root mean squared error (RMSE) of the geometric dis-
tance of points in the estimated model to the desired model
and the number of iterations made. We present the mean
values obtained after 1000 randomly generated trials. The
results are shown in Fig. A.6.

We observe that BANSAC has an accuracy similar to or
better than the baselines requiring significantly fewer itera-
tions, even for lower inlier rates. Figure A.7 illustrates the
BANSAC probability update for the curve fitting problem.

A.4 Ablation studies

Next, we test different configurations for three compo-
nents of the proposed algorithm. We present experiments
using diverse conditional probability tables (CPTs) param-
eters, various activation functions for sampling, and com-

12

Figure A.6. Experimental results for the curve (left) and circle
(right) fitting. We compare RANSAC, BaySAC, and BANSAC based
on the number of iterations and RMS error for different inlier
rates.

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.7. Example of BANSAC inlier probability update over
iterations for a curve fitting problem (color code at the right). In
the first row, from left to right, we show iterations 0, 2, and 4.
Second row shows iteration 9, 11, and 14.

binations of different stopping criteria. The results were
obtained using PhotoTourism sequence sacre coeur (all
pairs) for the uncalibrated relative pose problem (funda-
mental matrix estimation), using an error threshold of 0.5,
10000 maximum iterations, and a confidence of 0.999, as in
the main paper. BANSAC stopping criterion threshold τ is
set to 0.01. We evaluate the mAA of the rotation and trans-
lation errors at 5 and 10 degrees and the average execution
time.

A.4.1 Conditional probability tables

To infer P (xkn = inlier | c1:kn) we need to define the CPTs
of P (ckn | xk−1n) and P (xk−1n | ckn, xk−1n) for the 1st order
Markov assumption. We present these CPTs in Tab. A.5.
The values for the CPT of P (xk−1n | ckn, xk−1n) were ob-
tained empirically after testing different variations. We
found that probability update is robust to slight variations
of the reported parameters. The parameters of the CPT of

Table A.5. Conditional probability table of P (cnk |xn
k−1) and

P (xn
k |cnk ,xn

k−1).

ckn xk−1n P (ckn | xk−1n)

Inlier Inlier γ(ϵk)
Inlier Outlier 1− γ(ϵk)

xkn xk−1n ckn P (xkn | ckn, xk−1n)

Inlier Inlier Inlier 1.0
Inlier Inlier Outlier 1.0
Inlier Outlier Inlier 0.2
Inlier Outlier Outlier 0.0

Table A.6. Evaluation of BANSAC using different activation func-
tions to define the parameters of the conditional probability table
of P (ckn | xk−1

n).

Metrics Activation functions

γ1(ψ) γ2(ψ) γ3(ψ)

Rotation mAA (5◦) ↑ 0.836 0.793 0.790
Rotation mAA (10◦) ↑ 0.864 0.827 0.827
Translation mAA (5◦) ↑ 0.775 0.738 0.732
Translation mAA (10◦) ↑ 0.825 0.795 0.791
Avg. execution time [ms] ↓ 13.9 17.4 17.5

P (ckn | xk−1n) are defined using a function γ(·). We want
this function to give a high probability to classifications
made by good models and vice versa. Since the quality of
a model is defined by its inlier ratio, we define this function
as γ(ϵk), where ϵk is the inlier ratio at iteration k. We test
the following functions γ(ϵk) (variations of these functions
with different values were tested, we are listing the ones that
produced the best results):

γ1(ϵ
k) =

{
0.62 · ϵk + 0.5, ϵk < 0.7143

0.2 · ϵk + 0.8, otherwise
, (10)

γ2(ϵ
k) =

0.5

0.5 + e−10·(ϵk−0.3)
, and (11)

γ3(ϵ
k) = tanh(3 · ϵk). (12)

We present results using these functions with BANSAC and
P-BANSAC in Tab. A.6.

We achieved the best results in accuracy and execution
time when using γ1(ψ). Based on these experiments, we
decided to use γ1(ψ) in P (ckn | xk−1n) in all the experiments.

In the experiment shown in the main paper where we use
the 2nd and 3rd orders of the Markov assumption, we use
the CPTs shown in Tabs. A.7 and A.8, respectively. Similar
to the CPT for the 1st order of the Markov assumption, the
outlined parameters were obtained empirically.

A.4.2 Weighted sampling

In each iteration k, we perform a sampling weighted by
the probabilities estimated in the previous iteration Pk−1.
Instead of simply using the probability values directly, we
test the use of activation functions to increase the range of
weights. The goal is to increase the chances of choosing

13

Table A.7. Conditional probability table of P (xk
n | ckn, xk−2:k−1

n).

xkn xk−1n xk−2n ckn P (xkn | ckn, xk−2:k−1n)

Inlier Inlier Inlier Inlier 1.0
Inlier Inlier Inlier Outlier 0.8
Inlier Inlier Outlier Inlier 0.9
Inlier Inlier Outlier Outlier 0.7
Inlier Outlier Inlier Inlier 0.2
Inlier Outlier Inlier Outlier 0.1
Inlier Outlier Outlier Inlier 0.1
Inlier Outlier Outlier Outlier 0.0

Table A.8. Conditional probability table of P (xk
n | ckn, xk−3:k−1

n).

xkn xk−1n xk−2n xk−3n ckn P (xkn | ckn, xk−3:k−1n)

Inlier Inlier Inlier Inlier Inlier 1.0
Inlier Inlier Inlier Inlier Outlier 0.8
Inlier Inlier Inlier Outlier Inlier 0.9
Inlier Inlier Inlier Outlier Outlier 0.7
Inlier Inlier Outlier Inlier Inlier 0.6
Inlier Inlier Outlier Inlier Outlier 0.5
Inlier Inlier Outlier Outlier Inlier 0.4
Inlier Inlier Outlier Outlier Outlier 0.2
Inlier Outlier Inlier Inlier Inlier 0.3
Inlier Outlier Inlier Inlier Outlier 0.2
Inlier Outlier Inlier Outlier Inlier 0.1
Inlier Outlier Inlier Outlier Outlier 0.3
Inlier Outlier Outlier Inlier Inlier 0.2
Inlier Outlier Outlier Inlier Outlier 0.1
Inlier Outlier Outlier Outlier Inlier 0.05
Inlier Outlier Outlier Outlier Outlier 0.0

points with higher inlier probabilities. We tested the fol-
lowing activation functions (different functions were tested,
and we are showing the ones that gave the best results):

ρ1(ψ) = ψ · 100 (13)

ρ2(ψ) =

{
100 · ψ ψ > 0.3

10 · ψ otherwise
, (14)

ρ3(ψ) =
100

1 + e−10·(ψ−0.5)
(15)

ρ4(ψ) = 130 · tanh(ψ) (16)

where ψ ≜ P (xkn = inlier | C1:k
n) is the estimated probabil-

ity for the nth data point at iteration k. In Tab. A.9, we show
results using these activations functions in BANSAC.

Of the tested functions, only ρ1(ψ) is linear. This func-
tion equally converts all points probabilities to the desired
sampling range. The remaining give greater weights to
points with higher probabilities and vice versa. Overall, we
observed that ρ1(ψ) was the one that gave better results in
accuracy and execution time. Based on these experiments,
we chose to use ρ1(ψ) in all other experiments.

Table A.9. Evaluation of BANSAC using different activation func-
tions to generate sampling weights.

Metrics Sampling activation functions

ρ1(ψ) ρ2(ψ) ρ3(ψ) ρ4(ψ)

Rotation mAA (5◦) ↑ 0.836 0.825 0.823 0.834
Rotation mAA (10◦) ↑ 0.864 0.853 0.851 0.861
Translation mAA (5◦) ↑ 0.775 0.760 0.758 0.776
Translation mAA (10◦) ↑ 0.825 0.813 0.811 0.826
Avg. execution time [ms] ↓ 13.9 13.5 13.6 14.2

Table A.10. Evaluation of BANSAC with different stopping crite-
ria.

Stopping Criteria Results

RANSAC SPRT PROSAC BANSAC
Rotation Translation Time

mAA(5◦) mAA(10◦) mAA(5◦) mAA(10◦) Avg. [ms]

✓ 0.845 0.868 0.792 0.837 16.2
✓ 0.837 0.864 0.775 0.825 13.9

✓ 0.839 0.865 0.782 0.829 15.1
✓ 0.850 0.870 0.818 0.854 33.5

✓ ✓ 0.845 0.867 0.793 0.837 16.1
✓ ✓ 0.836 0.864 0.775 0.825 13.9

✓ ✓ 0.838 0.864 0.782 0.829 14.4

A.4.3 Stopping criteria

Finally, we assess the different kinds and combinations of
stopping criteria we can use with our method: RANSAC,
SPRT, PROSAC, BANSAC, and BANSAC combined with
RANSAC, SPRT, or PROSAC. We show results using these
different combinations of stopping criteria in Tab. A.10.

We observe that, although BANSAC stopping criteria
ensure the output results are accurate, it is slow. However,
when we combine our stopping condition with others, we
consistently improve execution time with a slight drop in
accuracy.

B Other Markov Assumptions

In this section, we present new derivations on probability
updates. We show how to get exact inferences for second
and third-order Markov assumptions.

B.1 Second-order Markov assumption

For the second-order assumption, in addition to the con-
ditional independence constraints presented in the main pa-
per, we have

xjn ⊥ x0:j−3n | xj−1n , xj−2n , cjn ∀j, (17)

which means

P (xjn | x0:j−1n , cjn) = P (xjn | xj−2:j−1n , cjn), ∀j. (18)

Now, similar to what is done in the main document, by
applying the chain rule of probabilities, we write the joint

14

Algorithm 2: BANSAC algorithm outline. In the algorithm below, I means inlier and O outlier.
Input – Data Q, and without pre-computed scores
Output – Best model θ∗, and C∗

1 k ← 1;
2 Φ+

n ← 0.5, ∀n ; ▷ for xk
n = true (a pre-computed score can be used here)

3 Φ−
n ← 0.5, ∀n ; ▷ for xk

n = false (a pre-computed score can be used here)

4 Pn =
Φ+
n

Φ
+
n+Φ

−
n

; ▷ current weights used for sampling

5 while k < K do
6 ...
7 Other RANSAC steps as listed in the main paper;
8 ...
9 for all n do

10 if ckn = I then
11 Φ̂+

n ← P (xk
n = I, ckn = I, xk−1

n = I)P (ckn = I, xk−1
n = I)Φ+

n + P (xk
n = I, ckn = I, xk−1

n = O)P (ckn = I, xk−1
n = O)Φ−

n ;
12 Φ̂−

n ← P (xk
n = O, ckn = I, xk−1

n = I)P (ckn = I, xk−1
n = I)Φ+

n + P (xk
n = O, ckn = I, xk−1

n = O)P (ckn = I, xk−1
n = O)Φ−

n ;
13 else
14 Φ̂+

n ← P (xk
n = I, ckn = O, xk−1

n = I)P (ckn = O, xk−1
n = I)Φ+

n + P (xk
n = I, ckn = O, xk−1

n = O)P (ckn = O, xk−1
n = O)Φ−

n ;
15 Φ̂−

n ← P (xk
n = O, ckn = O, xk−1

n = I)P (ckn = O, xk−1
n = I)Φ+

n + P (xk
n = O, ckn = O, xk−1

n = O)P (ckn = O, xk−1
n = O)Φ−

n ;
16 Φ+

n ← Φ̂+
n ;

17 Φ−
n ← Φ̂−

n ;

18 Pn =
Φ+
n

Φ
+
n+Φ

−
n

;

19 ...
20 Other RANSAC steps as listed in the main paper;
21 ...

probability at iteration k as

P̃ (x0:kn , c1:kn) = P (x0n)

k∏
j=1

ϕ̃(xjn, c
j
n), (19)

where

ϕ̃(xj
n, c

j
n) =

{
P (xj

n | xj−2:j−1
n , cjn)P (cjn | xj−1

n), j ≥ 2

P (x1
n | x0

n, c
1
n)P (c1n | x0

n), j = 1
.

(20)
We use P̃ (.) to distinguish from the joint probability derived
in the main document. Following the same steps derived in
the main document, from Eqs. 19 and 20 the exact inference
is given by

P (xkn = inlier | C1:k
n) = αΦ̃(xkn = inlier, x0:k−1n , C1:k

n),
(21)

where again α is the normalization factor, and

Φ̃(xkn, x
0:k−1
n , C1:k

n) =
∑
xk−1
n

Φ̃†(xkn, x
0:k−1
n , C1:k

n) (22)

where

Φ̃†(xkn, x
0:k−1
n , C1:k

n) =∑
xk−2
n

ϕ̃(xkn, C
k
n)

∑
xk−3
n

ϕ̃(xk−1n , Ck−1n)

· · ·
∑
x1
n

ϕ̃(x3n, C
3
n)

∑
x0
n

ϕ̃(x2n, C
2
n)ϕ̃(x

1
n, C

1
n)P (x

0
n). (23)

As in the main document, a convenient result of Eq. 23 is
that Φ̃†(.) can be calculated recursively as follows:

Φ̃†(xkn, x
0:k−1
n , C1:k

n) ={∑
xk−2
n

ϕ̃(xkn, C
k
n)Φ̃

†(xk−1n , x0:k−2n , C1:k−1
n) k ≥ 2

ϕ̃(x1n, C
1
n)P (x

0
n) k = 1

.

(24)

For the second-order Markov assumption experiments,
the only difference compared to what is described for the
first-order is the use of the conditional probability in Eq. 21
as the sampling weights.

B.2 Third-order Markov assumption

For the third-order Markov assumption, we have the con-
ditional independence constraints

xjn ⊥ x0:j−4n | xj−1n , xj−2n , xj−3n , cjn ∀j, (25)

which means

P (xjn | x0:j−1n , cjn) = P (xjn | xj−3:j−1n , cjn), ∀j. (26)

Again, by applying the chain rule of probabilities, we write
the joint probability at iteration k as

˜̃
P (x0:kn , c1:kn) = P (x0n)

k∏
j=1

˜̃
ϕ(xjn, c

j
n), (27)

15

where

˜̃
ϕ(xj

n, c
j
n) =


P (xi

n | xj−3:j−1
n , cjn)P (cjn | xj−1

n), j ≥ 3

P (x2
n | x0:1

n , c2n)P (c2n | x1
n), j = 2

P (x1
n | x0

n, c
1
n)P (c1n | x0

n), j = 1

.

(28)
Following the same steps shown in the main document,
from Eqs. 27 and 28 the exact inference is given by

P (xkn = inlier | C1:k
n) = α

˜̃
Φ(xkn = inlier, x0:k−1n , C1:k

n),
(29)

where again α is the normalization factor, and

˜̃
Φ(xkn, x

0:k−1
n , C1:k

n) =
∑
xk−1
n

∑
xk−2
n

˜̃
Φ
†
(xkn, x

0:k−1
n , C1:k

n),

(30)

where

˜̃
Φ
†
(xkn, x

0:k−1
n , C1:k

n) =∑
xk−3
n

˜̃
ϕ(xkn, C

k
n)

∑
xk−4
n

˜̃
ϕ(xk−1n , Ck−1n) · · ·

∑
x1
n

˜̃
ϕ(x4n, C

4
n)

∑
x0
n

˜̃
ϕ(x3n, C

3
n)
˜̃
ϕ(x2n, C

2
n)
˜̃
ϕ(x1n, C

1
n)P (x

0
n).

(31)

Again, we can write Eq. 31 in a recursive way:

˜̃
Φ
†
(xkn, x

0:k−1
n , C1:k

n) =
∑
xk−3
n

˜̃
ϕ(xkn, C

k
n)

˜̃
Φ
†
(xk−1n , x0:k−2n , C1:k−1

n) k ≥ 3˜̃
ϕ(x2n, C

2
n)
˜̃
ϕ(x1n, C

1
n)P (x

0
n) k = 2˜̃

ϕ(x1n, C
1
n)P (x

0
n) k = 1

.

(32)

Note for k = 1, Eq. 31 does not sum in x−2n , since there is
no such variable.

Finally, the weights for the sampling are taken from the
inference in Eq. 29.

B.3 Probability Updates Pseudo-code

The probability updates derived in this code are easy to
implement. An algorithm with the pseudo-code for the first-
order Markov assumption is shown in Algorithm 2, in which
probabilities are taken from Tab. A.5. The second and third-
order constraints are derived similarly.

16

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-124.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

