
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Tailored Presolve Techniques in Branch-and-Bound Method
for Fast Mixed-Integer Optimal Control Applications

Quirynen, Rien; Di Cairano, Stefano

TR2023-110 September 02, 2023

Abstract
Mixed-integer model predictive control (MI-MPC) can be a powerful tool for con- trolling
hybrid systems. In case of a linear-quadratic objective in combination with linear or piecewise-
linear system dynamics and inequality constraints, MI-MPC needs to solve a mixed-integer
quadratic program (MIQP) at each sampling time step. This paper presents a collection
of exact block-sparse presolve techniques to effi- ciently remove decision variables, and to
remove or tighten inequality constraints, tailored to mixed-integer optimal control problems.
In addition, we describe a novel approach based on a heuristic presolve algorithm to compute
a feasible but possibly suboptimal MIQP solution. We present benchmarking results for a
C code imple- mentation of the proposed BB-ASIPM solver, including a branch-and-bound
(B&B) method with the proposed tailored presolve techniques and an active-set based inte-
rior point method (ASIPM), compared against multiple state-of-the-art MIQP solvers on a
case study of motion planning with obstacle avoidance constraints. Finally, we demonstrate
the feasibility and computational performance of the BB-ASIPM solver in embedded system
on a dSPACE Scalexio real-time rapid prototyping unit for a second case study of stabilization
for an underactuated cart-pole with soft contacts

Optimal Control Applications and Methods 2023

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Tailored Presolve Techniques in Branch-and-Bound Method for
Fast Mixed-Integer Optimal Control Applications †

Rien Quirynen* | Stefano Di Cairano

1Control for Autonomy, Mitsubishi Electric
Research Laboratories, Massachusetts, USA

Correspondence
*Email: quirynen@merl.com
Present Address
201 Broadway, 8th Floor, Cambridge, MA
02139-1955

Abstract

Mixed-integer model predictive control (MI-MPC) can be a powerful tool for con-
trolling hybrid systems. In case of a linear-quadratic objective in combination with
linear or piecewise-linear system dynamics and inequality constraints, MI-MPC
needs to solve a mixed-integer quadratic program (MIQP) at each sampling time step.
This paper presents a collection of exact block-sparse presolve techniques to effi-
ciently remove decision variables, and to remove or tighten inequality constraints,
tailored to mixed-integer optimal control problems. In addition, we describe a novel
approach based on a heuristic presolve algorithm to compute a feasible but possibly
suboptimal MIQP solution. We present benchmarking results for a C code imple-
mentation of the proposed BB-ASIPM solver, including a branch-and-bound (B&B)
method with the proposed tailored presolve techniques and an active-set based inte-
rior point method (ASIPM), compared against multiple state-of-the-art MIQP solvers
on a case study of motion planning with obstacle avoidance constraints. Finally, we
demonstrate the feasibility and computational performance of the BB-ASIPM solver
in embedded system on a dSPACE Scalexio real-time rapid prototyping unit for a
second case study of stabilization for an underactuated cart-pole with soft contacts.
KEYWORDS:
Mixed-integer programming, Numerical optimization algorithms, Hybrid model predictive control

1 INTRODUCTION

Optimization-based motion planning and control techniques, such as model predictive control (MPC), allow a model-based
design framework in which the dynamics, constraints and objectives are directly taken into account1. This framework has been
extended to hybrid systems2, providing a powerful technique to model a large range of hybrid control problems, e.g., includ-
ing switched dynamical systems3,4, discrete/quantized actuation5, motion planning with obstacle avoidance6, logic rules and
temporal logic specifications7. However, the resulting optimal control problems (OCPs) are non-convex combinatorial opti-
mization problems, because they contain variables that only take integer or binary values, and they are -hard to solve in
general8. When using a linear-quadratic objective in combination with linear or piecewise-linear system dynamics and inequality
constraints, the resulting OCP can be formulated as a mixed-integer quadratic program (MIQP).

†Tailored Presolve Techniques in Branch-and-Bound Method for Fast Mixed-Integer Optimal Control Applications

2 R. QUIRYNEN ET AL

In the present work, we aim to solve MIQP problems of the following form:

min
𝑋,𝑈

𝑁
∑

𝑖=0

1
2

[

𝑥𝑖
𝑢𝑖

]⊤

𝐻𝑖

[

𝑥𝑖
𝑢𝑖

]

+
[

𝑥𝑖
𝑢𝑖

]⊤ [𝑞𝑖
𝑟𝑖

]

(1a)

s.t. 𝑥𝑖+1 =
[

𝐴𝑖 𝐵𝑖
]

[

𝑥𝑖
𝑢𝑖

]

+ 𝑎𝑖, ∀𝑖 ∈ {0,… , 𝑁 − 1}, (1b)
[

̄
𝑥𝑖

̄
𝑢𝑖

]

≤
[

𝑥𝑖
𝑢𝑖

]

≤
[

�̄�𝑖
�̄�𝑖

]

, ∀𝑖 ∈ {0,… , 𝑁}, (1c)

̄
𝑐𝑖 ≤

[

𝐶𝑖 𝐷𝑖
]

[

𝑥𝑖
𝑢𝑖

]

≤ 𝑐𝑖, ∀𝑖 ∈ {0,… , 𝑁}, (1d)
𝑢𝑖,𝑗 ∈ ℤ, ∀𝑗 ∈ 𝑖, ∀𝑖 ∈ {0,… , 𝑁}, (1e)

where the state variables are 𝑥𝑖 ∈ ℝ𝑛𝑖x , the control variables are 𝑢𝑖 ∈ ℝ𝑛𝑖u and 𝑖 denotes the index set of integer decision
variables, i.e., the cardinality |𝑖| ≤ 𝑛𝑖u denotes the number of integer variables at each time step 𝑖 ∈ {0, 1,… , 𝑁}. The objective
in (1a) defines a linear-quadratic function with positive semi-definite Hessian matrix 𝐻𝑖 ⪰ 0 and gradient vectors 𝑞𝑖 ∈ ℝ𝑛𝑖x and
𝑟𝑖 ∈ ℝ𝑛𝑖u . The constraints include state dynamic equality constraints in (1b), simple bounds in (1c), affine inequality constraints
in (1d) and integer feasibility constraints in (1e). The optimization problem in (1) is an optimal control structured MIQP or
a block-sparse MIQP due to the block-structured sparsity of the Hessian and constraint matrix, i.e., the objective in (1a) and
inequality constraints in (1c)-(1d) are separable per time step 𝑖 ∈ {0, 1,… , 𝑁} but the variables are coupled via the dynamics
in (1b). Note that an initial state constraint 𝑥0 = �̂�0, where �̂�0 is a current state estimate, can be enforced using the simple bounds
in (1c). A compact notation is used to denote the optimization variables of the MIQP in (1) as the state 𝑋 = [𝑥⊤0 ,… , 𝑥⊤𝑁]

⊤

and control trajectory 𝑈 = [𝑢⊤0 ,… , 𝑢⊤𝑁]
⊤. In the present paper, we occasionally refer to all optimization variables in (1) as

𝑍 = [𝑧⊤0 ,… , 𝑧⊤𝑁]
⊤, where 𝑧𝑖 = [𝑥⊤𝑖 , 𝑢

⊤
𝑖]
⊤ for 𝑖 ∈ {0, 1,… , 𝑁}. Unlike standard OCP formulations, the MIQP in (1) defines

a mixed-integer OCP (MIOCP) that includes control variables on the terminal stage, 𝑢𝑁 ∈ ℝ𝑛𝑁u , which may include auxiliary
variables to formulate the mixed-integer inequality constraints of the hybrid control system. A binary optimization variable
𝑢𝑖,𝑗 ∈ {0, 1} can be defined as an integer variable 𝑢𝑖,𝑗 ∈ ℤ in (1e), including the simple bounds 0 ≤ 𝑢𝑖,𝑗 ≤ 1 in (1c). Without
loss of generality and for simplicity of notation, the integer optimization variables in (1) are restricted to control variables, even
though the methods in this paper can be trivially extended to MIOCPs with integer state variables. MPC for any hybrid system
can be formulated as in (1), for example, by leveraging a mixed logical dynamical (MLD) model2. There are typically different
ways to formulate a hybrid control problem in the form of the MIQP in (1), providing a tradeoff between the number of decision
variables and strength of the formulation9. The strength of an MIQP corresponds to how close the convex relaxations are to the
exact MIQP solution, e.g., see the formulations in3 for piecewise-affine systems.

Mixed-integer MPC (MI-MPC) implementations for motion planning and control aim to solve the MIOCP in (1) at each
sampling time step. This is challenging due to the -hard complexity of solving MIQPs in general8, and given the rela-
tively small computational resources and available memory on embedded microprocessors for real-time control applications10.
Therefore, several tailored solution strategies have been proposed for MI-MPC. These approaches can generally be divided into
heuristic techniques, which seek to efficiently find feasible but suboptimal solutions to the problem, and exact algorithms that
solve the MIQPs to optimality. Examples of the former include rounding schemes11,12, the feasibility pump13, approximate opti-
mization14,15, approximate dynamic programming16, and approximate explicit hybrid MPC17. Machine learning can be used to
approximately solve combinatorial optimization problems18, e.g., using supervised learning to train a network architecture to
quickly compute feasible but suboptimal solutions online as in19,20,21,22,23,24. The downside of fast heuristic approaches is often
the lack of guarantees of finding an optimal, or even a feasible, solution.

Due to the complexity of solving MIQPs, explicit methods that compute offline the optimal control as a function of the
system parameters have been developed, e.g., see25,26. The application of these explicit methods is generally limited to small-
dimensional systems with few discrete variables. We therefore focus on the use of online solution methods in the present paper.
The MIQP in (1) is a mixed-integer convex program (MICP), i.e., it becomes a convex problem after relaxing the integer
feasibility constraints in (1e). Most of the exact optimization algorithms for MIQPs are based on the classical branch-and-
bound (B&B) technique27. Specifically for the structured MIQP in (1), the B&B strategy has been combined with tailored
algorithms for solving the relaxed convex QPs. For example, a B&B algorithm for MI-MPC has been proposed in combination
with a dual active-set solver in28, a primal active-set solver in29,30, an interior point algorithm in31, dual projected gradient
methods in32,15, a nonnegative least squares solver in33, and with the alternating direction method of multipliers (ADMM) in34.

R. QUIRYNEN ET AL 3

Machine learning could also be used to speed up the exact solution of combinatorial optimization problems, e.g., by improving
the tree search in B&B methods18,35. B&B methods for solving mixed-integer nonlinear OCPs have also been studied, e.g., in36.

The computational efficiency of B&B methods is affected by the node selection and branching rules37,38, and by the convex
relaxation solutions39,40, but there are many other important factors that make state-of-the-art MIQP solvers like GUROBI41 and
MOSEK42 successful. A crucial algorithmic ingredient is the presolve routine43, which typically is called in each node of the
B&B method (see Figure 1) before solving the convex relaxation, and it performs a collection of operations to remove decision
variables, and to remove or tighten constraints. In the present paper, we explicitly refer to these presolve techniques as exact
operations to emphasize that they preserve feasibility and optimality, i.e., a feasible and optimal solution to the reduced problem
exists as long as a feasible and optimal solution exists to the original MIQP. Exact presolve techniques are vital for the good
performance of current state-of-the-art MICP solvers, such that B&B methods can often solve seemingly intractable problems
in practice44. Especially for MI-MPC applications, warm starting strategies exist that aim to reuse the explored B&B tree at one
time step to reduce the computational cost of the B&B method at the next control time step. In recent years, different variants
of B&B warm starting have been proposed for MI-MPC, e.g., in33,29,45.

Unlike state-of-the-art mixed-integer solvers, e.g., GUROBI41 and MOSEK42, our aim is to propose a tailored algorithm and
its solver implementation for fast embedded MI-MPC applications, i.e., running on microprocessors with considerably less
computational resources and available memory10, while leveraging the special structure of the MIQP in (1). The optimization
algorithm should be relatively simple to code with a moderate use of resources, while the software implementation is preferably
compact and library independent. In the present paper, we will use a tailored active-set based interior point method (ASIPM)
that was presented in46 to solve the block-sparse convex QP relaxations in the B&B method, resulting in an MIQP solver that
will further be referred to as BB-ASIPM. The recent work in47 showed how infeasibility detection and early termination based
on duality can be implemented efficiently for an infeasible primal-dual interior point method (IPM) based on a computationally
efficient projection strategy that will be used within our BB-ASIPM solver.

Our Contributions: A first contribution of the present paper is an exact block-sparse presolve routine that is tailored to MIQPs
of the form in (1). Our previous work in29,47 showed how domain propagation43,48 can be applied to the condensed form of (1).
In the present paper, we propose an algorithm for domain propagation that can be applied directly to the MIQP in (1), based
on a forward-backward propagation of variable bounds, in order to speed up the computation times of a B&B method. We
additionally present tailored algorithms for other presolve techniques, including the removal of trivial constraints, dual fixings,
constraint coefficient strengthening and binary variable probing. A second contribution involves the use of the proposed presolve
routine in a heuristic procedure to compute a feasible but possibly suboptimal MIQP solution. This heuristic is an extension of
the idea in24 for improving supervised learning of MICP solutions. A third contribution is the benchmarking results for a C code
implementation of the BB-ASIPM algorithm against state-of-the-art MIQP solvers, including GUROBI41, MOSEK42, GLPK49, Cbc50,
and Matlab’s intlinprog, based on a case study of mobile robot motion planning with obstacle avoidance constraints. A fourth
and final contribution is the demonstration of the computational performance of the BB-ASIPM solver on a dSPACE Scalexio
rapid prototyping unit, using a second case study of stabilization for an underactuated cart-pole with soft contacts.

The paper is organized based on each of the following algorithmic ingredients that are typically important for a good
computational performance of a B&B method for mixed-integer optimal control applications:

• variable branching decisions and node selection strategies (Section 2),
• structure-exploiting convex solver for efficient QP solutions (Section 3),
• exact presolve techniques for variable fixings and tight relaxations (Section 4),
• fast primal heuristic algorithm to find integer-feasible solutions (Section 5),
• warm starting and embedded software for mixed-integer MPC (Section 6).

The performance of our proposed MIQP solver is illustrated based on two MI-MPC case studies in Section 7, including hardware-
in-the-loop simulations on a dSPACE Scalexio rapid prototyping unit. Finally, Section 8 concludes the paper.

2 PRELIMINARIES ON MIXED-INTEGER QUADRATIC PROGRAMMING

We first introduce some of the basic concepts in mixed-integer quadratic programming (MIQP) solvers based on branch-and-
bound (B&B) methods, such as convex QP relaxations, node selection and branching strategies.

4 R. QUIRYNEN ET AL

FIGURE 1 Illustration of the branch-and-bound (B&B) method as a binary search tree. A selected node can be either branched,
e.g., resulting in two partitions for each binary variable 𝑢𝑖,𝑗 ∈ {0, 1}, or pruned based on feasibility or the current upper bound.

2.1 Branch-and-Bound Algorithm
The main idea of the B&B optimization algorithm is to sequentially create partitions of the original MIQP problem and attempt
to solve each of these partitions. While solving each partition may still be challenging, it is fairly efficient to obtain local lower
bounds on the optimal objective value, e.g., by solving convex relaxations of the MIQP subproblem. If we happen to obtain an
integer-feasible solution while solving a relaxation, we can then use it to obtain a global upper bound for the solution to the
original problem. This may help to avoid solving or branching certain partitions that were already created, i.e., such partitions
or nodes can be pruned. The general algorithmic idea of partitioning is better illustrated as a binary search tree, see Figure 1.
A key step in this approach is how to create the partitions, i.e., which node to choose and which discrete variable to select for
branching. Since we solve a convex relaxation at every node of the tree, it is natural to branch on one of the discrete variables
with fractional values in the optimal solution of the relaxation. Therefore, if a binary variable, e.g., 𝑢𝑖,𝑗 ∈ {0, 1} has a fractional
value in a convex relaxation, we create two partitions where we add the equality constraints 𝑢𝑖,𝑗 = 0 and 𝑢𝑖,𝑗 = 1, respectively.
Another key choice is the order in which the created subproblems are solved. These steps have been extensively explored in the
literature and various heuristics are implemented in state-of-the-art tools37.

2.2 Convex Quadratic Program Relaxations
We use a B&B method to solve the MIQP (1) by solving convex quadratic programming (QP) relaxations that are constructed
by dropping the integer feasibility constraints in (1e), e.g., 𝑢𝑖,𝑗 ∈ {0, 1} is relaxed to a bounded continuous variable 0 ≤ 𝑢𝑖,𝑗 ≤ 1.
Other convex relaxations for MIQPs have been studied in the literature such as moment or SDP relaxations that may be tighter
than QP relaxations39,40, however they are often relatively expensive to solve, even if they may drastically reduce the nodes
explored in a B&B method. In this paper, we restrict to standard QP relaxations and we present a tailored active-set based interior
point method (ASIPM) in Section 3. The ASIPM solver has been shown to be competitive with state-of-the-art QP solvers for
embedded MPC46, it benefits from warm-starting and it allows for an efficient implementation of infeasibility detection and
early termination based on duality47. For using the ASIPM solver, the relaxations need to be convex, i.e., the Hessian matrices
𝐻𝑖 need to be positive semi-definite in (1a) such that each solution to a QP relaxation is globally optimal.

2.3 Tree Search: Node Selection Strategies
A common implementation of the B&B method is based on a depth-first node selection strategy, which can be implemented
by a last-in-first-out (LIFO) buffer. The next node to be solved is selected as one of the children of the current node and this
process is repeated until integer feasibility or until a node is pruned because the node is either infeasible or dominated by the
upper bound, which is followed by a backtracking procedure. Instead, a best-first strategy selects the node with the lowest local
lower bound so far. In this paper, we will employ a combination of the depth-first and best-first node selection approach. This
combination aims to find an integer-feasible solution quickly at the start of the B&B procedure (depth-first) to allow for early
pruning, followed by a more greedy search for better feasible solutions (best-first).

R. QUIRYNEN ET AL 5

2.4 Reliability Branching for Variable Selection
Many branching rules exist such as “most infeasible” branching which selects the integer variable with fractional part in the QP
relaxation that is closest to 0.5. Even though this rule is used quite often, e.g., in33,34, it generally does not perform very well in
practice37. We instead use reliability branching which is based on a combination of two concepts for variable selection: strong
branching and pseudo-costs37. Strong branching relies on temporarily branching, both up (to higher integer) and down (to lower
integer), for every integer variable that has a fractional value in the solution of a convex QP relaxation in a given node, before
committing to the variable that provides the highest value for a particular score function. The increase in objective values Δ+

𝑖,𝑗 ,
Δ−
𝑖,𝑗 are computed when branching the integer variable 𝑢𝑖,𝑗 , respectively, up and down. Given these quantities, a simple scoring

function score(⋅, ⋅) is computed for each integer variable, such as the product score function38

𝑆𝑖,𝑗 = score(Δ−
𝑖,𝑗 ,Δ

+
𝑖,𝑗) = max(Δ+

𝑖,𝑗 , 𝜖) ⋅ max(Δ−
𝑖,𝑗 , 𝜖), (2)

given a small positive value 𝜖 > 0. Full strong branching has been empirically shown to provide smaller search trees in practice37,
but it is relatively expensive since several QP relaxations are solved in order to select one variable to branch on.

The idea of pseudo-costs aims at approximating the increase of the objective function to decide which variable to branch on,
without solving additional QP relaxations. This can be done by keeping statistic information for each integer variable, i.e., the
pseudo-costs that represent the average increase in the objective value per unit change in that particular integer variable when
branching. The current pseudo-cost values are computed based on branching decisions that occurred in different parts of the
B&B tree37. Each variable has two pseudo-costs, 𝜙−

𝑖,𝑗 when the variable is branched “down” and 𝜙+
𝑖,𝑗 when it is branched “up”.

However, at the beginning of the B&B algorithm, the pseudo-costs are not yet initialized, which is when branching decisions
typically impact the tree size the most. Reliability branching uses strong branching to initialize the pseudo-costs until a certain
condition of reliability is satisfied, e.g., it moves to using pseudo-costs for a particular variable once it has been branched on
a specified number 𝜂𝑟𝑒𝑙 of times37. Thus, reliability branching coincides with pseudo-cost branching if 𝜂𝑟𝑒𝑙 = 0, with strong
branching if 𝜂𝑟𝑒𝑙 = ∞, but typically a value 1 ≤ 𝜂𝑟𝑒𝑙 ≤ 3 is chosen. This rule is further augmented by implementing a look ahead
limit in the number of candidates, as well as a limit on the number of QP iterations in the strong branching step.

3 CONVEX RELAXATION SOLVER: ACTIVE-SET INTERIOR POINT METHOD (ASIPM)

We reformulate the MIQP in (1) by the following compact notation

min
𝒛

1
2
𝒛⊤𝐻 𝒛 + ℎ⊤𝒛 (3a)

s.t. 𝐺 𝒛 ≤ 𝑔, 𝐹 𝒛 = 𝑓, (3b)
𝒛𝑗 ∈ ℤ, 𝑗 ∈ , (3c)

where 𝒛 includes all primal optimization variables and the index set denotes the integer variables. For many practical MPC
formulations, the objective can be written as 1

2
𝒛⊤𝐻 𝒛 + ℎ⊤𝒛 = 1

2
𝒗⊤𝑄𝒗 + ℎ⊤𝒗𝒗 + ℎ⊤𝒚 𝒚, where 𝐻 ⪰ 0 and 𝑄 ≻ 0, by partitioning

𝒛 into 𝒗 and 𝒚, entering in the linear-quadratic and linear-only terms, respectively. The objective of any MIQP (3) can be
reformulated in the latter form by a change of variables, e.g., based on the eigenvalue decomposition for the Hessian 𝐻 ⪰ 0.

We focus on the efficient solution of convex QP relaxations in a B&B optimization method. For a particular node of the B&B
tree, a convex QP is obtained by relaxing the integer feasibility constraint in (3c) as

̄
𝒛𝑗 ≤ 𝒛𝑗 ≤ �̄�𝑗 , ∀𝑗 ∈ ̃, where the index set

̃ ⊆ denotes each integer variable that has not been fixed due to branching, or due to the presolve routine, in the current node
of the B&B tree. The values

̄
𝒛𝑗 and �̄�𝑗 denote the lower and upper bound values for each integer variable 𝑗 ∈ ̃, respectively.

This section describes an overview of recent work on the efficient implementation of infeasibility detection and early termination
based on duality47, applied to the active-set based interior point method (ASIPM) that was proposed in46.

6 R. QUIRYNEN ET AL

3.1 Dual QP Problem Formulation
We consider the primal convex QP of the form

min
𝒗,𝒚

𝜙(𝒗, 𝒚) ∶= 1
2
𝒗⊤𝑄𝒗 + ℎ⊤𝒗𝒗 + ℎ⊤𝒚 𝒚 (4a)

s.t. 𝐺𝒗𝒗 + 𝐺𝒚𝒚 ≤ 𝑔, (4b)
𝐹𝒗𝒗 + 𝐹𝒚𝒚 = 𝑓, (4c)

where 𝑄 ≻ 0 in the primal objective 𝜙(𝒗, 𝒚), and the inequality constraints (4b) include both the original inequalities from (3b)
and the convex relaxations of the integer feasibility constraints. We additionally define the compact notation 𝒛 ∶= [𝒗⊤𝒚⊤]⊤,
𝐺 ∶= [𝐺𝒗|𝐺𝒚], 𝐹 ∶= [𝐹𝒗|𝐹𝒚], ℎ ∶= [ℎ⊤𝒗ℎ

⊤
𝒚]
⊤ and 𝐻 ∶=

[

𝑄 0
0 0

]

. The dual QP of (4) reads as

max
𝜇,𝜆

𝜓(𝜇, 𝜆) ∶= −1
2
‖ℎ̂(𝜇, 𝜆)‖2𝑄−1 −

[

𝑔
𝑓

]⊤ [𝜇
𝜆

]

(5a)
s.t. 𝐺⊤

𝒚 𝜇 + 𝐹 ⊤
𝒚 𝜆 = −ℎ𝒚 , (5b)

𝜇 ≥ 0, (5c)
where 𝜆 and 𝜇 denote the Lagrange multipliers for the equality and inequality constraints, respectively, and ℎ̂(𝜇, 𝜆) ∶= ℎ𝒗 +
𝐺⊤

𝒗𝜇 + 𝐹 ⊤
𝒗 𝜆 is defined for simplifying the dual objective function 𝜓(𝜇, 𝜆) in (5a).

3.2 Primal-dual Interior Point Method
A primal-dual IPM uses a Newton-type method to solve a sequence of relaxed Karush-Kuhn-Tucker (KKT) conditions for the
convex QP in (4). An iteration of the IPM typically solves the reduced linear system51

⎡

⎢

⎢

⎣

𝐻 𝐹 ⊤ 𝐺⊤

𝐹 0 0
𝐺 0 −𝑊 𝑘

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Δ𝒛𝑘
Δ𝜆𝑘

Δ𝜇𝑘

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

𝑟𝑘𝒛
𝑟𝑘𝜆
�̄�𝑘𝜇

⎤

⎥

⎥

⎦

, (6)

where 𝑊 𝑘 = diag (𝑤𝑘) ≻ 0, 𝑤𝑘 ∈ ℝ𝑛ieq and 𝑤𝑘
𝑖 = 𝑠𝑘𝑖 ∕𝜇

𝑘
𝑖 > 0, given current values of the slack variables 𝑠𝑘 ∈ ℝ𝑛ieq and

Lagrange multipliers 𝜇𝑘 ∈ ℝ𝑛ieq for the inequality constraints in the 𝑘th iteration of the Newton-type method. The right-hand
side in (6) denotes the residual value for the optimality conditions and reads as

𝑟𝑘𝒛 = 𝐻𝒛𝑘 + 𝐹 ⊤𝜆𝑘 + 𝐺⊤𝜇𝑘 + ℎ, 𝑟𝑘𝜆 = 𝐹𝒛𝑘 − 𝑓,
𝑟𝑘𝜇 = 𝐺𝒛𝑘 − 𝑔 + 𝑠𝑘, 𝑟𝑘𝑠 =𝑀𝑘𝑆𝑘1 − 𝜏𝑘1, �̄�𝑘𝜇 = 𝑟𝑘𝜇 −𝑀

𝑘−1𝑟𝑘𝑠 ,
(7)

based on the barrier parameter 𝜏𝑘 → 0 for 𝑘→ ∞, where 𝑀𝑘 = diag (𝜇𝑘), 𝑆𝑘 = diag (𝑠𝑘) and the slack variables are updated
as Δ𝑠𝑘 = −(𝑊 𝑘Δ𝜇𝑘 +𝑀𝑘−1𝑟𝑘𝑠). We consider an infeasible primal-dual IPM for which the starting point {(𝒛0, 𝜇0, 𝜆0, 𝑠0

)} may
not be primal and/or dual feasible, but the slack variables and Lagrange multipliers are positive at each iteration, i.e., 𝑠𝑘 ≥ 0 and
𝜇𝑘 ≥ 0. See51 for details on properties and implementation of primal-dual IPMs.
Remark 1
Fixed variables, i.e.,

̄
𝒛𝑗 = �̄�𝑗 , and redundant constraints should be removed from each convex QP for computational efficiency.

In some cases, 𝑛0x = 0 if an initial state value 𝑥0 = �̂�0 is imposed in (1), and many other variables are fixed due to exact presolve
operations. Therefore, we require the QP solver to allow defining a varying number of state 𝑥𝑖 ∈ ℝ𝑛𝑖x and control variables
𝑢𝑖 ∈ ℝ𝑛𝑖u , and a varying number of inequality constraints 𝑛𝑖c at each time step 𝑖 = 0, 1,… , 𝑁 in the prediction horizon.

3.3 Active-set based Inexact Newton Method
In this paper, we use the active-set based inexact Newton implementation of ASIPM from46, which allows for block-sparse
structure exploitation, reduced computations, warm starting and improved numerical conditioning. For inequality constraints
that are strictly active at the optimum, 𝑠𝑘𝑖 → 0 and 𝜇𝑘𝑖 > 0 such that 𝑤𝑘

𝑖 → 0 for 𝑘 → ∞. On the other hand, for inactive
inequality constraints, 𝜇𝑘𝑖 → 0 and 𝑠𝑘𝑖 > 0 such that 𝑤𝑘

𝑖 → ∞ for 𝑘 → ∞. Thus, the 𝑤-values become increasingly small and
large for active and inactive inequality constraints, respectively, which highlights the well-known numerical ill-conditioning that

R. QUIRYNEN ET AL 7

must be tackled when implementing IPMs52. Based on lower and upper bound values 0 < 𝑤min ≪ 𝑤max, at each IPM iteration,
we classify the inequality constraints into the following three categories:

• inactive: constraints that are likely to be inactive at the solution, with index set in ∶= { 𝑖 ∣ 𝑤𝑖 ≥ 𝑤max },
• active: constraints that are likely to be active at the solution, with index set act ∶= { 𝑖 ∣ 𝑤𝑖 ≤ 𝑤min },
• guessing: constraints that are uncertain, i.e., not in previous categories, with index set g ∶= { 𝑖 ∣ 𝑤min < 𝑤𝑖 < 𝑤max }.

In the inexact Newton-type algorithm of ASIPM46, we solve the linearized KKT system in Eq. (6) approximately by solving
the following reduced block-tridiagonal linear system

[

𝐻 + 1
𝜀
𝐹 ⊤𝐹 + 1

𝑤min
𝐺⊤

act𝐺act + 𝐺⊤
g𝑊

𝑘−1
g 𝐺g +

1
𝑤max

𝐺⊤
in𝐺in

]

Δ𝑧𝑘 = −�̄�𝑘𝑧 , (8)

where the right-hand side reads �̄�𝑘𝑧 = 𝑟𝑘𝑧 +
1
𝜀
𝐹 ⊤𝑟𝑘𝜆 +

1
𝑤min

𝐺⊤
act�̄�

𝑘
𝜇,act + 𝐺

⊤
g𝑊

𝑘−1
g �̄�𝑘𝜇,g + 𝐺

⊤
in𝑊

𝑘−1
in �̄�𝑘𝜇,in, by using a block-tridiagonal

Cholesky factorization for the augmented Hessian matrix in (8). The inequality constraints and 𝑤-values have been reordered
and grouped together according to their category, i.e., 𝑊 𝑘

in ∶= 𝑊 𝑘
𝑖∈in

, 𝑊 𝑘
act ∶= 𝑊 𝑘

𝑖∈act
and 𝑊 𝑘

g ∶= 𝑊 𝑘
𝑖∈g

. Similarly, we split 𝐺
and �̄�𝜇 into the corresponding blocks. The search directions for the Lagrange multipliers are computed as

Δ𝜆𝑘 = 1
𝜀
(

𝑟𝑘𝜆 + 𝐹Δ𝑧
𝑘) , Δ𝜇𝑘act =

1
𝑤min

(

�̄�𝑘𝜇,act + 𝐺actΔ𝑧𝑘
)

, (9a)
Δ𝜇𝑘g = 𝑊 𝑘−1

g
(

�̄�𝑘𝜇,g+𝐺gΔ𝑧𝑘
)

, Δ𝜇𝑘in = 𝑊 𝑘−1
in

(

�̄�𝑘𝜇,in+𝐺inΔ𝑧𝑘
)

, (9b)
and the update to the slack variables as Δ𝑠𝑘 = −𝑀𝑘−1(𝑆𝑘Δ𝜇𝑘 + 𝑟𝑘𝑠).

3.4 Early Termination based on Duality and Infeasibility Detection
We do not need to solve a convex QP relaxation in the B&B method if

• the convex QP relaxation is infeasible,
• the optimal solution has an objective value that exceeds the current global upper bound.

In both cases, the node, and hence the corresponding subtree, can be pruned from the B&B tree. A considerable computational
effort can be avoided if the above scenarios are detected early, i.e., more quickly than the time for solving the convex QP
relaxations. Based on our work in47, we describe a tailored early termination strategy for infeasible primal-dual IPMs to handle
both cases and to reduce the computational effort of the B&B method without affecting the quality of the optimal solution.

Due to duality properties, see, e.g.,53, for a dual feasible point (𝜇, 𝜆) that satisfies (5b)-(5c) and a primal feasible point (𝒗, 𝒚)
that satisfies (4b)-(4c)

𝜓(𝜇, 𝜆) ≤ 𝜓⋆ ≤ 𝜙⋆ ≤ 𝜙(𝒗, 𝒚), (10)
where 𝜙⋆ and 𝜓⋆ are the primal and dual optima, respectively. Based on (10), we propose an approach to find a dual feasible
point that allows for early termination when 𝜓(𝜇, 𝜆) > UB for the current upper bound (UB) to the optimum of the MIQP.

3.4.1 Projection Strategy for Dual Feasibility
A dual feasible solution, i.e., (𝜇𝑘, 𝜆𝑘) satisfying (5b)-(5c) is required in order to perform early termination based on the duality
result in (10). Since an infeasible IPM generally does not provide a solution that satisfies the equality constraint in (5b) until
convergence, we proposed47 a projection step to compute new values (𝜇+, 𝜆+) = (𝜇𝑘 + Δ𝜇, 𝜆𝑘 + Δ𝜆) satisfying (5b) and (5c)
by solving the optimization problem

min
Δ𝒗,Δ𝜆,Δ𝜇

1
2
‖Δ𝒗‖2𝑄 + 1

2
‖Δ𝜆‖2𝜖dual +

1
2
‖Δ𝜇‖2𝑊 𝑘

s.t.
[

𝑄
0

]

Δ𝒗 + 𝐹 ⊤Δ𝜆 + 𝐺⊤Δ𝜇 = −
[

0
𝑟𝑘𝒚

]

,
(11)

where 𝑟𝑘𝒚 ∶= 𝐹 ⊤
𝒚 𝜆

𝑘 + 𝐺⊤
𝒚 𝜇

𝑘 + ℎ𝒚 , 𝑊 𝑘 = diag (𝑤𝑘) and 𝑤𝑘
𝑖 =

𝑠𝑘𝑖
𝜇𝑘𝑖
> 0.

There are three advantages for the projection (11) over a standard minimum-norm projection. Neither of these projections
directly enforces the positivity constraints 𝜇𝑘 + Δ𝜇 > 0, which would require solving an inequality constrained QP. A first
advantage of (11) is that, since 𝑤𝑘

𝑖 =
𝑠𝑘𝑖
𝜇𝑘𝑖
> 0, the term ‖Δ𝜇‖2𝑊 𝑘 =

∑

𝑖

(

𝑠𝑘𝑖
𝜇𝑘𝑖
Δ𝜇2

𝑖

)

in the objective of (11) penalizes the step Δ𝜇𝑖

to remain small when 𝑠𝑘𝑖
𝜇𝑘𝑖

is relatively large, i.e., when 𝜇𝑘𝑖 > 0 is close to zero. This makes the step smaller when approaching the

8 R. QUIRYNEN ET AL

positivity constraint, such that it is more likely to satisfy 𝜇𝑘𝑖 + Δ𝜇𝑖 > 0 without making the update step always small. Second,
the solution (Δ𝜇,Δ𝜆) to the optimization problem (11) is equivalent47 to solving the symmetric system

⎡

⎢

⎢

⎣

𝐻 𝐹 ⊤ 𝐺⊤

𝐹 −𝜖dual𝐼 0
𝐺 0 −𝑊 𝑘

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Δ𝒛
Δ𝜆
Δ𝜇

⎤

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎣

[

0
𝑟𝑘𝒚

]

0
0

⎤

⎥

⎥

⎥

⎥

⎦

, (12)

which is an IPM iteration similar to (6) with the only differences being the right-hand side and the augmented Lagrangian
type regularization 𝜖dual > 0. The equivalence means that the same block-tridiagonal matrix factorization for the solution of
the reduced linear system (8) in each iteration of ASIPM46 can be reused to compute the projection step in (12). Third, the
projection (12) aims at retaining the IPM progress towards the optimum, since the projection step does not increase the residual
value for the remaining optimality conditions in (7), due to the zero elements in the right-hand side of (12).

3.4.2 Early Termination Strategy
We use the projection step in (12) for our early termination strategy, see Algorithm 1. As discussed later, one dual objective
evaluation is computationally cheaper than a projection on a dual feasible point. Therefore, Algorithm 1 performs the projection
in (12) if and only if the dual objective 𝜓(𝜇𝑘, 𝜆𝑘) is larger than the current UB (line 5). Multiple evaluations of the projection
step in (12), reusing the same matrix factorization, may be needed to ensure dual feasibility ‖𝐹 ⊤

𝒚 𝜆 + 𝐺⊤
𝒚 𝜇 + ℎ𝒚‖ < 𝑡𝑜𝑙 when

using the inexact Newton implementation of46 in the ASIPM solver.

Algorithm 1 Early termination for IPM in B&B method.
Input: Warm start {(𝒛0, 𝜇0, 𝜆0, 𝑠0

)}, 𝑡𝑜𝑙, and UB.
1: while max{𝜏𝑘, ‖𝑟𝑘‖} > 𝑡𝑜𝑙 do
2: if 𝜓(𝜇𝑘, 𝜆𝑘) > UB ∧ dual_feasible then
3: break while loop. ⊳ Early termination
4: else if 𝜓(𝜇𝑘, 𝜆𝑘) > UB then
5: Compute projection step (Δ𝜇,Δ𝜆) in (12).
6: 𝜇 ← 𝜇𝑘 + Δ𝜇, 𝜆 ← 𝜆𝑘 + Δ𝜆, and 𝑟𝒚 ← 𝐹 ⊤

𝒚 𝜆 + 𝐺
⊤
𝒚 𝜇 + ℎ𝒚 .

7: if 𝜇 > 0 ∧ ‖𝑟𝒚‖ < 𝑡𝑜𝑙 then
8: 𝜇𝑘 ← 𝜇, 𝜆𝑘 ← 𝜆, 𝑟𝑘𝒚 ← 𝑟𝒚 , and dual_feasible← 1.
9: if 𝜓(𝜇𝑘, 𝜆𝑘) > UB then break while loop. ⊳ Early termination

10: end if
11: end if
12: Perform an IPM iteration (6), e.g., see46.
13: end while

The standard iterates of an IPM can also be used to generate certificates of infeasibility54. Proposition 1, proved in47, states
conditions such that the dual objective 𝜓(𝜇𝑘, 𝜆𝑘) is unbounded in the limit of the primal-dual IPM iterations. Therefore, our
proposed early termination strategy is effective for infeasibility detection and, given a tight UB value from the B&B optimization
method, it may lead to termination even before a certificate of infeasibility can be found.
Proposition 1. If the sequence of primal-dual iterates {(

𝒛𝑘, 𝜇𝑘, 𝜆𝑘, 𝑠𝑘
)} of the IPM satisfy 𝜇𝑘⊤𝑠𝑘 ≤ 𝜇0⊤𝑠0 and ‖𝜇𝑘‖ → ∞,

then the dual objective 𝜓(𝜇𝑘, 𝜆𝑘) → ∞.
3.4.3 Computational Complexity
The proposed early termination strategy requires two computational steps, i.e., the projection and the dual objective evaluation,
which are typically not needed in a standard IPM. Considering the optimal control structured program (1), the evaluation of the
dual objective value (5a) requires 𝑁(𝑛2 + 2 𝑛𝑚 + 2 𝑛 𝑝) operations to compute 𝐿−1 (𝐺⊤

𝒗𝜇 + 𝐹 ⊤
𝒗 𝜆

) based on a block-diagonal
Cholesky factorization 𝑄 = 𝐿𝐿⊤, in which 𝑛, 𝑚 and 𝑝 are the number of variables in 𝒗 (see (4)), the number of equality and
inequality constraints, respectively, per control interval, and 𝑁 is the number of control intervals.

R. QUIRYNEN ET AL 9

Based on (12), we can perform one projection step at the computational cost of one IPM iteration. This allows for reusing
the corresponding matrix factorization in the subsequent IPM iteration if the projection is not successful. Based on the partic-
ular ASIPM implementation from Section 3.3, as originally proposed in46, one iteration requires a block-tridiagonal Cholesky
factorization for the matrix in (8), for which the dominant terms in the computational cost are

𝑁
(7
3
𝑛3x + 4𝑛2x𝑛u + 2𝑛x𝑛2u +

1
3
𝑛3u
)

, (13)
where 𝑛x and 𝑛u denote the number of state and control variables per interval in (1), respectively. Then, reusing this matrix
factorization, the linear system for the projection step in (12) can be solved by

𝑁
(

6 𝑛2x + 8 𝑛x𝑛u + 2 𝑛2u + 2(𝑛x + 𝑛u)(𝑚 + 𝑝)
)

, (14)
operations for the resulting block-structured forward and backward substitution. Since 𝑛 ≤ (𝑛x + 𝑛u), and often 𝑛 ≪ (𝑛x + 𝑛u)
due to many auxiliary variables in hybrid systems2 for which the Hessian contribution is zero, the cost for a dual objective
evaluation is considerably smaller than the projection cost (14), as anticipated.

4 EXACT PRESOLVE TECHNIQUES FOR MIXED-INTEGER OPTIMAL CONTROL

A presolve routine is a collection of computationally efficient operations that should be used in each node of the B&B method
(see Figure 1) before solving the convex relaxation, in order to remove decision variables, and to remove or tighten constraints44.
Presolve techniques are often crucial in strengthening convex relaxations such that typically fewer nodes need to be explored in a
B&B optimization method, sometimes to such an extent that seemingly intractable problems become computationally tractable.
We present a collection of tailored variants of presolve techniques with block-sparse structure exploitation for mixed-integer
optimal control, based on presolve routines in state-of-the-art solvers for general-purpose MIQPs, e.g., see43. We explicitly
refer to these presolve techniques as exact operations, differentiating from the heuristic approach in Section 5, and to emphasize
that all presolve methods in the present Section preserve feasibility and optimality, i.e., the reduced problem is infeasible or
unbounded only if the original problem is infeasible or unbounded, and any feasible or optimal solution of the reduced problem
can be mapped to a feasible or optimal solution of the original problem. For example, an exact presolve method will fix a binary
variable to 0 or 1 only if the method can guarantee that this variable is fixed to that same value in an optimal solution.

4.1 Block-Structured Domain Propagation
Several strengthening techniques are implemented as part of “presolve” routines in state-of-the-art commercial solvers43. One
technique that is particularly suitable to mixed-integer optimal control is based on domain propagation, in which the goal is
to strengthen bound values based on the constraints of the MIQP in (1). In previous work29, we suggested to apply domain
propagation to the inequality constraints of a condensed MIOCP formulation, i.e., to the smaller but dense problem formulation
after numerically eliminating each of the state variables based on the state dynamic constraints in (1b). However, based on a
simple illustrative example, we show that it can often be advantageous to apply each of the presolve operations, and domain
propagation in particular, directly to the block-sparse MIQP formulation in (1), including the state variables and state dynamic
equality constraints (1b). The key insight is that tight lower and upper bounds for state variables can be used to tighten lower
and upper bounds on control variables and vice versa.
Example 1

min
𝑋,𝑈, 𝛿

2
∑

𝑖=0

1
2

[

𝑥𝑖
𝑢𝑖

]⊤ [1 0
0 1

] [

𝑥𝑖
𝑢𝑖

]

(15a)
s.t. 𝑥0 = 0, (15b)

𝑥𝑖+1 = 𝑥𝑖 + 𝑢𝑖, ∀𝑖 ∈ {0, 1}, (15c)
[

−1
−1

]

≤
[

𝑥𝑖
𝑢𝑖

]

≤
[

1
1

]

, ∀𝑖 ∈ {0, 1, 2}, (15d)
𝑥2 ≥ 2 − 10𝛿, 𝛿 ∈ {0, 1}, (15e)

min
𝑈, 𝛿

1
2

(

[

𝑢0
𝑢1

]⊤ [3 1
1 2

] [

𝑢0
𝑢1

]

+ 𝑢22

)

(16a)

s.t.
⎡

⎢

⎢

⎣

−1
−1
−1

⎤

⎥

⎥

⎦

≤
⎡

⎢

⎢

⎣

𝑢0
𝑢1
𝑢2

⎤

⎥

⎥

⎦

≤
⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

, (16b)

− 1 ≤ 𝑢0 + 𝑢1 ≤ 1, (16c)
𝑢0 + 𝑢1 ≥ 2 − 10𝛿, 𝛿 ∈ {0, 1}. (16d)

10 R. QUIRYNEN ET AL

A standard bound strengthening procedure, as explained in43,29, can be applied to each of the inequality constraints in either
the block-sparse MIQP formulation in (15) or the equivalent but condensed MIQP in (16). For example, the inequality in (15e)
can be used to compute a bound on the binary variable 𝛿 ∈ {0, 1} as follows:

10𝛿 ≥ 2 − 𝑥2 ⇐⇒
𝑥2≤1

10𝛿 ≥ 2 − 1 ⇐⇒ 𝛿 ≥ 1
10

⇐⇒
𝛿∈{0,1}

𝛿 = 1,

resulting in a fixing of the binary optimization variable 𝛿 = 1. Alternatively, using the condensed inequality in (16d), the same
procedure leads to

10𝛿 ≥ 2 − 𝑢0 − 𝑢1 ⇐⇒
𝑢0≤1, 𝑢1≤1

10𝛿 ≥ 2 − 1 − 1 ⇐⇒ 𝛿 ≥ 0,

which means that the binary optimization variable 𝛿 ∈ {0, 1} cannot be eliminated in this case, even though the condensed
MIQP in (16) is equivalent to the block-sparse MIQP formulation in (15).
Remark 2
In Example 1, for the condensed inequality in (16d), fixing of the binary variable 𝛿 = 1 could be detected by exploiting a
bound for the expression 𝑢0 + 𝑢1 ≤ 1 from (16c). However, as discussed in43, Section 5.4, a bound strengthening procedure con-
sidering multiple constraints at once is typically too expensive for MIQP solvers, but more general optimization-based bound
tightening (OBBT) techniques are common for mixed-integer nonlinear programming (MINLP).

Motivated by the above illustrative example, we propose a novel block-sparse variant of domain propagation as described
in Algorithm 2 that is tailored to the MIQP formulation in (1). The method consists of a forward iterative procedure for 𝑖 =
0, 1,… , 𝑁 (see Line 1-14), followed by a backward iterative procedure for 𝑖 = 𝑁 − 1,… , 0 (see Line 15-21). The general
intuition behind the forward-backward propagation is to have a quick propagation of variable bounds from near the beginning
of the prediction horizon towards the end of the prediction horizon, as well as a quick propagation of variable bounds from
near the end of the prediction horizon towards the beginning. The proposed forward-backward implementation can reduce the
amount of times that the domain propagation in Alg. 2 needs to be called in order to achieve a particular amount of bound
strengthening in practice, even though such a performance improvement cannot be guaranteed in general. However, by design, it
can be guaranteed that the updated bound values [

̄
𝑧+𝑖 , �̄�

+
𝑖] that are computed by Alg. 2 are tighter than the original bound values

[
̄
𝑧𝑖, �̄�𝑖], i.e.,

̄
𝑧𝑖 ≤ ̄

𝑧+𝑖 ≤ 𝑧𝑖 ≤ �̄�+𝑖 ≤ �̄�𝑖 for 𝑖 ∈ {0, 1,… , 𝑁}, without eliminating any feasible solution of the MIQP in (1) when
replacing the bound values by the updated values [

̄
𝑧+𝑖 , �̄�

+
𝑖] in (1c). Algorithm 2 can result in strengthening of bound values for

both continuous and integer/binary optimization variables. In addition, the tailored block-sparse MIQP structure exploitation in
Alg. 2 considerably reduces the computational cost for each operation in the domain propagation.

Each iteration of the forward procedure for 𝑖 = 0, 1,… , 𝑁 (Line 1-14) performs domain propagation for each variable 𝑧𝑖,𝑗
for 𝑗 = 1,… , 𝑛x + 𝑛u based on the affine inequality constraints

̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖 (see Line 2-6), followed by domain propagation

for each state variable 𝑥𝑖+1,𝑗 for 𝑗 = 1,… , 𝑛x based on the state dynamic equality constraints 𝑥𝑖+1 = 𝑎𝑖 + 𝐹𝑖𝑧𝑖 (see Line 7-
13). The computation of

̄
𝑧𝑖,𝑗 and �̄�𝑖,𝑗 on Line 3 and 4, respectively, is defined using a compact OBBT notation. However, as

described in the next section, we instead perform a single-row approximation for each inequality constraint individually, in
order to reduce the computational cost for each iteration of the domain propagation. An MIQP subproblem is detected to be
infeasible whenever the gap between a lower and upper bound value is below a particular threshold value −𝜖, where 𝜖 is a
small positive value, for example, see Lines 5, 11 and 19. The computation of

̄
𝑎𝑖 = min{𝑎𝑖 + 𝐹𝑖𝑧𝑖} = 𝑎𝑖 +

(

𝐹 +
𝑖 ̄
𝑧𝑖 + 𝐹 −

𝑖 �̄�𝑖
)

and �̄�𝑖 = max{𝑎𝑖 + 𝐹𝑖𝑧𝑖} = 𝑎𝑖 +
(

𝐹 +
𝑖 �̄�𝑖 + 𝐹

−
𝑖 ̄
𝑧𝑖
) on Line 8 is used for domain propagation based on the state dynamics, where

𝐹 +
𝑖 , 𝐹

−
𝑖 contain all positive and negative elements of the matrix 𝐹𝑖 = 𝐹 +

𝑖 + 𝐹 −
𝑖 , respectively. Each iteration of the backward

procedure 𝑖 = 𝑁 − 1,… , 0 (see Line 15-21) performs domain propagation for each variable 𝑧𝑖,𝑗 for 𝑗 = 1,… , 𝑛x + 𝑛u based
on the state dynamic equality constraints 𝑥𝑖+1 = 𝑎𝑖 + 𝐹𝑖𝑧𝑖. Similarly, OBBT is used to update the bound values

̄
𝑧𝑖,𝑗 and �̄�𝑖,𝑗 on

Line 17 and 18, respectively, but a computationally efficient single-row approximation can be used.

4.2 Approximation of Optimization-based Bound Tightening
The computation of bound values

̄
𝑧𝑖,𝑗 , �̄�𝑖,𝑗 on Lines 3-4 and Lines 17-18 of Alg. 2 require the solution of a linear program-

ming (LP) problem. Since this operation needs to be performed for each variable on each time step in the horizon and for each
domain propagation call in each iteration of the presolve routine, it is necessary to perform a computationally cheap single-row
approximation instead as implemented in Alg. 3 based on the following lemma.

R. QUIRYNEN ET AL 11

Algorithm 2 Block-sparse forward-backward operations for domain propagation and bound strengthening
Input: Bound values [

̄
𝑧𝑖, �̄�𝑖], 𝐸𝑖 =

[

𝐶𝑖 𝐷𝑖
], 𝐹𝑖 =

[

𝐴𝑖 𝐵𝑖
], 𝑖 ∈ {0,… , 𝑁} and MIQP of the form (1).

1: for 𝑖 = 0,… , 𝑁 do ⊳ Forward domain propagation
2: for 𝑗 = 1,… , (𝑛x + 𝑛u) do ⊳ Affine inequality constraints:

̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖

3:
̄
𝑧𝑖,𝑗 ← min{𝑧𝑖,𝑗 ∶ ̄

𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖, ̄
𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}, see Alg. 3

4: �̄�𝑖,𝑗 ← max{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}, see Alg. 3
5: if �̄�𝑖,𝑗 − ̄

𝑧𝑖,𝑗 < −𝜖 then return infeasible_flag ⊳ MIQP subproblem infeasible
6: end for
7: if 𝑖 < 𝑁 then
8:

̄
𝑎𝑖 ← 𝑎𝑖 +

(

𝐹 +
𝑖 ̄
𝑧𝑖 + 𝐹 −

𝑖 �̄�𝑖
) and �̄�𝑖 ← 𝑎𝑖 +

(

𝐹 +
𝑖 �̄�𝑖 + 𝐹

−
𝑖 ̄
𝑧𝑖
).

9: for 𝑗 = 1,… , 𝑛x do ⊳ State dynamic constraints: 𝑥𝑖+1 = 𝑎𝑖 + 𝐹𝑖𝑧𝑖
10:

̄
𝑥𝑖+1,𝑗 ← max(

̄
𝑥𝑖+1,𝑗 , ̄

𝑎𝑖,𝑗) and �̄�𝑖+1,𝑗 ← min(�̄�𝑖+1,𝑗 , �̄�𝑖,𝑗).
11: if �̄�𝑖+1,𝑗 − ̄

𝑥𝑖+1,𝑗 < −𝜖 then return infeasible_flag ⊳ MIQP subproblem infeasible
12: end for
13: end if
14: end for
15: for 𝑖 = 𝑁 − 1,… , 0 do ⊳ Backward domain propagation
16: for 𝑗 = 1,… , (𝑛x + 𝑛u) do ⊳ State dynamic constraints: 𝑥𝑖+1 = 𝑎𝑖 + 𝐹𝑖𝑧𝑖
17:

̄
𝑧𝑖,𝑗 ← min{𝑧𝑖,𝑗 ∶ 𝑥𝑖+1 − 𝑎𝑖 − 𝐹𝑖𝑧𝑖 = 0,

̄
𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}

18: �̄�𝑖,𝑗 ← max{𝑧𝑖,𝑗 ∶ 𝑥𝑖+1 − 𝑎𝑖 − 𝐹𝑖𝑧𝑖 = 0,
̄
𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}

19: if �̄�𝑖,𝑗 − ̄
𝑧𝑖,𝑗 < −𝜖 then return infeasible_flag ⊳ MIQP subproblem infeasible

20: end for
21: end for
Output: Updated bound values [

̄
𝑧+𝑖 , �̄�

+
𝑖], 𝑖 ∈ {0,… , 𝑁}.

Lemma 2
The updated bound values

̄
𝑧+𝑖,𝑗 , �̄�+𝑖,𝑗 that are computed by Alg. 3 are a conservative approximation of optimization-based bound

tightening, i.e., the following relationships hold

̄
𝑧+𝑖,𝑗 = max

𝑘∈{1,…,𝑛c}

(

min{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}
) (17a)

≤ min{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖} ≤ min{𝑧𝑖,𝑗 ∶ (1b) − (1e)}, (17b)

where 𝐸𝑖,𝑘,∶ denotes the 𝑘th row of the matrix 𝐸𝑖, and similarly for the updated upper bound values

�̄�+𝑖,𝑗 = min
𝑘∈{1,…,𝑛c}

(

max{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}
) (18a)

≥ max{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖} ≥ max{𝑧𝑖,𝑗 ∶ (1b) − (1e)}. (18b)
Proof. The relationships in (17b) follow directly from the following inequalities

min{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖} ≤ min{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖} ≤ min{𝑧𝑖,𝑗 ∶ (1b) − (1e)},

which holds for each 𝑘 ∈ {1,… , 𝑛c}, due to the fact that an optimal objective value of a minimization problem only decreases
after removing one or multiple constraints. The relationships in (18b) can be proved by a similar argument.

A compact notation is used in Alg. 3 for matrices 𝐸+
𝑖 , 𝐸

−
𝑖 which contain all positive and negative elements of the matrix

𝐸𝑖 = 𝐸+
𝑖 +𝐸−

𝑖 , respectively. Line 10 of Alg. 3 includes rounding up ⌈

̄
𝑑⌉ and rounding down ⌊𝑑⌋ of the lower and upper bound

values, respectively, if 𝑧𝑖,𝑗 is an integer or binary optimization variable.

12 R. QUIRYNEN ET AL

Algorithm 3 Single-row approximation of optimization-based bound tightening for variable 𝑧𝑖,𝑗
Input: Bound values [

̄
𝑧𝑖, �̄�𝑖], 𝐸𝑖 =

[

𝐶𝑖 𝐷𝑖
], 𝑖 ∈ {0,… , 𝑁}, 𝑗 ∈ {1,… , 𝑛z} and MIQP of the form (1).

1: ̃̄𝑐 ← 𝑐𝑖 −
(

𝐸+
𝑖 ̄
𝑧𝑖 + 𝐸−

𝑖 �̄�𝑖
) and ̃

̄
𝑐 ←

̄
𝑐𝑖 −

(

𝐸+
𝑖 �̄�𝑖 + 𝐸

−
𝑖 ̄
𝑧𝑖
).

2:
̄
𝑑 ← −∞ and 𝑑 ← ∞.

3: for 𝑘 = 1,… , 𝑛c do ⊳ Affine inequality constraints:
̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖

4: if 𝐸𝑖,𝑘,𝑗 > 𝜖 then
5:

̄
𝑑𝑘 ←

̃
̄
𝑐𝑘+𝐸𝑖,𝑘,𝑗 �̄�𝑖,𝑗

𝐸𝑖,𝑘,𝑗
and 𝑑𝑘 ← ̃̄𝑐𝑘+𝐸𝑖,𝑘,𝑗 ̄

𝑧𝑖,𝑗
𝐸𝑖,𝑘,𝑗

.
6: else if 𝐸𝑖,𝑘,𝑗 < −𝜖 then
7:

̄
𝑑𝑘 ←

̃̄𝑐𝑘+𝐸𝑖,𝑘,𝑗 �̄�𝑖,𝑗
𝐸𝑖,𝑘,𝑗

and 𝑑𝑘 ← ̃
̄
𝑐𝑘+𝐸𝑖,𝑘,𝑗 ̄

𝑧𝑖,𝑗
𝐸𝑖,𝑘,𝑗

.
8: end if
9: end for

10: if 𝑧𝑖,𝑗 is integer then
̄
𝑑 ← ⌈

̄
𝑑⌉ and 𝑑 ← ⌊𝑑⌋. ⊳ Rounding integer variable bounds

11:
̄
𝑧+𝑖,𝑗 ← max(

̄
𝑧𝑖,𝑗 ,max

𝑘
(
̄
𝑑𝑘)) and �̄�+𝑖,𝑗 ← min(�̄�𝑖,𝑗 ,min

𝑘
(𝑑𝑘)).

Output:
̄
𝑧+𝑖,𝑗 = max

𝑘∈{1,…,𝑛c}

(

min{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}
),

�̄�+𝑖,𝑗 = min
𝑘∈{1,…,𝑛c}

(

max{𝑧𝑖,𝑗 ∶ ̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, ̄

𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖}
).

4.3 Trivial Constraints and Dual Fixings
Algorithm 4 illustrates how single-row bounding for each of the affine inequality constraints can be used to detect an MIQP
subproblem to be infeasible (see Line 3), for example, if

min{𝐸𝑖,𝑘,∶𝑧𝑖 ∶ ̄
𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖} = 𝐸+

𝑖,𝑘,∶̄
𝑧𝑖 + 𝐸−

𝑖,𝑘,∶�̄�𝑖 > 𝑐𝑖,𝑘, (19)
where 𝐸𝑖,𝑘,∶ denotes the 𝑘th row of the matrix 𝐸𝑖, and similarly for the lower bound of

̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, 𝑘 ∈ {1,… , 𝑛c}.

In addition, single-row bounding can be used to detect lower and/or upper bounds of an affine inequality constraint to be
redundant (see Line 5-6), for example,

𝑐𝑖,𝑘 ≥ max{𝐸𝑖,𝑘,∶𝑧𝑖 ∶ ̄
𝑧𝑖 ≤ 𝑧𝑖 ≤ �̄�𝑖} = 𝐸+

𝑖,𝑘,∶�̄�𝑖 + 𝐸
−
𝑖,𝑘,∶̄

𝑧𝑖 ⇐⇒ 𝑐𝑖,𝑘 ← ∞ (upper bound redundant), (20)
and similarly for the lower bound of each affine inequality constraint

̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, 𝑘 ∈ {1,… , 𝑛c}. Finally, if an

optimization variable does not enter the state dynamic equality constraints (see Line 9 of Alg. 4) and if the variable enters each of
the non-redundant inequality constraints with a coefficient of the same sign, then the variable can be fixed to the lower (Line 10)
or the upper bound (Line 11) value, depending on the sign of the constraint coefficients and the sign in the cost function.
Lines 7-13 of Alg. 4 form a tailored block-sparse variant of dual fixing, which is described more generally in43.

4.4 Constraint Coefficient Strengthening
In coefficient strengthening, we aim to modify coefficients of the affine inequality constraints (1d) to tighten the convex QP
relaxation without affecting the integer-feasible MIQP solutions. We present a block-sparse variant of coefficient strengthening
in Alg. 5, as described more generally in48. Let us define constraint domination as follows:
Definition 3 (see43,48)
Given two inequality constraints 𝑒⊤1 𝑧 ≤ 𝑓1 and 𝑒⊤2 𝑧 ≤ 𝑓2, where 𝑒⊤1 and 𝑒⊤2 denote row vectors, 𝑧 ∈ ℝ𝑛 for which 𝑧𝑗 ∈ ℤ, ∀𝑗 ∈
and

̄
𝑧 ≤ 𝑧 ≤ �̄�, then 𝑒⊤1 𝑧 ≤ 𝑓1 dominates 𝑒⊤2 𝑧 ≤ 𝑓2 if

{𝑧 ∈ ℝ𝑛
|

̄
𝑧 ≤ 𝑧 ≤ �̄�, 𝑒⊤1 𝑧 ≤ 𝑓1} ⊂ {𝑧 ∈ ℝ𝑛

|

̄
𝑧 ≤ 𝑧 ≤ �̄�, 𝑒⊤2 𝑧 ≤ 𝑓2}, (21)

i.e., the feasible region of the convex QP relaxation for 𝑒⊤1 𝑧 ≤ 𝑓1 is strictly contained in the feasible region for 𝑒⊤2 𝑧 ≤ 𝑓2, given
the variable bound values

̄
𝑧 ≤ 𝑧 ≤ �̄�.

Using the latter definition, the overall aim of coefficient strengthening is to reformulate one or multiple affine inequality
constraints (1d) as constraints that dominate the original inequality constraints, without removing any feasible MIQP solution.
We demonstrate the idea of coefficient strengthening based on following simple illustrative example.

R. QUIRYNEN ET AL 13

Algorithm 4 Block-sparse redundant inequality constraint detection and dual fixings
Input: Bound values [

̄
𝑧𝑖, �̄�𝑖], 𝐸𝑖 =

[

𝐶𝑖 𝐷𝑖
], [
̄
𝑐𝑖, 𝑐𝑖], 𝑖 ∈ {0,… , 𝑁} and MIQP of the form (1).

1: for 𝑖 = 0,… , 𝑁 do
2: ̃̄𝑐 ← 𝑐𝑖 −

(

𝐸+
𝑖 ̄
𝑧𝑖 + 𝐸−

𝑖 �̄�𝑖
) and ̃

̄
𝑐 ←

̄
𝑐𝑖 −

(

𝐸+
𝑖 �̄�𝑖 + 𝐸

−
𝑖 ̄
𝑧𝑖
). ⊳ Inequality constraints:

̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖

3: if min
𝑘
(̃̄𝑐𝑘) < −𝜖 ∨ max

𝑘
(̃
̄
𝑐𝑘) > 𝜖 then return infeasible_flag ⊳ MIQP subproblem infeasible

4: ̃̄𝑐 ← 𝑐𝑖 −
(

𝐸+
𝑖 �̄�𝑖 + 𝐸

−
𝑖 ̄
𝑧𝑖
) and ̃

̄
𝑐 ←

̄
𝑐𝑖 −

(

𝐸+
𝑖 ̄
𝑧𝑖 + 𝐸−

𝑖 �̄�𝑖
).

5: 𝑐𝑖,𝑘 ← ∞ if ̃̄𝑐𝑘 > −𝜖, ∀𝑘 = 1,… , 𝑛c ⊳ Upper bound constraint redundant
6:

̄
𝑐𝑖,𝑘 ← −∞ if ̃

̄
𝑐𝑘 < 𝜖, ∀𝑘 = 1,… , 𝑛c ⊳ Lower bound constraint redundant

7: for 𝑗 = 1,… , 𝑛u do
8: �̃� ←

[

{𝐷𝑖,𝑘,𝑗}∀𝑘∶𝑐𝑖,𝑘 <𝜖max
{−𝐷𝑖,𝑘,𝑗}∀𝑘∶

̄
𝑐𝑖,𝑘 >−𝜖max

]

. ⊳ Non-redundant inequality constraints
9: if ‖𝐵𝑖,∶,𝑗‖ < 𝜖 ∧ ‖𝐻𝑖,∶,𝑛x+𝑗‖ < 𝜖 ∧ ‖�̄�𝑖,𝑗 − ̄

𝑢𝑖,𝑗‖ > 𝜖 then
10: if min

𝑘
(�̃�𝑘) > −𝜖 ∧ 𝑟𝑖,𝑗 > −𝜖 then �̄�𝑖,𝑗 ← ̄

𝑢𝑖,𝑗 ⊳ Fixing auxiliary variable to lower bound
11: if max

𝑘
(�̃�𝑘) < 𝜖 ∧ 𝑟𝑖,𝑗 < 𝜖 then

̄
𝑢𝑖,𝑗 ← �̄�𝑖,𝑗 ⊳ Fixing auxiliary variable to upper bound

12: end if
13: end for
14: end for
Output: Updated bound values [

̄
𝑧𝑖, �̄�𝑖] and [

̄
𝑐𝑖, 𝑐𝑖], 𝑖 ∈ {0,… , 𝑁}.

Example 4
Let us consider an MIQP with a continuous variable 𝑥 ∈ ℝ, which is bounded 1 ≤ 𝑥 ≤ 3, and a binary variable 𝛿 ∈ {0, 1}.
Coefficient strengthening for an inequality constraint 2 ≤ 𝑥 + 100 𝛿 then results in a dominating constraint 2 ≤ 𝑥 + 𝛿, i.e.,

{𝑥 ∈ ℝ, 𝛿 ∈ ℝ | 1 ≤ 𝑥 ≤ 3, 0 ≤ 𝛿 ≤ 1, 2 ≤ 𝑥 + 𝛿} ⊂ {𝑥 ∈ ℝ, 𝛿 ∈ ℝ | 1 ≤ 𝑥 ≤ 3, 0 ≤ 𝛿 ≤ 1, 2 ≤ 𝑥 + 100 𝛿}. (22)
Mixed-integer inequality constraints of the form in (22) are common, e.g., when using a “big-M” formulation55 in MIOCPs,

such that coefficient strengthening can be used to automatically reduce the large coefficient value𝑀 > 0 and tighten the convex
QP relaxations. Algorithm 5 describes a systematic approach to strengthen the coefficients of each affine inequality constraint
̄
𝑐𝑖,𝑘 ≤ 𝐸𝑖,𝑘,∶𝑧𝑖 ≤ 𝑐𝑖,𝑘, 𝑘 ∈ {1,… , 𝑛c}, with respect to each integer or binary optimization variable 𝑢𝑖,𝑗 , ∀𝑗 ∈ 𝑖 in (1e).

4.5 Binary Variable Probing
The general idea of probing is to select a binary variable, which is set tentatively to zero or one in order to derive further variable
fixings and/or tightened inequality constraints, see43,48. For example, let 𝑢𝑖,𝑗 ∈ {0, 1} be a binary variable, and let us define the
lower and upper bounds

̄
𝑧0𝑖 ≤ 𝑧𝑖 ≤ �̄�0𝑖 for 𝑖 = 0,… , 𝑁 that have been deduced from setting 𝑢𝑖,𝑗 = 0 using one or multiple

iterations of presolve operations, e.g., using the forward-backward domain propagation in Alg. 2. Similarly, the lower and upper
bounds

̄
𝑧1𝑖 ≤ 𝑧𝑖 ≤ �̄�1𝑖 for 𝑖 = 0,… , 𝑁 have been deduced from setting 𝑢𝑖,𝑗 = 1. Our tailored implementation of binary variable

probing in Alg. 6 is based on following observations:
• If both 𝑢𝑖,𝑗 = 0 and 𝑢𝑖,𝑗 = 1 leads to an infeasible problem ⇐⇒ problem is infeasible
• If 𝑢𝑖,𝑗 = 0 leads to infeasible problem ⇐⇒ 𝑢𝑖,𝑗 = 1 and

̄
𝑧𝑖,𝑘 = ̄

𝑧1𝑖,𝑘, �̄�𝑖,𝑘 = �̄�1𝑖,𝑘, 𝑖 = 0,… , 𝑁, 𝑘 = 1,… , (𝑛x + 𝑛u)

• If 𝑢𝑖,𝑗 = 1 leads to infeasible problem ⇐⇒ 𝑢𝑖,𝑗 = 0 and
̄
𝑧𝑖,𝑘 = ̄

𝑧0𝑖,𝑘, �̄�𝑖,𝑘 = �̄�0𝑖,𝑘, 𝑖 = 0,… , 𝑁, 𝑘 = 1,… , (𝑛x + 𝑛u)

• Bound values updated for each variable
̄
𝑧𝑖,𝑘 = min{

̄
𝑧0𝑖,𝑘, ̄

𝑧1𝑖,𝑘} and �̄�𝑖,𝑘 = max{�̄�0𝑖,𝑘, �̄�
1
𝑖,𝑘}, 𝑖 = 0,… , 𝑁, 𝑘 = 1,… , (𝑛x+𝑛u)

• If ∃𝑘 ∶
̄
𝑧0𝑖,𝑘 = �̄�0𝑖,𝑘 and

̄
𝑧1𝑖,𝑘 = �̄�1𝑖,𝑘 ⇐⇒ 𝑧𝑖,𝑘 can be substituted as 𝑧𝑖,𝑘 = �̄�0𝑖,𝑘 + (�̄�1𝑖,𝑘 − �̄�

0
𝑖,𝑘) 𝑢𝑖,𝑗

For simplicity, the last observation is not included in Alg. 6. Binary variable probing is a relatively simple strategy that can be
very effective at reducing the B&B search tree, but it can become computationally expensive. Therefore, a limit on the number
of probing iterations, 𝑛 < 𝑛probing (see Line 5 and Line 11), and/or a timeout is needed to ensure computational efficiency.

14 R. QUIRYNEN ET AL

Algorithm 5 Block-sparse inequality constraint coefficient strengthening
Input: Bound values [

̄
𝑧𝑖, �̄�𝑖], 𝐸𝑖 =

[

𝐶𝑖 𝐷𝑖
], [
̄
𝑐𝑖, 𝑐𝑖], 𝑖 ∈ {0,… , 𝑁} and MIQP of the form (1).

1: for 𝑖 = 0,… , 𝑁 do
2: ̃̄𝑐 ← 𝑐𝑖 −

(

𝐸+
𝑖 �̄�𝑖 + 𝐸

−
𝑖 ̄
𝑧𝑖
) and ̃

̄
𝑐 ←

(

𝐸+
𝑖 ̄
𝑧𝑖 + 𝐸−

𝑖 �̄�𝑖
)

−
̄
𝑐𝑖. ⊳ Inequality constraints:

̄
𝑐𝑖 ≤ 𝐸𝑖𝑧𝑖 ≤ 𝑐𝑖

3: for 𝑗 = 1,… , 𝑛u and if 𝑢𝑖,𝑗 is integer ∧ ‖�̄�𝑖,𝑗 − ̄
𝑢𝑖,𝑗‖ > 𝜖 then do

4: for 𝑘 = 1,… , 𝑛c do
5: if 𝑐𝑖,𝑘 < 𝜖max ∧

̄
𝑐𝑖,𝑘 < −𝜖max then

6: 𝑑 ← ̃̄𝑐𝑘 + |𝐷𝑖,𝑘,𝑗|
(

�̄�𝑖,𝑗 − ̄
𝑢𝑖,𝑗

).
7: if 𝑑 > 𝜖 ∧ 𝐷𝑖,𝑘,𝑗 > 𝜖 then
8: 𝐷𝑖,𝑘,𝑗 ← 𝐷𝑖,𝑘,𝑗 − 𝑑 and 𝑐𝑖,𝑘 ← 𝑐𝑖,𝑘 − 𝑑 �̄�𝑖,𝑗 . ⊳ Strengthening of coefficient 𝐷𝑖,𝑘,𝑗
9: else if 𝑑 > 𝜖 ∧ 𝐷𝑖,𝑘,𝑗 < −𝜖 then

10: 𝐷𝑖,𝑘,𝑗 ← 𝐷𝑖,𝑘,𝑗 + 𝑑 and 𝑐𝑖,𝑘 ← 𝑐𝑖,𝑘 + 𝑑 ̄
𝑢𝑖,𝑗 . ⊳ Strengthening of coefficient 𝐷𝑖,𝑘,𝑗

11: end if
12: else if

̄
𝑐𝑖,𝑘 > −𝜖max ∧ 𝑐𝑖,𝑘 > 𝜖max then

13: 𝑑 ← ̃
̄
𝑐𝑘 + |𝐷𝑖,𝑘,𝑗|

(

�̄�𝑖,𝑗 − ̄
𝑢𝑖,𝑗

).
14: if 𝑑 > 𝜖 ∧ 𝐷𝑖,𝑘,𝑗 > 𝜖 then
15: 𝐷𝑖,𝑘,𝑗 ← 𝐷𝑖,𝑘,𝑗 − 𝑑 and

̄
𝑐𝑖,𝑘 ← ̄

𝑐𝑖,𝑘 − 𝑑 ̄
𝑢𝑖,𝑗 . ⊳ Strengthening of coefficient 𝐷𝑖,𝑘,𝑗

16: else if 𝑑 > 𝜖 ∧ 𝐷𝑖,𝑘,𝑗 < −𝜖 then
17: 𝐷𝑖,𝑘,𝑗 ← 𝐷𝑖,𝑘,𝑗 + 𝑑 and

̄
𝑐𝑖,𝑘 ← ̄

𝑐𝑖,𝑘 + 𝑑 �̄�𝑖,𝑗 . ⊳ Strengthening of coefficient 𝐷𝑖,𝑘,𝑗
18: end if
19: end if
20: end for
21: end for
22: end for
Output: Updated constraint bound values [

̄
𝑐𝑖, 𝑐𝑖] and matrices 𝐷𝑖, 𝑖 ∈ {0,… , 𝑁}.

4.6 Exact Block-sparse Presolve Procedure
Finally, we summarize our tailored block-sparse presolve procedure for optimal control structured MIQPs in Alg. 7, which
should be called in each node of the B&B method (see Figure 1) before solving the convex relaxation. Each iteration of Alg. 7
includes the following block-sparse presolve operations:

1. Update variable bound values [
̄
𝑧𝑖, �̄�𝑖], using forward-backward domain propagation in Alg. 2 (Line 3).

2. Update bound values [
̄
𝑧𝑖, �̄�𝑖] and [

̄
𝑐𝑖, 𝑐𝑖], using redundant inequality constraint detection in Alg. 4 (Line 4).

3. Update bound values [
̄
𝑐𝑖, 𝑐𝑖] and matrices 𝐷𝑖, using constraint coefficient strengthening in Alg. 5 (Line 5).

4. If probing is enabled and allowed (see Line 6 of Alg. 7), use binary variable probing in Alg. 6 (Line 7).
The block-sparse presolve procedure in Alg. 7 is an iterative procedure that typically requires multiple iterations, because each
operation may result in a tightening of a continuous or discrete variable bound or constraint that in turn may result in further
tightenings in the subsequent iterations. The iterative procedure terminates immediately if any of the presolve operations detects
an infeasibility. Alternatively, our termination condition on Line 2 of Alg. 7 is based on whether a particular measure of progress
is sufficient or not. For example, progress can be measured by the number of variables that are fixed and/or the amount by which
continuous or discrete variable bounds are tightened from one iteration to a next. The presolve procedure continues as long as
one or multiple variable bounds are tightened sufficiently from one iteration to the next, i.e., if sufficient_progress is true
on Line 2 of Alg. 7. However, after a minimum number of iterations, the algorithm may terminate if no new variable is fixed in
the latest iteration, to avoid performing an excessive number of iterations for incremental tightening of the continuous variable
bounds. Due to the relatively high computational cost of binary variable probing in Alg. 6, probing is performed only when the
amount of progress that is made by other presolve operations is not sufficient and a maximum number of iterations has not been
reached, see Line 6 of Alg. 7. The overall goal of the presolve procedure is that the total time spent for removing variables and

R. QUIRYNEN ET AL 15

Algorithm 6 Block-sparse binary variable probing procedure
Input: Bound values [

̄
𝑧𝑖, �̄�𝑖], 𝑖 ∈ {0,… , 𝑁} and MIQP of the form (1).

1: for 𝑖 = 0,… , 𝑁 do
2: for 𝑗 = 1,… , 𝑛u and if 𝑢𝑖,𝑗 is binary ∧ ‖�̄�𝑖,𝑛x+𝑗 − ̄

𝑧𝑖,𝑛x+𝑗‖ > 𝜖 then do
3: [

̄
𝑧0, �̄�0] ← [

̄
𝑧, �̄�] and �̄�0𝑖,𝑛x+𝑗 ← ̄

𝑧0𝑖,𝑛x+𝑗 . ⊳ Probing variable 𝑢𝑖,𝑗 to lower bound
4: infeasible_0 ← false and 𝑛← 0.
5: while sufficient_progress ∧ !infeasible_0 ∧ 𝑛 < 𝑛probing do
6: Update bound values [

̄
𝑧0𝑖 , �̄�

0
𝑖], 𝑖 ∈ {0,… , 𝑁} using forward-backward process in Alg. 2.

7: infeasible_0 ← infeasible_flag for [
̄
𝑧0, �̄�0] and 𝑛← 𝑛 + 1.

8: end while
9: [

̄
𝑧1, �̄�1] ← [

̄
𝑧, �̄�] and

̄
𝑧1𝑖,𝑛x+𝑗 ← �̄�1𝑖,𝑛x+𝑗 . ⊳ Probing variable 𝑢𝑖,𝑗 to upper bound

10: infeasible_1 ← false and 𝑛← 0.
11: while sufficient_progress ∧ !infeasible_1 ∧ 𝑛 < 𝑛probing do
12: Update bound values [

̄
𝑧1𝑖 , �̄�

1
𝑖], 𝑖 ∈ {0,… , 𝑁} using forward-backward process in Alg. 2.

13: infeasible_1 ← infeasible_flag for [
̄
𝑧1, �̄�1] and 𝑛← 𝑛 + 1.

14: end while
15: if infeasible_0 ∧ infeasible_1 then
16: return infeasible_flag ⊳ QP subproblem infeasible
17: else if infeasible_0 then
18: [

̄
𝑧, �̄�] ← [

̄
𝑧1, �̄�1]. ⊳ Fix variable 𝑢𝑖,𝑗 to upper bound and update all values

19: else if infeasible_1 then
20: [

̄
𝑧, �̄�] ← [

̄
𝑧0, �̄�0]. ⊳ Fix variable 𝑢𝑖,𝑗 to lower bound and update all values

21: else
22: [

̄
𝑧, �̄�] ← [min{

̄
𝑧0,

̄
𝑧1},max{�̄�0, �̄�1}]. ⊳ Update all bound values

23: end if
24: end for
25: end for
Output: Updated bound values [

̄
𝑧𝑖, �̄�𝑖], 𝑖 ∈ {0,… , 𝑁}.

constraints and strengthening of bounds and coefficients, is considerably smaller than the reduction in B&B solution time that
is achieved by applying the presolve in each of the nodes.
Remark 3
Other presolving techniques such as cut generation are used in general-purpose MIQP solvers, e.g., see44. However, in the
present paper, we refrain from using cut generation techniques for two reasons. First, we assume that global cuts can be generated
offline and included in the MIQP formulation (1). Second, standard cutting plane techniques will usually produce inequalities
that couple variables across stages, which is undesirable for our block-sparsity exploiting implementation.

5 HEURISTIC PRESOLVE METHOD FOR MIXED-INTEGER OPTIMAL CONTROL

Exact presolve techniques tighten constraints or prune a subset of decision variables by fixing them to the optimal values, e.g.,
using domain propagation, coefficient strengthening, and probing as discussed in Section 4. For MIQPs, the development of
effective presolve methods in commercial solvers has proven crucial in accelerating computation times43. In this section, we
present a heuristic presolve method, which was originally proposed in24 to increase rate of feasibility for supervised learning,
but the approach is generalized here as a heuristic for quickly computing a feasible but suboptimal MIQP solution. The heuristic
can be used to compute an initial solution guess, i.e., an initial upper bound value that may result in additional pruning of nodes
and therefore speedup the B&B algorithm (e.g., see Figure 1) or to implement a fast but suboptimal MI-MPC method.

16 R. QUIRYNEN ET AL

Algorithm 7 Block-sparse presolve procedure for optimal control structured MIQP
Input: Optimal control structured MIQP subproblem of the form in (1), and probing ∈ {true, false}.

1: 𝑛← 0.
2: while sufficient_progress ∧ !infeasible ∧ 𝑛 < 𝑛max do
3: Update bound values [

̄
𝑧𝑖, �̄�𝑖], 𝑖 ∈ {0,… , 𝑁} using forward-backward sweep in Alg. 2.

4: Update bound values [
̄
𝑧𝑖, �̄�𝑖] and constraint values [

̄
𝑐𝑖, 𝑐𝑖], 𝑖 ∈ {0,… , 𝑁} using Alg. 4.

5: Update constraint bound values [
̄
𝑐𝑖, 𝑐𝑖] and matrices 𝐷𝑖, 𝑖 ∈ {0,… , 𝑁} using Alg. 5.

6: if !infeasible ∧ probing ∧ !sufficient_progress ∧ 𝑙 < 𝑙max then
7: Update bound values [

̄
𝑧𝑖, �̄�𝑖], 𝑖 ∈ {0,… , 𝑁} using binary variable probing in Alg. 6.

8: probing← false.
9: end if

10: 𝑛← 𝑛 + 1.
11: end while
Output: Updated MIQP data with tightened constraints or subproblem is detected to be infeasible.

5.1 Abstract Definition of a Single Presolve Step
We refer to the parametric MIQP in (1) as (𝜃), in which the problem parameters 𝜃 can include the current state estimate �̂�0,
and we use 𝛿 ∈ ℤ𝑁𝛿 to denote the discrete optimization variables in (1e). In addition, we use the compact notation (𝜃, 𝛿 = 𝛿)
in the following abstract definition of a presolve step, to denote the MIQP (3) after fixing 𝛿𝑖 = 𝛿𝑖, 𝑖 ∈ for an index set .
Definition 5 (Single Presolve Step)
Given the problem (𝜃) and a set of integer values {𝛿𝑖}𝑖∈ for the index set ⊆ {1,… , 𝑁𝛿}, the presolve step computes

{flag, 𝛿+,+} ← Presolve((𝜃), 𝛿,), (23)
resulting in updated integer values {𝛿+𝑖 }𝑖∈+ for the index set + ⊆ {1,… , 𝑁𝛿}, for which following conditions are satisfied:

1. The new set of indices includes at least the original set, i.e., ⊆ +.
2. Problem (𝜃, 𝛿+ = 𝛿+) is infeasible or unbounded, i.e., flag = False, only if (𝜃, 𝛿 = 𝛿) is infeasible or unbounded.
3. Any feasible or optimal solution of (𝜃, 𝛿+ = 𝛿+) can be mapped to a feasible or optimal solution of (𝜃, 𝛿 = 𝛿), and

their objective values are identical.

A presolve routine applied to a root node in B&B corresponds to Definition 5 with = ∅. In general, presolve cannot prune
all of the binary or integer decision variables, but it can often lead to a reduced problem that is significantly faster to solve. For
example, the presolve step can be defined by the block-sparse implementation in Alg. 7.

5.2 Iterative Procedure for Heuristic Presolve Method
One heuristic approach to compute a feasible but possibly suboptimal MIQP solution is to construct a solution guess 𝛿 for all
discrete variables 𝛿 in (1), followed by solving the convex QP that results from fixing each variable 𝛿𝑖 = 𝛿𝑖 for 𝑖 = 1,… , 𝑁𝛿 .
The solution guess 𝛿 can be constructed in multiple ways, for example, by shifting the optimal MIQP solution from the previous
to the next time step or by rounding a solution of the convex QP relaxation at the root node to the nearest integer solution.
Alternatively, supervised learning can be used to train a recurrent neural network architecture24 to make accurate predictions
of the optimal values for the discrete variables in the MIQP problem (𝜃). Given such a discrete solution guess 𝛿, we present
a heuristic presolve method that can be used to compute an updated solution guess 𝛿PS with increased likelihood of finding a
feasible and close to optimal MIQP solution by solving the resulting convex QP.

As illustrated in Figure 2, we propose to use a heuristic presolve method that aims to correct values in the discrete solution
guess 𝛿, given that the presolve operation can provide additional fixings that preserve feasibility and optimality; see Definition 5.
Our key insight is that if presolve prunes a subset of the integer variables that can be fixed to the optimal values, then the discrete
solution guess 𝛿 only needs to be used to fix any remaining integer decision variables, reducing the risk of causing infeasibility.
The proposed method can be used to improve any existing heuristic, e.g., when presolve prunes an integer variable 𝛿𝑖 for which

R. QUIRYNEN ET AL 17

the heuristic made an incorrect prediction that would have resulted in an infeasible solution. Algorithm 8 describes the proposed
heuristic presolve method given a candidate integer solution 𝛿 for a particular vector of problem parameters 𝜃. Let be the index
set of pruned decision variables (i.e., 𝛿𝑖 for 𝑖 ∈ are fixed), || is the number of pruned integer decision variables, and , 𝛿PS
are initialized as empty sets (Line 1). The presolve step is then called (Line 3) and returns whether infeasibility was detected, an
updated set of indices , and corresponding values 𝛿PS. Algorithm 8 terminates if all of the integer variables have been fixed
(Line 5) or if infeasibility is detected (Line 4). Otherwise, one of the remaining free integer variables 𝛿𝑗 for 𝑗 ∈ {1,… , 𝑁𝛿}⧵
is selected and fixed to the value in the original solution guess, i.e., 𝛿PS,𝑗 = 𝛿𝑗 (Line 6-8).

FIGURE 2 Heuristic presolve method to fix discrete optimization variables in MIQP.

In Algorithm 8, we denote 𝚅𝚊𝚛𝚂𝚎𝚕𝚎𝚌𝚝 as the procedure to choose the integer variable 𝛿𝑗 to fix next, which is closely related
to the variable selection policy in B&B routines. We will further illustrate the performance of the heuristic presolve method in
Alg. 8 in combination with rounding of the relaxed QP solution at the root node to the nearest integer solution. In this case, the
variable selection strategy 𝚅𝚊𝚛𝚂𝚎𝚕𝚎𝚌𝚝 can select a remaining free integer variable, for which the relaxed QP solution is closest
to integer feasible, i.e., the variable for which the difference with the value after rounding is smallest. Algorithm 8 is an iterative
procedure, which calls our tailored presolve routine in Alg. 7 at each iteration (Line 3). At an increased computational cost, one
can use the binary variable probing strategy in Alg. 6 specifically for the selected variable 𝛿𝑗 , see Line 7 of Alg. 8, in order to
check whether the variable can be fixed based on probing before fixing it to the value in the solution guess. Alternatively, one
could skip the presolve call when a particular limit on the computation time has been reached, i.e., such that all remaining free
integer variables are fixed directly to their corresponding values in the solution guess (Line 8).

Algorithm 8 Iterative Procedure for Heuristic Presolve Method
Input: Candidate integer solution 𝛿, problem parameters 𝜃.

1: Initialize set of pruned integer variables ← ∅ and values 𝛿PS ← ∅.
2: for 𝑖 ∈ {1,… , 𝑁𝛿} do
3: {flag, 𝛿PS,} ← Presolve((𝜃), 𝛿PS,) in Alg. 7.
4: if flag == False then return (False, 𝛿PS).
5: if || == 𝑁𝛿 then return (True, 𝛿PS).
6: 𝑗 ← 𝚅𝚊𝚛𝚂𝚎𝚕𝚎𝚌𝚝({1,… , 𝑁𝛿} ⧵).
7: Optional: perform binary variable probing in Alg. 6 specifically for 𝛿𝑗 .
8: if 𝛿𝑗 not fixed by probing then fix integer variable 𝛿PS,𝑗 = 𝛿𝑗 , ← ∪ {𝑗}.
9: end for

Output: Updated integer solution guess 𝛿PS.

6 PRACTICAL CONSIDERATIONS FOR EMBEDDED MIXED-INTEGER MPC

In embedded real-time applications of mixed-integer MPC (MI-MPC), one needs to solve an MIQP (1) at each sampling instant
under strict timing constraints. We can leverage the fact that we solve a sequence of similar problems, parametrized by the initial

18 R. QUIRYNEN ET AL

FIGURE 3 Illustration of the tree propagation technique for warm starting of the B&B method from one time step to the next
in the MI-MPC algorithm: index 𝑖 denotes the order in which each node 𝑃𝑖 is solved.

state value �̂�0, in order to warm-start the B&B algorithm. We refer to our warm-starting procedure as tree propagation, which
was originally proposed in29, because the main goal is to “propagate” the B&B tree forward by one time step.

6.1 Branch-and-bound Tree Propagation for Warm Starting
The warm-starting procedure aims to use knowledge of one MIQP solution, i.e., the search tree after solving the problem, in
order to improve the B&B search for the next MIQP33,45. Our approach is to store the path from the root to the leaf node where
the optimal solution to the MIQP was found, as well as the order in which the variables are branched. This is based on the
knowledge that the branching order is crucial for the efficiency of any B&B method37. We then perform a shifting and update
of this path in order to obtain a warm-started tree to start our B&B search at the next time step. We illustrate this procedure in
Figure 3, where the optimal path at the current time step is denoted by the sequence of nodes 𝑃0 → 𝑃1 → 𝑃3 → 𝑃5 → 𝑃6. Let
us consider a corresponding sequence of variables 𝑢2 → 𝑢3 → 𝑢0 → 𝑢1 that we branched on in order to find the optimal solution
at the leaf node 𝑃6. After shifting by one time step, all branched variables in the first control interval can be ignored. Assuming
the index refers to the time step in the control horizon, this results in a shifted and shorter path of variables 𝑢1 → 𝑢2 → 𝑢0.

After obtaining a new state estimate �̂�0, we execute the block-sparse presolve routine in Alg. 7 and we solve the convex QP
relaxation corresponding to the root node. Given the warm-started tree and the relaxed solution at the root node, we remove
nodes that correspond to branched variables that are already integer feasible in the solution at the root node. The shifted MIQP
solution from the previous time step can be used to fix all integer variables at the current time step and solve the resulting convex
QP, which may result in a feasible solution and therefore an upper bound for the B&B method. Alternatively or in addition, the
heuristic presolve method in Alg. 8 can be used to compute a feasible solution and possibly a tighter B&B upper bound. We
proceed by solving all the leaf nodes on the warm-started path. As we solve both children of a node on this path, we do not have to
solve the parent node itself and therefore we reduce computations by solving fewer QP relaxations. We process the warm-started
tree in the order depicted by the index of each node in Fig. 3, after which we resume normal procedure of the B&B method.

We can additionally shift and re-use the pseudo-cost information from one MPC time step to the next, in order to make better
branching decisions without the need for computationally expensive strong branching. The propagation of pseudo-costs can be
coupled with an update of the reliability parameters in order to discount relatively old pseudo-cost information, which may help
to avoid increasing the worst-case computation time by making a bad branching decision. The reliability number may be reduced
for each variable from one time step to the next, in order to force strong branching for variables that have not been branched on
in a sufficiently long time. In addition, nodes can be removed from the warm-started path in case they correspond to branched
variables for which there is no pseudo-cost information or it is not sufficiently reliable, in an attempt to avoid bad branching
decisions in the B&B method. Finally, these warm-started pseudo-costs can also be used to re-order the warm-started tree to
improve the branching order and hopefully result in smaller B&B search tree sizes.

R. QUIRYNEN ET AL 19

6.2 Embedded Software Implementation for MI-MPC
We refer to the proposed MI-MPC algorithm as BB-ASIPM, since it combines a B&B method with tailored block-sparse presolve
techniques and ASIPM to solve the convex QP relaxations. At each control time step, it solves an MIQP where the B&B tree and
the pseudo-cost information are warm-started. The B&B strategy and the tailored block-sparse presolve methods, the warm-
start and heuristic branching techniques, as well as the ASIPM solver have all been implemented in self-contained C code, which
allows for real-time implementations on embedded control hardware. In addition to the presented techniques to speed up a B&B
method for MI-MPC, multiple heuristic techniques can be used to achieve real-time feasibility. For example, an upper bound
on the number of B&B iterations can be imposed to ensure a maximum computation time and to allow the MI-MPC controller
to use a feasible but suboptimal solution instead. If an integer-feasible solution has been found, e.g., based on warm-starting
in Fig. 3 or the heuristic presolve method in Alg. 8, a B&B method can provide a bound on its suboptimality. Alternatively or
in addition, an integer horizon can be introduced, i.e., integer feasibility could be enforced on the first 𝑀 < 𝑁 stages in (1e).
The latter can drastically reduce computation times at the cost of an approximation error as discussed in31, Sec. 4.2. However, the
investigation of such additional heuristics is beyond the scope of the present paper.

7 CASE STUDIES: MIXED-INTEGER MPC SIMULATION RESULTS

Let us illustrate the computational performance of BB-ASIPM against multiple state-of-the-art MIQP solvers for two numerical
case studies of mixed-integer optimal control applications. In addition, we will illustrate the performance of the heuristic presolve
method to compute a feasible but possibly suboptimal solution in real time. The two benchmark problems include: (1) mobile
robot motion planning with obstacle avoidance constraints and (2) an underactuated cart-pole with soft contacts. All computation
times in Section 7.1 are obtained on a MacBook Pro (16-inch, 2019), with 2.4GHz 8-Core Intel Core i9 processor. The numerical
results in Section 7.2 are obtained using hardware-in-the-loop (HIL) simulations on a dSPACE Scalexio rapid prototyping unit,
with a DS6001 Processor Board for real-time processing56.

7.1 Mixed-integer Optimal Control for Motion Planning with Obstacle Avoidance
The first case study concerns the time-optimal motion planning, using a simple kinematic model for a mobile robot, taking into
account collision avoidance constraints based on an MIQP formulation that is similar to the benchmark example from24.

7.1.1 Problem Formulation
We formulate an MIOCP of the form in (1), where the state vector is defined as 𝑥 = [𝑝x 𝑝y 𝑣x 𝑣y 𝑔s]⊤, i.e., 𝑛x = 5, including
the 2D position (𝑝x, 𝑝y) and velocity vector (𝑣x, 𝑣y) of the robot and including a binary state 𝑔s ∈ {0, 1} that indicates whether
the goal has been reached. The discrete-time state dynamics in (1b) read as

𝑥𝑖+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑝x𝑖+1
𝑝y𝑖+1
𝑣x𝑖+1
𝑣y𝑖+1
𝑔s𝑖+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 𝑇s 0 0
0 1 0 𝑇s 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑝x𝑖
𝑝y𝑖
𝑣x𝑖
𝑣y𝑖
𝑔s𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
𝑇s 0 0
0 𝑇s 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑎x𝑖
𝑎y𝑖
𝛿g𝑖

⎤

⎥

⎥

⎦

, (24)

where the control inputs are 𝑢 = [𝑎x 𝑎y 𝛿g]⊤, i.e., 𝑛u = 3, including the 2D acceleration vector (𝑎x, 𝑎y) and an auxiliary binary
variable 𝛿g𝑖 ∈ {0, 1} that determines whether the goal is reached at the time step 𝑖 ∈ {1,… , 𝑁} in the prediction horizon. The
inequality constraints (1d) include requirements on reaching the goal state as

𝑥goal −𝑀 (1 − 𝑔s𝑖) ≤ 𝑥𝑖,1∶4 ≤ 𝑥goal +𝑀 (1 − 𝑔s𝑖), (25)

where 𝑀 > 0 is sufficiently large and 𝑥𝑖,1∶4 = [𝑝x𝑖 𝑝
y
𝑖 𝑣

x
𝑖 𝑣

y
𝑖]
⊤, which ensures the implication 𝑔s𝑖 = 1 ⇐⇒ 𝑥𝑖,1∶4 = 𝑥goal and we

additionally enforce that ∑𝑁−1
𝑖=0 𝛿g𝑖 = 1, and therefore 𝑔s𝑁 = 1 holds. As illustrated in Figure 4, we include collision avoidance

20 R. QUIRYNEN ET AL

constraints for rectangular obstacle shapes that are aligned with the axes for simplicity,
𝑝x,min
𝑗 −𝑀𝛿o,1𝑗 ≤ 𝑝x𝑖 ≤ 𝑝x,min

𝑗 +𝑀(1 − 𝛿o,1𝑗),

𝑝x,max
𝑗 −𝑀(1 − 𝛿o,2𝑗) ≤ 𝑝x𝑖 ≤ 𝑝x,max

𝑗 +𝑀𝛿o,2𝑗 ,

𝑝y,max
𝑗 −𝑀(1 − 𝛿o,4𝑗) ≤ 𝑝y𝑖 ≤ 𝑝y,min

𝑗 +𝑀(1 − 𝛿o,3𝑗),

𝑝x,min
𝑗 −𝑀(1 − 𝛿o,3𝑗 − 𝛿o,4𝑗) ≤ 𝑝x𝑖 ≤ 𝑝x,max

𝑗 +𝑀(1 − 𝛿o,3𝑗 − 𝛿o,4𝑗),

𝛿o,1𝑗 + 𝛿o,2𝑗 + 𝛿o,3𝑗 + 𝛿o,4𝑗 = 1,

(26)

where the bounds [𝑝x,min
𝑗 𝑝x,max

𝑗] and [𝑝y,min
𝑗 𝑝y,max

𝑗] define the rectangular avoidance zone for each obstacle 𝑗 = 1,… , 𝑛obs. As
can be observed in Figure 4, the obstacle avoidance constraints in (26) are enforced pointwise in time, and each exclusion zone
includes appropriate margins to account for the physical dimension of the mobile robot and to account for discretization errors.
The cost function 1a for this numerical case study reads as

𝑁−1
∑

𝑖=0

(

𝑖 𝛿g𝑖 + ‖𝑢𝑖,1∶2‖
2
𝑅

)

+
𝑁
∑

𝑖=0
‖𝑥𝑖,1∶4 − 𝑥goal‖2𝑄, (27)

where the first term accounts for minimizing the time step at which the goal is reached and minimizing the acceleration inputs
𝑢𝑖,1∶2 = [𝑎x𝑖 𝑎

y
𝑖]
⊤, and the second term accounts for minimizing the state error with respect to the goal state.

FIGURE 4 Illustration of the MIP-based motion planning case study: the optimal trajectories for a horizon length 𝑁 = 20 are
depicted in blue, given four rectangular obstacle shapes, multiple initial positions and a fixed goal position. The obstacle avoid-
ance constraints are enforced pointwise in time, i.e., for each discrete time step of the trajectories, and the obstacle dimensions
include appropriate margins to account for discretization errors and to account for the physical shape of the mobile robot.

7.1.2 MIQP Solver: Numerical Results
We illustrate the computational performance of the proposed MIQP solver by solving multiple MIOCPs for motion planning
with obstacle avoidance for a varying number of obstacles 𝑛obs, a varying horizon length 𝑁 and varying initial state values
�̂�0. In particular, the number of obstacles is selected to be in the range 𝑛obs ∈ [1, 4] and the horizon length 𝑁 ∈ [6, 20]. The
MIOCP for each horizon length and for each number of obstacles is solved for 200 different initial state values, sampled from
a uniform distribution where 0 ≤ 𝑝x0 ≤ 10 and 0 ≤ 𝑝y0 ≤ 10, excluding the avoidance regions. In addition to our proposed
BB-ASIPM solver, the MIOCPs are solved using the state-of-the-art solvers GUROBI41, MOSEK42, GLPK49, Cbc50, and Matlab’s
intlinprog. Because the solvers GLPK, Cbc, and intlinprog do not provide direct support for the solution of MIQPs, we
present numerical results for solving a mixed-integer linear programming (MILP) approximation with these particular software
tools instead. Figure 5 shows the average computation time of the resulting MIOCP solutions for 200 randomly sampled initial

R. QUIRYNEN ET AL 21

state values, for each of the numbers of obstacles 𝑛obs ∈ [1, 4] and for each horizon length𝑁 ∈ [6, 20]. As expected, the average
computation time for motion planning grows rapidly with the number of obstacles 𝑛obs and with the horizon length 𝑁 , due to
the increasing number of binary optimization variables 𝑛bin = 𝑁

(

1 + 4 𝑛obs
) in the considered MIOCP formulation.

6 8 10 12 14 16 18 20

Planning horizon length

10
-3

10
-2

10
-1

C
P

U
 t

im
e

 [
s
]

1 obstacle

GUROBI

BB-ASIPM

MOSEK

INTLINPROG

GLPK

CBC

6 8 10 12 14 16 18 20

Planning horizon length

10
-3

10
-2

10
-1

C
P

U
 t

im
e

 [
s
]

2 obstacles

GUROBI

BB-ASIPM

MOSEK

INTLINPROG

GLPK

CBC

6 8 10 12 14 16 18 20

Planning horizon length

10
-3

10
-2

10
-1

C
P

U
 t

im
e

 [
s
]

3 obstacles

GUROBI

BB-ASIPM

MOSEK

INTLINPROG

GLPK

CBC

6 8 10 12 14 16 18 20

Planning horizon length

10
-2

10
-1

C
P

U
 t

im
e

 [
s
]

4 obstacles

GUROBI

BB-ASIPM

MOSEK

INTLINPROG

GLPK

CBC

FIGURE 5 Average computation times for MIP-based motion planning case study for 1, 2, 3 and 4 obstacles, using a varying
horizon length 𝑁 ∈ [6, 20], and using solvers GUROBI, MOSEK, intlinprog, GLPK, Cbc and the proposed BB-ASIPM solver.
Note that each of the solvers computes the globally optimal solution of the MIP.

For this particular case study, the numerical results in Figure 5 show that our proposed BB-ASIPM is the fastest solver for all
horizon lengths 𝑁 ∈ [6, 20], when 𝑛obs = 1 and 𝑛obs = 2. The state-of-the-art commercial solver GUROBI becomes faster for
𝑛obs ≥ 3 obstacles and it will likely continue to outperform the BB-ASIPM solver for larger problem dimensions, because GUROBI
includes many advanced cutting plane techniques and heuristics41 that are not implemented in the BB-ASIPM solver. However,
BB-ASIPM remains relatively competitive and it outperforms the other state-of-the-art solvers even for larger MIOCPs with up
to 𝑛bin = 340 binary optimization variables for 𝑁 = 20 and 𝑛obs = 4, in this particular case study. These results confirm that
our proposed BB-ASIPM solver can be competitive with state-of-the-art MIP solvers, even though the software implementation
of BB-ASIPM is relatively compact and self-contained such that it can be executed on an embedded microprocessor for real-time
applications of mixed-integer optimal control, e.g., for real-time motion planning with obstacle avoidance constraints. Instead,
state-of-the-art optimization tools, such as GUROBI typically cannot be used on embedded control hardware with limited com-
putational resources and with limited memory10. Some results of using BB-ASIPM on the dSPACE Scalexio rapid prototyping
unit will be illustrated further in Section 7.2.
Remark 4
Advanced presolve and heuristic options have been activated for each of the state-of-the-art software tools, resulting in fair

22 R. QUIRYNEN ET AL

computational comparisons. However, because the C code implementation of the BB-ASIPM solver is a single-threaded process,
the computation times in this paper are based on single-threaded processing for all MIP solvers. Similar to state-of-the-art
B&B methods, parallel processing could be used to speed up computations in the BB-ASIPM solver, by solving QP relaxations
corresponding to multiple nodes in the B&B tree simultaneously. This remains outside the scope of the present paper.

7.1.3 Heuristic Presolve Method: Numerical Results
Table 1 shows the average computation time of using GUROBI, MOSEK, or BB-ASIPM to solve the MIOCPs for 200 randomly sam-
pled initial state values, for each of the numbers of obstacles 𝑛obs ∈ {1, 3, 5, 7} and for different horizon lengths𝑁 ∈ {6, 12, 18}.
In particular, Table 1 also reports the average computation time for the Heuristic-presolve technique in Algorithm 8. The
candidate binary solution 𝛿, which is an important input that strongly affects the performance of Algorithm 8, is computed by
rounding the relaxed QP solution at the root node to the nearest integer solution for the numerical results in Table 1. Since the
Heuristic-presolve method cannot guarantee to find the globally optimal solution, and it may even fail to find a feasible
solution of the MIQP, Table 1 reports the rate of infeasibility and suboptimality as

Infeasibility = 100
𝑛fail
𝑛sample

[%], Suboptimality = 100 𝐽 − 𝐽⋆
𝐽⋆

[%], (28)

where 𝑛sample = 200, 𝐽⋆ is the globally optimal objective value for a particular MIQP and 𝐽 is the objective value of a feasible
but potentially suboptimal solution to the same MIQP, i.e., 𝐽 ≥ 𝐽⋆. Similar to Figure 5, the numerical results in Table 1 show
that BB-ASIPM can outperform GUROBI for relatively small problems, but the GUROBI solver is faster for larger problem dimen-
sions. In addition, Table 1 illustrates how the proposed Heuristic-presolve technique can be used to compute a suboptimal
solution faster than the time needed to solve the same MIQP with either GUROBI, MOSEK or BB-ASIPM. The rate of infeasibil-
ity and suboptimality of Heuristic-presolve is small for most cases of this particular problem, but it can be observed that
these rates generally increase with the MIQP problem dimensions. It has been shown recently in24 that the performance of
Heuristic-presolve can be improved, i.e., the rate of infeasibility and suboptimality can be decreased, by using supervised
learning techniques. Specifically, the work in24 describes a framework based on deep recurrent neural networks in combination
with the Heuristic-presolve in Algorithm 8. The details of this are outside the scope of the present paper.

TABLE 1 Average computation times for MIP-based motion planning case study for 1, 3, 5 and 7 obstacles, with a varying hori-
zon length 𝑁 ∈ {6, 12, 18}, and using solvers GUROBI, MOSEK, BB-ASIPM and the proposed Heuristic-presolve technique
in Algorithm 8. We additionally report the rate of infeasibility and suboptimality in (28) for Heuristic-presolve.

GUROBI MOSEK BB-ASIPM Heuristic-presolve
Time [ms] Time [ms] Time [ms] Time [ms] Infeasibility [%] Suboptimality [%]

𝑁 = 6, 𝑛obs = 1 1.2 ms 4.1 ms 0.8 ms 0.7 ms 0.0 % 0.0 %
𝑁 = 6, 𝑛obs = 3 2.3 ms 13.6 ms 2.9 ms 1.4 ms 0.0 % 0.1 %
𝑁 = 6, 𝑛obs = 5 3.2 ms 34.7 ms 5.4 ms 2.4 ms 0.0 % 1.1 %
𝑁 = 6, 𝑛obs = 7 4.3 ms 46.8 ms 8.0 ms 3.6 ms 0.0 % 2.4 %
𝑁 = 12, 𝑛obs = 1 4.2 ms 22.2 ms 3.8 ms 2.1 ms 0.0 % 0.2 %
𝑁 = 12, 𝑛obs = 3 10.7 ms 75.3 ms 14.4 ms 5.7 ms 0.0 % 0.2 %
𝑁 = 12, 𝑛obs = 5 13.6 ms 126.2 ms 23.5 ms 8.5 ms 0.0 % 2.6 %
𝑁 = 12, 𝑛obs = 7 22.2 ms 220.9 ms 43.3 ms 15.4 ms 0.0 % 4.8 %
𝑁 = 18, 𝑛obs = 1 7.1 ms 35.8 ms 6.4 ms 3.1 ms 0.5 % 0.0 %
𝑁 = 18, 𝑛obs = 3 18.8 ms 140.3 ms 27.9 ms 8.5 ms 1.2 % 0.1 %
𝑁 = 18, 𝑛obs = 5 28.4 ms 264.8 ms 55.8 ms 15.8 ms 1.3 % 4.6 %
𝑁 = 18, 𝑛obs = 7 37.5 ms 333.6 ms 91.3 ms 26.0 ms 1.9 % 6.5 %

R. QUIRYNEN ET AL 23

(a) (b)

FIGURE 6 Illustration of the stabilization of an inverted pendulum on top of a cart with two soft walls that result in contact
forces in (a), and the dSPACE Scalexio rapid prototyping unit for hardware-in-the-loop simulations in (b).

7.2 Mixed-integer MPC for Stabilization of Inverted Pendulum with Soft Contacts
As a second case study, we consider MI-MPC for an inverted pendulum with soft contacts as shown in Fig. 6a, which is repre-
sentative of underactuated, multi-contact control problems57,58. Although MIOCPs form an attractive framework for modeling
such problems, controllers that can react and plan online for such systems are rarely real-time feasible or near-optimal17.

7.2.1 Problem Formulation
The cart-pole system with soft walls is often used as a benchmark problem for mixed-integer optimal control, e.g., see45,23 . This
standard hybrid control problem results in an MIQP of the form in (1), which is solved at each sampling time step of the MI-
MPC controller. Given the current state of the cart-pole system �̂�0, the aim is to use the horizontal forces of the cart to effectively
regulate an inverted pendulum towards the unstable equilibrium at the origin. The state vector is defined as 𝑥 = [𝑝c 𝜃p 𝑣c 𝜔p]⊤,
i.e., 𝑛x = 4, including the position 𝑝c and velocity 𝑣c of the cart, and the angle 𝜃p and angular velocity 𝜔p of the pendulum. The
force input applied to the cart is 𝐹 in ∈ ℝ and 𝐹 l, 𝐹 r ∈ ℝ are the contact forces transmitted by the soft walls on the left and right
of the cart-pole system, see Fig. 6a. The discrete-time state dynamics in (1b) read as

𝑥𝑖+1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑝c𝑖+1
𝜃p𝑖+1
𝑣c𝑖+1
𝜔p
𝑖+1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 𝑇s 0
0 1 0 𝑇s
0 𝑔 𝑚

p

𝑚c 1 0
0 𝑔 𝑚

c+𝑚p

𝑚c 𝑙
0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝c𝑖
𝜃p𝑖
𝑣c𝑖
𝜔p
𝑖

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
1
𝑚c 0 0
1
𝑚c 𝑙

− 1
𝑚p 𝑙

1
𝑚p 𝑙

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐹 in
𝑖
𝐹 l
𝑖
𝐹 r
𝑖

⎤

⎥

⎥

⎦

, (29)

which are linearized around the nominal angle of the pendulum 𝜃p = 0, and where 𝑔 is the gravitational acceleration, 𝑙 is the
length of the pendulum, and 𝑚c, 𝑚p are the mass of the cart and pole, respectively. We use the same parameter values as in45,
i.e., 𝑔 = 10, 𝑙 = 1, and 𝑚c = 𝑚p = 1. The inequality constraints (1d) include the following bounds on states and inputs

−𝑑 ≤ 𝑝c𝑖 ≤ 𝑑, − 𝜋
10

≤ 𝜃p𝑖 ≤
𝜋
10
, −1 ≤ 𝑣c𝑖 , 𝜔

p
𝑖 , 𝐹

in
𝑖 ≤ 1, (30)

where 𝑑 = 0.5 is half the distance between the two walls (see Fig. 6a). A linear approximation for the position of the tip of the
pole is 𝑝t𝑖 = 𝑝c𝑖 − 𝑙 𝜃

p
𝑖 , resulting in the relative distances 𝑠l𝑖 = −𝑑 − 𝑝t𝑖 and 𝑠r𝑖 = 𝑝t𝑖 − 𝑑 (each relative distance is positive in case

of penetration), and we additionally define the time derivatives �̇�l𝑖 = −𝑣c𝑖 + 𝑙 𝜔
p
𝑖 and �̇�r𝑖 = 𝑣c𝑖 − 𝑙 𝜔

p
𝑖 with respect to the left and

right wall, respectively. We use the piecewise-linear definition of the contact forces
𝐹 𝑗
𝑖 =

{

𝜅𝑠𝑗𝑖 + 𝜈�̇�
𝑗
𝑖 if 𝑠𝑗𝑖 ≥ 0 and 𝜅𝑠𝑗𝑖 + 𝜈�̇�

𝑗
𝑖 ≥ 0,

0 otherwise, (31)
for each of the soft walls 𝑗 ∈ {l, r}, where 𝜅 = 100 is the stiffness and 𝜈 = 10 is the damping in the contact model. As described
further in45, two binary indicator variables can be used to model each of the piecewise-linear functions in (31), resulting in a
total of 𝑛bin = 4𝑁 binary optimization variables in the considered MIOCP formulation.

7.2.2 MIQP Solver: Simulation Results on dSPACE Scalexio Hardware
We illustrate the performance of the embedded BB-ASIPM solver using closed-loop simulations on the dSPACE Scalexio rapid
prototyping unit, see Fig. 6b, where the MI-MPC controller solves the MIOCP at each control time step with a sampling time

24 R. QUIRYNEN ET AL

period 𝑇mpc
s = 0.1 s and 𝑁 = 8 control intervals. The cart-pole system is simulated using the linearized dynamics in (29) with

a smaller discretization time 𝑇s = 0.05 s, and the state feedback includes zero-mean Gaussian sensor noise 𝑤𝑖 ∼ (0, 𝜎2𝑥) with
covariance matrix 𝜎2𝑥 = diag(𝜎2𝑝c , 𝜎

2
𝜃p , 𝜎

2
𝑣c , 𝜎

2
𝜔p) and standard deviation values 𝜎𝑝c = 10−2, 𝜎𝜃p = 10−3, 𝜎𝑣c = 10−2 and 𝜎𝜔p = 10−3.

Figure 7 shows the resulting closed-loop MI-MPC trajectories for stabilization of the inverted pendulum with soft contacts, with
the initial state values 𝑝c0 = 0.25, 𝜃p0 = −0.05, 𝑣c0 = 0 and 𝜔p

0 = 0, and using the BB-ASIPM solver on the dSPACE Scalexio
rapid prototyping unit. For this particular set of initial state values, it can be seen from Figure 7 that the tip of the pendulum
makes contact with the right wall before making contact with the left wall, after which the MI-MPC controller stabilizes the
cart-pole system towards the unstable equilibrium at the origin. The behavior of the MI-MPC controller strongly depends on the
cost function and the horizon length in the MIOCP but, since the cart-pole system is just an illustrative case study, a thorough
tuning process remains outside the scope of the present paper. Figure 7 also shows the computation times and the number of
B&B iterations at each control time step. Finally, Table 2 shows the average and worst-case results for the computation times,
number of B&B iterations and total number of IPM iterations to solve the convex QP relaxations in the BB-ASIPM solver, using
four different sets of initial state values. It can be observed that the worst-case computation times of the BB-ASIPM solver on the
dSPACE Scalexio rapid prototyping unit remain below the sampling time period of 𝑇mpc

s = 0.1 s.

0 5 10 15

Time [s]

-0.5

0

0.5

P
o
s
it
io

n
 p

t [
m

]

0 5 10 15

Time [s]

-1

0

1

V
e
lo

c
it
y
 v

c
 [
m

]

0 5 10 15

Time [s]

-1

0

1

In
p
u
t
F

in

0 5 10 15

Time [s]

0

5

10

15

C
o
n
ta

c
t
fo

rc
e
s

Fl (left)

Fr (right)

0 5 10 15

Time [s]

0

0.01

0.02

0.03

C
P

U
 t
im

e
 [
s
]

0 5 10 15

Time [s]

0

10

20

30

B
&

B
 i
te

rs
 [
-]

FIGURE 7 Closed-loop MI-MPC trajectories of simulations for stabilization of the inverted pendulum with soft contacts, with
initial state values 𝑝c0 = 0.25 and 𝜃p0 = −0.05, and using the BB-ASIPM solver on dSPACE Scalexio rapid prototyping unit.
The red dashed lines in the upper left plot indicate the positions at which the tip of the pole penetrates the soft walls, i.e., when
𝑝t𝑖 ≤ −𝑑 or 𝑝t𝑖 ≥ 𝑑, corresponding to times when the contact forces in (31) can be nonzero from the left or right wall, respectively.

8 CONCLUSIONS AND OUTLOOK

We proposed a solver for mixed-integer optimal control problems aimed at achieving a real-time implementation of mixed-
integer model predictive control (MI-MPC) on embedded platforms based on tailored presolve methods, both exact techniques
and heuristics, and using a tailored solver for convex relaxations. In particular, we provided an overview of recent work on the
efficient implementation of infeasibility detection and early termination of an active-set based interior point method (ASIPM) for
convex quadratic programming. We then proposed a novel collection of block-sparse presolve techniques to efficiently remove
decision variables, and to remove or tighten inequality constraints in mixed-integer quadratic programming (MIQP). In addition,

R. QUIRYNEN ET AL 25

TABLE 2 Average and worst-case computational results of the BB-ASIPM solver using four different MI-MPC simulations for
stabilization of the inverted pendulum with soft contacts on the dSPACE Scalexio rapid prototyping unit.

Initial state value �̂�0 CPU time [ms] B&B iters [-] IPM iters [-]
mean max mean max mean max

𝑝c0 = 0.25 𝜃p0 = −0.05 2.1 ms 24.4 ms 3.2 28 39.2 569
𝑝c0 = 0.00 𝜃p0 = −0.05 2.3 ms 53.7 ms 3.2 48 43.4 1223
𝑝c0 = 0.00 𝜃p0 = 0.05 2.3 ms 59.5 ms 2.9 53 46.7 1406
𝑝c0 = −0.25 𝜃p0 = 0.05 1.8 ms 27.8 ms 2.4 25 34.4 693

we showed how the tailored presolve routine can be used in a novel iterative heuristic approach to compute feasible but possibly
suboptimal MIQP solutions. Based on a self-contained C code implementation of a branch-and-bound (B&B) method, in combi-
nation with these tailored presolve techniques and ASIPM, the resulting BB-ASIPM solver can be used to implement MI-MPC on
embedded microprocessors. We presented benchmarking results for the BB-ASIPM algorithm compared against state-of-the-art
MIQP solvers, including GUROBI, MOSEK, GLPK, Cbc, and Matlab’s intlinprog, based on a case study of mobile robot motion
planning with obstacle avoidance constraints. Finally, we demonstrated the computational performance of the BB-ASIPM solver
on a dSPACE Scalexio rapid prototyping unit, using a second case study of stabilization for an underactuated cart-pole with soft
contacts. Future work involves the validation of the BB-ASIPM solver in real-world experiments using the proposed MI-MPC
method for online trajectory generation, e.g., in combination with a standard MPC controller for reference tracking.
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Mayne D, Rawlings J. Model Predictive Control. Nob Hill . 2013.
2. Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints. Automatica 1999; 35: 407–427.
3. Marcucci T, Tedrake R. Mixed-Integer Formulations for Optimal Control of Piecewise-Affine Systems. In: Proc. ACM Int.

Conf. on Hybrid Systems: Computation and Control. ; 2019: 230–239.
4. Chen C, Culbertson P, Lepert M, Schwager M, Bohg J. TrajectoTree: Trajectory Optimization Meets Tree Search for

Planning Multi-Contact Dexterous Manipulation. In: IEEE/RSJ Int. Conf. on Intelligent Robots & Systems. ; 2021:
8262–8268.

5. Walsh A, Di Cairano S, Weiss A. MPC for Coupled Station Keeping, Attitude Control, and Momentum Management of
Low-Thrust Geostationary Satellites. In: Proc. American Control Conference (ACC). ; 2016: 7408–7413.

6. Landry B, Deits R, Florence PR, Tedrake R. Aggressive quadrotor flight through cluttered environments using mixed integer
programming. In: Proc. IEEE Conf. on Robotics and Automation. ; 2016: 1469-1475.

7. Sahin YE, Quirynen R, Di Cairano S. Autonomous Vehicle Decision-Making and Monitoring based on Signal Temporal
Logic and Mixed-Integer Programming. In: Proc. American Control Conference (ACC). ; 2020: 454-459.

8. Pia A, Dey S, Molinaro M. Mixed-integer quadratic programming is in NP. Mathematical programming 2017; 162: 225–
240.

9. Nemhauser GL, Wolsey LA. Integer and Combinatorial Optimization. New York, NY, USA: Wiley-Interscience . 1988.
10. Di Cairano S, Kolmanovsky IV. Real-time optimization and model predictive control for aerospace and automotive

applications. In: Amer. Control Conf. ; 2018: 2392–2409.

26 R. QUIRYNEN ET AL

11. Kirches C. Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Control. PhD thesis. Uni. Heidelberg,
2010.

12. Sager S, Bock H, Diehl M. Solving Mixed-integer Control Problems by Sum Up Rounding With Guaranteed Integer Gap.
SIAM Journal on Control and Optimization 2008.

13. Achterberg T, Berthold T. Improving the feasibility pump. Discrete Optimization 2007; 4(1): 77–86.
14. Diamond S, Takapoui R, Boyd S. A general system for heuristic minimization of convex functions over non-convex sets.

Optimization Methods and Software 2018; 33(1): 165-193.
15. Naik VV, Bemporad A. Embedded mixed-integer quadratic optimization using accelerated dual gradient projection. IFAC-

PapersOnLine 2017; 50(1): 10723–10728.
16. Stellato B, Geyer T, Goulart PJ. High-Speed Finite Control Set Model Predictive Control for Power Electronics. IEEE

Transactions on Power Electronics 2017; 32(5): 4007-4020.
17. Marcucci T, Deits R, Gabiccini M, Bicchi A, Tedrake R. Approximate hybrid model predictive control for multi-contact

push recovery in complex environments. In: IEEE-RAS Int. Conf. on Humanoid Robotics. ; 2017: 31-38.
18. Bengio Y, Lodi A, Prouvost A. Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon.

European Journal of Operations Research 2021; 290(2): 405–421.
19. Karg B, Lucia S. Deep learning-based embedded mixed-integer model predictive control. In: Proc. European Control

Conference (ECC). ; 2018: 2075-2080.
20. Masti D, Bemporad A. Learning binary warm starts for multiparametric mixed-integer quadratic programming. In: Proc.

European Control Conference (ECC). ; 2019: 1494-1499.
21. Bertsimas D, Stellato B. Online Mixed-Integer Optimization in Milliseconds. INFORMS Journal on Computing 2022; 34(4):

2229-2248.
22. Löhr Y, Klauco M, Fikar M, Mönnigmann M. Machine Learning Assisted Solutions of Mixed Integer MPC on Embedded

Platforms. IFAC-PapersOnLine 2020; 53(2): 5195-5200. 21st IFAC World Congress.
23. Cauligi A, Culbertson P, Schmerling E, Schwager M, Stellato B, Pavone M. CoCo: Online Mixed-Integer Control Via

Supervised Learning. IEEE Robotics and Automation Letters 2022; 7(2): 1447-1454.
24. Cauligi A, Chakrabarty A, Di Cairano S, Quirynen R. PRISM: Recurrent Neural Networks and Presolve Methods for Fast

Mixed-integer Optimal Control. In: . 168 of Proceedings of The 4th Annual Learning for Dynamics and Control Conference.
Proceedings of Machine Learning Research (PMLR); 2022: 34–46.

25. Borrelli F, Baotić M, Bemporad A, Morari M. Dynamic programming for constrained optimal control of discrete-time linear
hybrid systems. Automatica 2005; 41(10): 1709-1721.

26. Oberdieck R, Pistikopoulos EN. Explicit hybrid model-predictive control: The exact solution. Automatica 2015; 58: 152-
159.

27. Floudas CA. Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press . 1995.
28. Axehill D, Hansson A. A mixed integer dual quadratic programming algorithm tailored for MPC. In: Decision and Control,

2006 45th IEEE Conference on. IEEE. ; 2006: 5693–5698.
29. Hespanhol P, Quirynen R, Di Cairano S. A Structure Exploiting Branch-and-Bound Algorithm for Mixed-Integer Model

Predictive Control. In: Proc. European Control Conference (ECC). ; 2019: 2763-2768.
30. Quirynen R, Di Cairano S. PRESAS: Block-structured preconditioning of iterative solvers within a primal active-set method

for fast model predictive control. Optimal Control Applications and Methods 2020; 41(6): 2282-2307.

R. QUIRYNEN ET AL 27

31. Frick D, Domahidi A, Morari M. Embedded optimization for mixed logical dynamical systems. Computers & Chemical
Engineering 2015; 72: 21–33.

32. Axehill D, Hansson A. A dual gradient projection quadratic programming algorithm tailored for model predictive control.
In: IEEE Conference on Decision and Control. ; 2008: 3057-3064.

33. Bemporad A, Naik VV. A Numerically Robust Mixed-Integer Quadratic Programming Solver for Embedded Hybrid Model
Predictive Control. IFAC-PapersOnLine 2018; 51(20): 412-417. Proc. 6th IFAC NMPC Conf.

34. Stellato B, Naik VV, Bemporad A, Goulart P, Boyd S. Embedded mixed-integer quadratic optimization using the OSQP
solver. In: European Control Conference. ; 2018: 1536-1541.

35. Balcan MF, Dick T, Sandholm T, Vitercik E. Learning to Branch. In: Proceedings Int. Conf. on Machine Learning. ; 2018:
344–353.

36. Gerdts M. Solving mixed-integer optimal control problems by branch&bound: a case study from automobile test-driving
with gear shift. Optimal Control Appl. and Methods; 26(1): 1-18.

37. Achterberg T, Koch T, Martin A. Branching rules revisited. Operations Research Letters 2005; 33(1): 42–54.
38. Le Bodic P, Nemhauser G. An abstract model for branching and its application to mixed integer programming. Mathematical

Programming 2017; 166(1-2): 369–405.
39. Luo ZQ, Ma WK, So AMC, Ye Y, Zhang S. Semidefinite relaxation of quadratic optimization problems. IEEE Signal

Processing Magazine 2010; 27(3): 20–34.
40. Axehill D, Vandenberghe L, Hansson A. Convex relaxations for mixed integer predictive control. Automatica 2010; 46(9):

1540 - 1545.
41. Gurobi Optimization, LLC . Gurobi Optimizer Reference Manual. 2022. Accessed 8/15/22, www.gurobi.com.
42. MOSEK ApS . The MOSEK optimization toolbox for MATLAB manual. 2017.
43. Achterberg T, Bixby RE, Gu Z, Rothberg E, Weninger D. Presolve Reductions in Mixed Integer Programming. INFORMS

Journal on Computing 2019; 32(2): 473 – 506.
44. Achterberg T, Wunderling R. Mixed Integer Programming: Analyzing 12 Years of Progress: 449–481; Berlin, Heidelberg:

Springer Berlin Heidelberg . 2013.
45. Marcucci T, Tedrake R. Warm Start of Mixed-Integer Programs for Model Predictive Control of Hybrid Systems. IEEE

Transactions on Automatic Control 2021; 66(6): 2433-2448.
46. Frey J, Di Cairano S, Quirynen R. Active-Set based Inexact Interior Point QP Solver for Model Predictive Control. IFAC-

PapersOnLine 2020; 53(2): 6522-6528. 21st IFAC World Congress.
47. Liang J, Di Cairano S, Quirynen R. Early Termination of Convex QP Solvers in Mixed-Integer Programming for Real-Time

Decision Making. IEEE Control Systems Letters 2021; 5(4): 1417-1422.
48. Savelsbergh MWP. Preprocessing and Probing Techniques for Mixed Integer Programming Problems. ORSA Journal on

Computing 1994; 6(4): 445-454.
49. GLPK . GLPK (GNU Linear Programming Kit). 2022. Accessed 8/15/22, www.gnu.org/software/glpk/#documentation.
50. Cbc . Cbc (Coin-or branch and cut). 2022. Accessed 8/15/22, www.github.com/coin-or/Cbc.
51. Wright SJ. Primal-Dual Interior-Point Methods. Philadelphia: SIAM Publications . 1997.
52. Shahzad A, Kerrigan EC, Constantinides GA. A fast well-conditioned interior point method for predictive control. In: IEEE

Conference on Decision and Control (CDC). ; 2010: 508-513.

www.gurobi.com
www.gnu.org/software/glpk/#documentation
www.github.com/coin-or/Cbc

28 R. QUIRYNEN ET AL

53. Boyd S, Vandenberghe L. Convex Optimization. Cambridge: University Press . 2004.
54. Todd MJ. Detecting infeasibility in infeasible-interior-point methods for optimization. In: Foundations of computational

mathematics. Cambridge Univ. Press; 2004: 157–192.
55. Trespalacios F, Grossmann IE. Improved Big-M reformulation for generalized disjunctive programs. Computers and

Chemical Engineering 2015; 76: 98-103.
56. dSPACE . Scalexio Product Page. 2022. Accessed 8/15/22, www.dspace.com/en/inc/home/products/hw/simulator_

hardware/scalexio.cfm.
57. Aydinoglu A, Preciado VM, Posa M. Contact-aware controller design for complementarity systems. In: Proc. IEEE Conf.

on Robotics and Automation. ; 2020: 1525-1531.
58. Mordatch I, Todorov E, Popović Z. Discovery of Complex Behaviors through Contact-Invariant Optimization. ACM

Transactions on Graphics 2012; 31(4): 1–8.

How to cite this article: Quirynen R., and Di Cairano S. (2022), Tailored Presolve Techniques in Branch-and-Bound Method
for Fast Mixed-Integer Optimal Control Applications, Optimal Control Applications and Methods, 2022;00:1–6.

www.dspace.com/en/inc/home/products/hw/simulator_hardware/scalexio.cfm
www.dspace.com/en/inc/home/products/hw/simulator_hardware/scalexio.cfm

	Title Page
	page 2

	
	Tailored Presolve Techniques in Branch-and-Bound Method for Fast Mixed-Integer Optimal Control Applications
	Abstract
	Introduction
	Preliminaries on Mixed-Integer Quadratic Programming
	Branch-and-Bound Algorithm
	Convex Quadratic Program Relaxations
	Tree Search: Node Selection Strategies
	Reliability Branching for Variable Selection

	Convex Relaxation Solver: Active-set Interior Point Method (ASIPM)
	Dual QP Problem Formulation
	Primal-dual Interior Point Method
	Active-set based Inexact Newton Method
	Early Termination based on Duality and Infeasibility Detection
	Projection Strategy for Dual Feasibility
	Early Termination Strategy
	Computational Complexity

	Exact Presolve Techniques for Mixed-Integer Optimal Control
	Block-Structured Domain Propagation
	Approximation of Optimization-based Bound Tightening
	Trivial Constraints and Dual Fixings
	Constraint Coefficient Strengthening
	Binary Variable Probing
	Exact Block-sparse Presolve Procedure

	Heuristic Presolve Method for Mixed-Integer Optimal Control
	Abstract Definition of a Single Presolve Step
	Iterative Procedure for Heuristic Presolve Method

	Practical Considerations for Embedded Mixed-Integer MPC
	Branch-and-bound Tree Propagation for Warm Starting
	Embedded Software Implementation for MI-MPC

	Case Studies: Mixed-Integer MPC Simulation Results
	Mixed-integer Optimal Control for Motion Planning with Obstacle Avoidance
	Problem Formulation
	MIQP Solver: Numerical Results
	Heuristic Presolve Method: Numerical Results

	Mixed-integer MPC for Stabilization of Inverted Pendulum with Soft Contacts
	Problem Formulation
	MIQP Solver: Simulation Results on dSPACE Scalexio Hardware

	Conclusions and Outlook
	References

