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Eye-on-Hand (EoH) robotic manipulation systems to perform real-time active pose tracking
and dynamic grasping of novel objects without explicit motion prediction. EARL readily
addresses many thorny issues in automated hand-eye coordination, including fast-tracking of
6D object pose from vision, learning control policy for a robotic arm to track a moving object
while keeping the object in the camera’s field of view, and performing dynamic grasping. We
demonstrate the effectiveness of our approach in extensive experiments validated on multiple
commercial robotic arms in both simulations and complex real-world tasks.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023)

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





EARL: Eye-on-Hand Reinforcement Learner for Dynamic Grasping
with Active Pose Estimation

Baichuan Huang, Jingjin Yu, and Siddarth Jain .

Abstract— In this paper, we explore the dynamic grasping of
moving objects through active pose tracking and reinforcement
learning for hand-eye coordination systems. Most existing
vision-based robotic grasping methods implicitly assume tar-
get objects are stationary or moving predictably. Performing
grasping of unpredictably moving objects presents a unique set
of challenges. For example, a pre-computed robust grasp can
become unreachable or unstable as the target object moves, and
motion planning must also be adaptive. In this work, we present
a new approach, Eye-on-hAnd Reinforcement Learner (EARL),
for enabling coupled Eye-on-Hand (EoH) robotic manipulation
systems to perform real-time active pose tracking and dynamic
grasping of novel objects without explicit motion prediction.
EARL readily addresses many thorny issues in automated
hand-eye coordination, including fast-tracking of 6D object pose
from vision, learning control policy for a robotic arm to track a
moving object while keeping the object in the camera’s field of
view, and performing dynamic grasping. We demonstrate the
effectiveness of our approach in extensive experiments validated
on multiple commercial robotic arms in both simulations and
complex real-world tasks.

I. INTRODUCTION

Robotic manipulation of everyday objects in dynamic
environments constitutes a fundamental skill for enabling
the next generation of advanced robotic systems. Providing
robots with 6 degrees of freedom (DoF) pose tracking and
grasping capability in unstructured and dynamic environ-
ments beyond static tabletop scenarios can benefit many
automation applications. For example, a human handing over
an object to the robot, assembly of industrial parts, etc.

Autonomous grasping and manipulation of objects in sta-
tionary settings have been studied extensively [1]. Dynamic
environments bring many challenges for performing grasp-
ing. First, the target object might move with an unknown
motion, which requires understanding and predicting the
object’s motion or continuous tracking and active following
by the manipulator. Second, computed motion plans can
become obsolete, and thus dynamic environments require
online or fast replanning. Additionally, the approach direc-
tion for grasp planning changes with the object’s motion,
and therefore, a stable grasp can become unreachable and
unstable as the target object moves. Lastly, active percep-
tion [2] is required for dynamic grasping with Eye-on-Hand
(EoH) systems, as the robot can lose track of the target object
because of the robot’s motion or as the target moves away
from the field of view (FoV) of the camera.
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Fig. 1: Top: Eye-on-Hand (EoH) system with a wrist-mounted RGB-D cam-
era and a robotic manipulator. Bottom: Sample of experimental tasks used to
evaluate EARL in challenging setups. Hand./ext. workspace shows that the
system works outside the trained workspace and can perform human-robot
handover. Over and behind wall shows the system can overcome occlusions
typical external camera setup faces by tracking across a barrier. Placing on
box shows the system can handle significant elevation changes.

A supermajority of vision-based manipulation systems
typically utilize cameras fixated above the workspace [3],
[4]. Thus, the perception subsystem (e.g., RGB-D cameras)
and the manipulation system (e.g., robot arms) are decoupled.
Such settings implicitly assume ideal viewing distances and
angles for focusing on target objects. This fixation may
require large clearances above/around the workspace, ren-
dering the overall system inflexible and unsuitable for some



applications, especially when occlusions are unvoidable or
spaces are confined, e.g., retrieving a condiment jar in a
cabinet or performing an inspection in a pipe using a snake-
like robot [5] and robot dog. Such decoupling can cause
occlusions or loss of tracking in many scenarios, especially
when the target object is moving. Thus, mounting a camera
on the wrist of a manipulator can be an alternative [6]. In
some cases, the vision sensor is mounted on the robot arm
near the end-effector [7], [8]; however, pose tracking has
been carried out afar with another static workspace camera,
rendering the perception process decoupled from the object
manipulation operation.

In this work, we relax some of the assumptions and
address the challenges mentioned above by tackling robotic
grasping with an “Eye-on-Hand” (EoH) system, where the
sensory perception system is coupled with the manipulator
(see. Fig. 1, Top). The binding constraint on the “eye” and the
“hand” subsystems, dynamic range changes for perception,
generalization to different objects, and no prior knowledge
of the object’s motion profile bring many challenges. We
propose a novel solution based on active pose tracking and
reinforcement learning, which enables EoH robotic systems
to execute dynamic grasping of moving objects in real-time.
Our proposed method, called Eye-on-hAnd Reinforcement
Learner (EARL), approaches the target with the constraint
of keeping the target object in the FoV, despite drastically
changing distances and view angles between the camera and
the target object. We propose a reinforcement learner that
maps from the moving object pose differentials and adaptive
changes of grasp pose to desirable robot arm joint velocities
for dynamic grasping. We propose to perform active pose
tracking to encode visual observations and perform the train-
ing through a carefully designed curriculum to overcome the
challenges. Through extensive evaluation, we demonstrate
that EARL robustly and effectively tracks and approaches
the moving target object until successful grasping is realized.

In summary, our work makes the following contributions:

• It introduces a high-performance manipulation framework
for Eye-on-Hand (EoH) robotic systems consisting of
proposed active pose tracking with a moving camera
and a curriculum-trained reinforcement learning method
EARL with sim-to-real generalization capability for full
6-DoF dynamic grasping of novel objects with no prior
knowledge of the object’s motion profiles.

• It extensively evaluates our proposed framework on a
set of novel objects with different motion types and
complex tasks in various settings for dynamic grasping in
simulation and the real world, including multiple robotic
arms as EoH systems.

We explore related work in Sec. II. System setup and task
description are described in Sec. III. In Sec. IV, we present
the overall framework EARL and our proposed method.
Experimental details are described in Sec. VI. We discuss
and conclude in Sec. VII.

II. RELATED WORK

Vision-based robotic grasping solutions [9] can categorize
along several dimensions. Model-based approaches rely upon
knowledge about the target object [10], e.g., a CAD model.
Model-free methods directly propose grasp candidates and
aim for generalization to novel objects. Analytic or geometric
methods analyze the shape of a target object for grasp pose
identification [11]. Data-driven grasp synthesis uses learn-
ing [1] and has significantly progressed due to better learning
methods and data availability. Some approaches sample and
rank grasp candidates using deep neural networks [12]. Rein-
forcement Learning (RL) approaches also find applicability
for grasp synthesis [13], [14], where suitable candidates
are learned and validated with repeated interactions in a
simulation or real environment.

Another essential distinction is open or closed-loop grasp-
ing. Approaches performing open-loop grasp execution are
sensitive to calibration errors, failing to handle dynamic
environments. Some methods tackle closed-loop grasping
using continuous visual observations [15] with visual ser-
voing control [16] or RL. Some methods require vast data
for training; for example, QT-Opt [17] collected data within
several weeks across seven robots. Many methods character-
ize by constrained state-action spaces, for example, focusing
on top-down grasping [15], [17], [18] in 4-DoF, and thus are
limited in task scope. Only a handful of methods target grasp
synthesis for 6-DoF [19] to grasp objects from a broader
range of unstructured settings beyond the tabletop scenario.

Most existing methods focus on static environments, typ-
ically utilizing cameras fixed in the workspace to perform
grasp synthesis. Such settings can suffer occlusions in many
scenarios, especially when the robot is approaching the
target. Employing multiple cameras can help mitigate occlu-
sion in some scenarios. In real-world tasks, interacting with
dynamic objects or manipulating objects while a robot is
in motion can benefit many applications. For such dynamic
grasping tasks, mounting a camera on a robot’s wrist can
significantly reduce occlusion’s impact and enable the robot
to perform grasp synthesis in various scenarios.

Grasping in dynamic environments presents additional
challenges and requires the robot’s motion and grasp plan-
ning to be adaptive and real-time. Morrison et al. [15]
present a generative grasping convolutional neural network
(GG-CNN) for fast closed-loop grasping in slightly moving
scenes. Their method generates quality measure for every
pixel in depth images. Similar to our work, they use a wrist-
mounted camera but only evaluate their approach for 4-DoF
top-down grasping. Moreover, GG-CNN has high require-
ments for data annotation. Marturi et al. [7] dynamically
plan trajectories to grasp a moving object based on visual
information. However, their approach uses multiple cameras.
Song et al. [19] propose an end-to-end RL method for closed-
loop grasping where a DNN models a value function that
maps the images from the wrist-mounted camera to the
expected rewards in that state. The approach can handle 6-
DoF grasps for slightly moving scenes but only operates on



a discrete action set. One common approach for dynamic
grasping involves motion prediction for the target object to
improve success. The motion prediction ability can be helpful
in both planning a grasp and approaching the object. Akinola
et al. [20] introduce a reachability and motion awareness so-
lution. They implement a recurrent neural network (RNN) for
modeling and predicting object motion that works well for
linear, sinusoidal, and circle trajectories. However, it could
be of poor generalization in unseen and complex trajectories,
e.g., random movements, and their solution uses a position-
fixed camera. In this work, we propose a model-free RL-
based method with a wrist-mounted camera for picking a
moving object with continuous actions while keeping the
object in the FoV of the robot. Our approach does not limit
the grasp synthesis to a top-down direction and generalizes
well for unseen and complex trajectories.

III. SYSTEM SETUP AND PROBLEM DESCRIPTION

This work endows Eye-on-Hand (EoH) systems with the
capability to track and grasp moving target objects. The
EoH system comprises a high-DOF robotic manipulator, an
end-effector, and a wrist-mounted sensory perception system
that is fixated on the manipulator near the end-effector. The
coupling between the perception and manipulation subsys-
tems means that such an EoH system can operate without
workspace constraints and occlusions faced by most existing
systems [21] using an external camera.

We instantiate experiments and demonstrations on two
robotic arms as such EoH systems to showcase our methods’
generality. These systems use Universal UR-5e (6-DOF) and
Kinova Gen3 (7-DOF), respectively, both commanded using
joint velocity control. The vision system includes an Intel
RealSense L515 RGB-D camera for perception, secured on
the gripper using a custom 3D-printed mount. We use a
Robotiq 2F-85 two-finger gripper as the end-effector.
Problem Definition: We focus on enabling coupled EoH
systems to perform dynamic grasping in 6-DoF (i.e., SE(3))
of a moving object with a priori unknown motion. We make
no assumptions about the shape or identity of target objects
other than that they are rigid bodies and graspable by the end-
effector. Additionally, the target object can move freely in
the robot’s reachable workspace (approachable by the robot).
Completing this task with the EoH system requires another
sub-task of tracking the moving object, following it with the
robot’s motion such that it keeps the target object in the FoV
of the EoH camera while approaching the target. The task is
successful if the robot can grasp and pick up the object.

IV. EARL FRAMEWORK

In this section, we describe the various components of
our framework (illustrated in Figure 2). First, we present
our framework overview. We then describe our visual pro-
cessing unit that tracks target object poses in real-time. We
then describe the grasp planning pipeline that continuously
adapts grasp selection. Finally, we present our arm motion
generation method based on curriculum-trained RL.

A. Framework Overview

Grasping in a dynamic environment presents many chal-
lenges. A stable and reachable grasp can become unreachable
and unstable as the target object moves. The EoH system can
also lose track of the dynamic target object. We employ RL
for EoH systems, where we learn a control policy (EARL)
in simulations for dynamic grasping of arbitrary objects, and
we propose to utilize the object’s active pose information
as visual feedback. Our proposed method enables dynamic
grasping with tracking of novel objects without explicit mo-
tion prediction requirements. First, we perform pose estima-
tion of the target with the moving EoH camera for providing
visual feedback. We select a design that continuously tracks
the target object in 2D using learned features [22], [23] and
subsequently performs pose estimation using a combination
of 2D features [24] and depth information [25] to speed
up the processing and ensure sufficient tracking accuracy.
The control policy is a Proximal Policy Optimization (PPO)
based [26] RL framework which maps object pose differen-
tials to desirable robot arm joint velocities. Since we work
with an EoH system, the robot arm must continuously adjust
the pose of the RGB-D camera to keep the target object in
the FoV. Simultaneously, the control policy must guide the
end-effector to approach the object and grasp it. Achieving
all these requirements naturally and smoothly in real-time
is only possible through a finely-tuned, multi-stage control
policy, as described in Sec. V. We perform grasp planning
with multiple grasp proposals on the target object. The best
grasp pose is dynamically updated, which may happen as
the target object continuously moves in 6D. We dynamically
select a suitable candidate for biasing the control policy
actions. The overall framework is shown in Fig. 2, and the
steps are detailed in the following sections.

B. Active Object Pose Tracking

Active perception [2] implies computer vision imple-
mented with a movable camera, which can intelligently alter
the viewpoint to improve the system’s performance. In this
work, we consider active tracking with an Eye-on-Hand
camera. Many methods focus on top-down grasping [15],
[17], where they constraint the target object in the 2D
workspace. This case can be relatively simple. In this work,
we target grasp synthesis in 6-DoF, which requires the robot
to be aware of the target object’s 3D position and 3D
orientation. We perform 6D pose estimation with the EoH
system for tracking and computing an encoding of the target
object from visual observations. Typically, 6D object pose
estimation methods [9] assume known object models and can
categorize into correspondence-based, template-based, and
voting-based. We make no assumptions about the object’s
model and motion profile and continuously track the object’s
pose with the moving camera.

Given the first frame RGB-D image I0 containing the
target object O, we aim to continuously track O’s 6D
pose relative to the camera at any time t in image It. We
realize this by a correspondence-based approach and lever-
age BundleTrack [25] method for maintaining a keyframe
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Fig. 2: Illustration of the proposed framework. RGB-D image input initializes object tracking and mask refinement for pose estimation components. The
pose tracking module provides a 6D pose of the target object. A grasp pose pool is built from a grasp proposal network. The grasp planning module
computes a suitable grasp pose on the target. The control policy commands the EoH system to track and finally grasp the target using the robot arm.

memory pool and performing online pose graph optimization
that takes both feature correspondences and dense pixel-wise
correspondences from a depth image. To accomplish fast
and active pose tracking of novel objects in motion using
only a sequence of RGB-D images, we introduce several
augmentations to enhance the BundleTrack.

At time t, the pose tracking process starts with obtain-
ing a bounding box Bt of the target object, employing a
transformer-based 2D object tracker [22], capable of tracking
an object through multiple frames with a series of RGB
images. We then enhance the fit of the bounding box Bt with
Alpha-Refine [23] and simultaneously obtain an object mask
Mt. Alpha-Refine [23] is a boosting method that extracts and
maintains detailed spatial information. These augmentations
support fast tracking and work with novel objects without
requiring additional training or object models. We utilize
the mask Mt to provide more accurate RGB and depth
information as input to the BundleTrack, leading to direct
performance gains for fast-tracking the 6D pose. A key
component for correspondence-based pose estimation is the
feature extractor. We employ R2D2 [24] feature detector,
which predicts a set of sparse locations as object features
in the input image that are repeatable and reliable for local
feature matching and thus outperforms the LF-Net [27]
detector utilized in the BundleTrack. We note that the color
image input to R2D2 contains only the target object cropped
based on Mt. Our method enables more robust active pose
tracking in real-time robot control.

C. Grasp Planning

We use the first RGB-D image to initialize the pose track-
ing (see Sec. IV-B) and compute grasp proposals. Selecting a
good set of candidate grasp pose is important for two reasons.
First, computing grasp poses on the fly is time-consuming,
making it difficult to achieve real-time performance. Second,
it is required to compute a desired output from a control
policy towards a graspable pose on the moving object that

drives the end-effector close to the target object. For grasp
planning, we compute a set of grasp poses using Contact-
GraspNet [28], which utilizes a raw depth image and object
mask as input to generate a set of 6-DoF grasp proposals.
This approach works on novel objects and environments
without the need for fine-tuning. Next, we compute a set
of transformations from grasp poses to the 6D pose of the
target object and store them in a grasp memory pool. All
proposed grasp poses are relative to the target object’s pose,
which helps us avoid doing computationally expensive real-
time grasp synthesis. As both the EoH and the object move,
the system dynamically chooses which grasp pose to track
from the grasp memory pool at a given time. The selection of
the grasp pose is driven mainly by angular distance. We use
quaternion representation to store the orientation information.
At each control iteration, the orientation of gripper qg is
compared with that of all grasp poses qi ∈ G via

∆qi = qg ∗ q−1
i , di = 2arcsin(min(∥∆qi∥, 1)).

The grasp pose with the smallest di is set to be the current
target pose to be tracked.

D. Coupled Control of EoH System
Given active pose tracking and grasp planning for adjust-

ing the target grasp for a moving object, next, the EoH
system must track and follow the target and successfully
perform dynamic grasping. Two constraints must be jointly
satisfied by a policy to control the robot’s approach and grasp
the target object: maintaining the object in the camera’s FoV
and avoiding collisions, including self-collision.

As a first solution, we develop a standard PD controller
driven by an inverse kinematics (IK) solver for the control
policy. We treat this solution as a baseline approach for
performing dynamic grasping with the EoH system.
Baseline control policy: Given an end-effector goal as a
grasp pose target to the EoH system at every frame, using the
IK (damped least squares as described in [29]) we develop
a servoing method which generates desired joint velocity



commands using a PD control formulation. At a higher level,
the servoing-based baseline repeatedly computes the pose of
the next goal for the end-effector following a hand-designed
trajectory optimization, shown in Fig. 3.
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Fig. 3: Baseline control policy.
Target grasp pose on the object
is shown in orange. The robot
arm should follow the trajectory
of P

′
r , P

′′
r , P

′′′
r to reach the target

object and finally grasp it at Pt.

The EoH system navigates
the gripper (with pose Pr)
“above” the object to a pose
at some distance from the
object, from where a straight-
line movement of the gripper
can lead to the desired grasp
pose Pt. In the figure, this
stage is achieved as Pr’s z-
axis aligns with the object
pose’s z-axis. To realize the
design, a pose waypoint for
the gripper P

′

r can be com-
puted as position P

′

r.p and
rotation P

′

r.q . The next posi-
tion of pose Pr.p needs to move the gripper toward the
approaching direction (z-axis of Pt) while maintaining a
fixed distance,

r = |Pr.p − Pt.p| = |P
′

r.p − Pt.p|.
We realize this by moving on a sphere with a radius of
r as shown in Fig. 3. If the z-axis between Pr and Pt

are well aligned (smaller than a threshold θalign, set to
0.175rad), then, r is decreased, otherwise, r is increased
without exceeding rmax (set to 30cm).

V. TRAINING EARL
We propose an Eye-on-Hand reinforcement learner

(EARL) as a control policy that directly maps the desired
grasp pose and joint states to the robot’s desired joint
velocity and gripper actions. Training an RL model with
many continuous DoFs is challenging due to long policy
horizons and sparse reward signals. In our case, the challenge
is compounded by the strong coupling between vision and
manipulation subsystems. To effectively train EARL in
simulations, we formulate the task as a single-agent Markov
Game. In each episode, a target object (possibly among
other objects) is randomly placed in the workspace. The
target object may randomly translate and rotate in the 3D
workspace (gravity is disabled so that the object can move
in the air). The robot is tasked to grasp the target object using
a specific grasp pose. The environment resets itself upon a
grasp success/failure or if object tracking fails (out-of-view).
Choice and Design of Learning Framework. We train
EARL policy with a PPO [26] agent, which receives the
state quantities of the target object and the EoH system
and decides which action will be taken to execute dynamic
grasping. We employ Isaac Gym [30] for efficient RL and
data acquisition, capitalizing on PPO’s inherent support for
parallel training. We perform simultaneous simulations of
thousands of independent EoH systems in Isaac Gym for
model training. The overview of training EARL is shown in
Fig. 4. The MLP for PPO has three hidden layers of size
[256, 128, 64].

Environment

EARL

State MLP

Policy Update (PPO)

Policy
(Controller)

Actions

Rewards

Fig. 4: Overview of training EARL.

For input, the reinforcement learner needs information on
the target object, which we provide as an encoding repre-
sented by the object’s pose (translations and orientation),
in addition to the state of the robotic arm. We describe
a unique pose representation for the input. Because Euler
angles have singularities and quaternions are non-unique,
training the RL agent with such parameterizations can be
difficult in [31]. Borrowing from [32], [33], we use four
keypoints to represent the translation and orientation of a
rigid body. These keypoints can be represented in many
ways, and in our settings, we describe them using the corners
of a fixed size square where the square is selected to coincide
with the XY plane of the coordinate system of the given
object’s pose, with its center coinciding with the origin of
the pose coordinates. We represent the input as,

S = [Kr,Krg,Kgg′ , Jp, Jv, c],

where Kr are the keypoints of the gripper. Let Kg be the
target (grasp) keypoints, then Krg = Kr − Kg is the error
that should be minimized (reach 0) for a successful grasp.
Kgg′ = Kg−Kg′ is the change of the target grasp keypoints
between the current and previous frames. Jp and Jv are the
robot arm’s joint position and velocity vectors, respectively.
Jp is scaled to [0, 1] depending on the rotation limits. c,
a Boolean variable, indicates whether the gripper is closed
or open. Policy actions, as the output of the MLP, are the
velocity target for each robot’s joint and a boolean command
for the gripper. We choose joint velocities to control the robot
arm because it results in comparatively smoother motions
than position-based control.
Reward Shaping. The learning process can be much faster
and successful through a suitable reward schedule with
diverse guidance. We carefully perform reward shaping to en-
courage the robot to grasp the target object fast and securely.
On a high level, the problem can be seen as tracking and
grasping. The tracking portion moves the end-effector closer
to the desired grasp pose while maintaining the camera’s
view of the object and simultaneously avoiding collisions.
The grasping component needs to determine an opportune
moment for closing the gripper. We consider the case where
the motion of the target object can be unpredictable, so the
best strategy for the robot arm is to continuously track the
target and grasp it at an opportune moment. We design the
reward to have multiple components,
R = Pdist+Pview+Pcoll+Pover+Palig+Pmove+Rgrasp.

Pdist, a dense penalty, is the distance between the gripper
pose and grasp pose, which encourages the robot to minimize
Krg . Pview is a penalty given when the target pose is out-



of-view. This penalty helps the active pose estimation with
the moving camera by keeping the object in FoV. Pcoll is
a penalty for any collision before grasping. It is easy for
the robot to keep the object in view and avoid collision
by staying far from the target object, a behavior that must
be avoided. For that, Pover penalizes the agent when the
distance between the gripper and grasp pose is larger than a
threshold. Palig is a helper to regularize arm motion and help
with learning. It contains three parts, the z-axis alignment
of the gripper and grasp pose, the y-axis alignment of the
gripper and grasp pose, and the centering of the object in
the camera view. The z-axis and y-axis alignments guide the
robot’s approach to the target. The closer the gripper is to
the grasp pose, the higher probability the target object may
collide with the robot or move out of the FoV, as the target
object could randomly move. A Pmove penalty is introduced
to keep the robot’s gripper θd (set to 20cm) away from the
object if the speed of the object is faster than νo (set to
4cm/s). Rgrasp is the reward for closing the gripper when
the target object has been successfully grasped. We use the
contact force of two fingers to determine whether the gripper
has grasped the target object in the simulation.
Curriculum Design. Learning dynamic grasping can be
challenging for EoH systems, and training such a network
from scratch with many continuous DoFs is challenging.
We explore a curriculum design to train the EoH system
efficiently. In particular, we use a three-stage curriculum [34],
gradually increasing the task’s difficulty and dynamically
changing the rewards scalar for efficient learning. In the first
stage, the object is randomly placed in the workspace, and
the robot’s gripper is randomly sampled closer toward the
grasp pose on the object. The object randomly moves at
a low speed (<= νocm/s). In addition, an episode is not
terminated when the object is out-of-view. These relaxations
significantly limit the initial search space to help training.
Once the success rate of the initial policy is over a threshold,
in the second stage of training, the environment will reset
once the object is out-of-view, denoting task failure. The
penalty for Pview, Pcoll, Pover, Pmove are increased, and they
will continue to increase to reinforce that the robot should
avoid these unwanted scenarios. Low penalty causes the
policy to be aggressive, which leads to high collision rates
or not keeping the object in view. On the other hand, a high
penalty discourages the robot from approaching the object.
We dynamically change penalty scales to encourage different
behaviors and achieve a high success rate. In the last stage,
we let the object move faster (the max νo is set to 8.5cm/s),
and the robot gripper is fixed far from the target object at
the start of each episode, working in the full workspace.

The RL training parameters are identical for UR-5e (6-
Dof) and Kinova-Gen3 robots (7-Dof). The only difference
is that the penalty scales of Pview and Pcoll are set to be
lower for Kinova due to the robot’s kinematics, which has
long links between joints, making it comparatively harder to
train. Once trained, our policy EARL runs in real-time on
new objects and the training time amounts to just ∼4 hours
of the learning experience.

Fig. 5: Top Left: Training set objects. Bottom Left: Validation set objects
used in simulation. Right: Real test set objects. Note that the real objects
are significantly more challenging.

Enabling Direct Sim-to-Real Adaption. A goal of EARL
is to have RL agents trained in a simulator directly applica-
ble to real-world EoH systems. We developed an effective
technique of independent interest based on an observation
that the sim-to-real gap does not strongly correlates with a
control policy, and we encode visual observations as high-
level representations. Instead, the gap is mainly caused by
parameter differences between the simulation and the real
system. With this observation, we decouple the sim-to-real
gap reduction from training EARL. Using only the baseline
PD-based controller (Sec. IV-D), running in both simulation
and real-world EoH systems, we fine-tuned the necessary
parameters to reduce the sim-to-real gap. For example,
because real robot arms are torque-controlled at a lower level,
damping parameters must be appropriately adjusted to realize
accurate joint velocity control.

VI. EXPERIMENTS & RESULTS

We evaluated the proposed methods both in simulation
(Issac Gym [30], [33]) and on real robots (Universal UR-5e
6-DoF (R1) and Kinova Gen3 7-DoF (R2)) as EoH systems.
Both robots are equipped with a two-finger Robotq 2F-85
gripper and an Intel RealSense L515 camera. The workspace
for training is a cubic region of 40 × 40 × 40cm3. We
evaluated our system on machines with a single GPU (Nvidia
3090, uses 8 GB memory). Our method can handle novel
objects for which grasp pose can be reasonably tracked,
allowing us only to use a few objects (four) for training.
We tested in simulation and the real world with four unseen
sets of objects each. Objects are selected from the YCB and
HOPE datasets [35], [36]; and some household items. Fig. 5
shows these objects. The pipeline runs at 15 FPS.

A. Simulation Experiments

Task and Object Motion. The main objective of simulation
experiments is to evaluate the control policies BASELINE and
EARL for the dynamic grasping problem. In the simulation
experiments, similar to training, the simulator gives the
object’s pose, and we use one grasp per trial. To evaluate the
policy, we created test cases that have four different motions
as shown in Fig. 6.

• Static (S). Objects are randomly sampled in the workspace.
• Linear (L). Line paths in XY Z space are randomly

sampled from boundary to boundary.



• Oval (O). Oval paths in the XY plane are randomly
sampled, and the objects stop moving at a random time
step. The z-axis is also randomly sampled beforehand.

• Random (R). The object randomly moves for some time,
then stops moving for five seconds and repeats.

OvalLine Static Random 

Fig. 6: Four motions are considered in the simulation evaluation. The figure
illustrates these motions in 2D for visualization purposes, which happen in
3D and 6D. The RL control policy is trained only for random (6D) motion.

The object randomly moves with speed along any di-
mension set to a max. 5cm/s for translation, and 0.1rad/s
for rotation. In the simulation, the target object never stops
moving, even when slowed down considerably at random;
it will “vibrate” around the center of mass to simulate
uncertainty.
Metrics. We evaluate our method using the success rate,
where the robot successfully grasped the target object in a
given time (timeout). Three failure conditions are recorded:
(1) collision, (2) losing track of the target object, and (3)
the maximum episode length is reached. Since active pose
estimation is not performed in the simulation experiments,
checking that an object is out of view is done by checking
the object’s pose center is beyond a certain threshold (∼
20◦ in our experiments) away from the simulated camera’s
principle axis. The maximum time per trial is 35 seconds
(timeout). The robot is required to approach the target object
and execute a swift grasp when appropriate.
Results. We generated one thousand test cases in simulations
across the motion types and test objects and repeated them
for five trials. EARL control policy outperforms the baseline
method on both robot systems R1 and R2, as shown in Ta-
ble I. The baseline method achieves an average success rate
of 86.83%. EARL demonstrates an excellent average success
rate of 95.73%. The primary failure mode of EARL is
timeout due to the high penalty for collision and out-of-view,
which encourages the robot to move conservatively toward
the target object. Timeout failure for EARL is relatively low
in random motion settings, likely due to the training being
performed only using the case of random object motion.
Nevertheless, EARL performs for other object motion types.
In comparison, the performance of the baseline method goes
down significantly as the difficulty of the task increases.

B. Real Robot Experiments

Tasks and Object Motion. The real experiments use actual
perception and perform grasp planning with pose tracking by
the EoH system. A human operator moves the object freely
in the workspace based on the task scenario. We perform four
motions (S/L/O/R) from simulation experiments to analyze
the sim-to-real performance gap. The grasp pose pool is lim-
ited to one for a fair comparison. We also perform two more

A|R M Success Failure Timeout Collision Out-of-View

B|R1

S 94.90 5.10 0.20 4.90 0.00
L 90.76 9.24 2.30 6.54 0.40
O 86.54 13.46 1.14 5.30 7.02
R 76.28 23.72 5.34 12.22 6.16

E|R1

S 95.76 4.24 4.20 0.00 0.04
L 95.00 5.00 4.74 0.00 0.26
O 96.50 3.50 2.12 0.70 0.68
R 97.80 2.20 0.60 0.60 1.00

B|R2

S 95.90 4.10 2.32 1.78 0.00
L 95.08 4.92 2.90 1.78 0.24
O 83.24 16.76 7.32 3.86 5.58
R 71.92 28.08 13.78 7.80 6.50

E|R2

S 96.72 3.28 3.08 0.00 0.20
L 92.98 7.02 5.56 0.50 0.96
O 95.58 4.42 2.32 1.10 1.00
R 95.48 4.52 0.64 3.18 0.70

TABLE I. Simulation experiment results (all values in %). A|R refers to the
algorithm (baseline or EARL) and the robot 6-DoF (R1) or 7-DoF (R2).
M refers to motion type (static (S), linear (L), oval (O), random (R)).

motion tasks for testing adaptive grasp switching: random
and complex. The former executes random movements of
the object, forcing a grasp pose switch to achieve success.
The complex tasks involve a combination of motion types.
These include three challenging tasks, as described in Fig.
1, which demonstrate generalization capability.
Results. We performed real robot trials using the UR-5e (6-
DoF) as the EoH system for each method and motion type
with each test object using random start and end positions
(20 trials for each motion type per method). We ensure
each trial is consistent across both methods. Table. II show
these results. EARL outperforms the baseline method for
all test cases achieving an average success rate of 91.25%,
versus 73.75% with the baseline. Note that EARL policy
is trained entirely in simulations. Comparing the simulation
results demonstrates that we accomplish a small sim-to-
real gap (less than 5%) on the motions (S/L/O/R) with our
sim-to-real adaptation. Furthermore, EARL also performed
well on the random motion tasks and complex tasks with
adaptive grasp switching, achieving an average success rate
of 90% and 80%, respectively. From our observation, the
pose tracking module is bottleneck for achieving dynamic
grasping without explicit modeling of motion prediction. We
perform active pose tracking with object-level SLAM by con-
sidering texture, geometric information, and robust features;
still, the RGB image suffers from motion blur and the depth
image from noisy reflections and inaccurate measurements,
affecting performance. Moreover, object tracking can suffer
from complex backgrounds and deficiency of texture on the
object itself. Despite that, EARL performs well in complex
tasks such as human-robot handover and moving over and
behind a barrier, overcoming object occlusion limitations that
external camera setups typically face.

VII. CONCLUSIONS
We presented a framework for enabling EoH systems

to perform 6-DoF dynamic grasping using visual sensory
inputs with active pose tracking and a curriculum-trained
RL method. Our method relates sensing to actuation and
applies to complex robotic tasks utilizing visual feedback for



Object Motion Type BASELINE Success EARL Success

Static 85.00 100.00
Line 75.00 90.00
Oval 65.00 85.00

Random 70.00 90.00
Random (switch) 70.00 90.00

Complex (switch) 70.00 80.00

TABLE II. Real-world experiment results (all values in %). 20 trials were
performed for each test case using the UR5e real robot as the EoH system.

eye-in-hand control. We validated our contributions through
extensive experiments in simulations and complex real-world
tasks, attaining a high success rate on previously unseen
objects. Our framework is generic concerning the task, but it
does not consider explicit collision modeling, and the target
cannot move faster than the robot. In the future, we will
focus on mechanisms for recovering the target in case of
tracking failures and handling more cluttered environments.
Moreover, our method’s performance could be enhanced by
leveraging recent advancements in pose estimation [37] and
grasp detection methods.
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