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Abstract—Fault detection using motor current signature anal-
ysis (MCSA) is attractive for industrial applications due to
its simplicity with no additional sensor installation required.
However current components associated with faults are often very
subtle and much smaller than the supply frequency component,
making it challenging to detect and quantify fault levels. In this
paper, we present our work on quantitative eccentricity fault
diagnosis technologies for electric motors, including physical-
model approach using improved winding function theory, which
can simulate motor dynamics under faulty conditions and agrees
well with experiment data, and data-driven approach using topo-
logical data analysis (TDA), which can effectively differentiate
signals measured at different eccentricity levels. The advantages
and limitations of each approach is discussed. Both methods can
be extended to the detection and quantification of other types of
electric motor faults.

Index Terms—Topic— Electric motor, fault detection, eccentric-
ity, winding function theory, topological data analysis

I. INTRODUCTION

Eccentricity is one important indicator of mechanical faults
in electric machines [1], [2]. Eccentricity happens as long
as the stator and rotor are not concentric. Depending on the
rotation profile of the rotor relative to the stator, the effect can
be categorized into static eccentricity, dynamic eccentricity,
and mixed eccentricity. In most practical cases, we encounter
mixed eccentricity effect, which is a combination of both static
and dynamic eccentricity [3], [4]. Eccentricity level of motors
can increase over time due to a number of causes, such as the
degradation of mechanical mounting structures and bearings.
It is desirable to detect and fix defects in motors related to
elevated eccentricity, as it can induce unbalanced magnetic
pull, cause rubbing between stator and rotor surfaces, and
eventually lead to motor failures and asset damages [5], [6].

Traditionally motor fault detection replies on sensing modal-
ities such as vibration and acoustic emission [7], [8]. Me-
chanical faults including eccentricity can be related to the
increased level of vibration amplitude, which can be measured
by accelerometers mounted on the machines. However, such
signals are often affected by various factors, such as the
mounting location of the sensors, the vibration sources from
other machines nearby on the factory floor, etc. It is therefore
challenging to tell accurately whether there is a fault, let alone
to quantify how severe the fault is.

Motor current signature analysis (MCSA) approach, on the
other hand, has a few promising advantages compared with

other sensing methods, such as simple implementation and
low cost [9], [10]. MCSA detects motor faults based on the
measured motor current data, and requires no additional sensor
installation. In the case of motor eccentricity fault, additional
harmonic components will be induced in the permeance func-
tion and magnetic flux of the air gap, and show up in the
induced voltage in the stator windings, and eventually in the
stator current spectrum. With the understanding of the physical
mechanism of faults, MCSA conducts detailed signal analysis,
and relates the specific frequency components in the stator
current spectrum to each type of fault. One main challenge
with MCSA is that the fault signals are often much smaller and
dominated by the fundamental component and its harmonics.

Fault detection techniques can be generally categorized into
physics-based and data-driven approaches. For physics-bases
approach [7], [11]–[13], a physics-based model is established
to describe the motor fault, which identifies detailed fault
signatures, and the requirements on experiment measurements
and data analysis in order to obtain and extract the required
signals. On the other hand, data-driven approaches [8], [14],
[15] rely on the available experiment data to train a data-driven
model to make decisions on the motor fault condition. Both
approaches have their own specific challenges in identifying
eccentricity faults of electric motors.

A number of physics-based modeling approaches have been
proposed for motor eccentricity fault analysis. The time-
stepping finite-element method (TD-FEM) based simulation
is accurate in calculating motor dynamic performance under
eccentricity fault [12], [16]. The drawback of TD-FEM is
its computational-intensive nature and long simulation time
needed. Winding function based modeling techniques have
also been developed to study motor faults [7], [13], [17].
The existing modified winding function method (MWFM)
based models run faster than FEM, can identify frequency
components related to faults, but cannot accurately calculate
the amplitude of each component, due to the simplifications
in the model.

For data-driven approaches, a lot of machine learning and
deep learning algorithms have been applied to vibration signal
based motor fault detection [8]. However, the fault signatures
in the motor current are much smaller and more challenging
to extract. Many algorithms effective for vibration signal base
fault detection cannot extract features in the current signal



related to faults and distinguish current signals under different
fault conditions. Domain knowledge of the fault physics, and
involved signal analysis on the stator current spectrum are
typically required to pre-process the obtained experiment data
in order to identify and extract the fault features, before a data-
driven model can be successfully established for fault detection
and classification.

In this paper, we present both physics-based and data-
driven approaches for effective eccentricity fault detection
and quantification. For physics-based approach, we improve
the modeling of eccentric motor with MWFM and take into
consideration of slotting effect and saturation of the motor.
The accuracy of the model is validated with experiment
measurements. For data-driven approach, we apply topological
data analysis (TDA) method for the effective extraction of
features related to eccentricity fault in stator current signal
without physical knowledge. The requirements, advantages,
and limitations of each approach will be discussed.

The rest of the paper is organized as follows. In Section II,
we first introduce an experiment setup to measure data of
an induction motor at different eccentricity conditions, and
provide an analysis to the obtained data. In Section III,
we introduce the quantitative physics model for eccentric
motor, and compare the simulation results with experiment. In
Section IV, we present TDA and its application for eccentricity
data processing and data-driven fault detection. In Section V,
we discuss and summarize the differences between the two
approaches. In Section VI we conclude the paper.

II. EXPERIMENT DATA ACQUISITION

A 0.75 kW, 3-phase squirrel-cage induction motor is mod-
ified for the experimental study, which has 2 pole pairs, 28
bars in the rotor, 36 slots in the stator, each has 37 turns of
winding. In addition, the nominal air gap length is g0 = 0.28
mm, air gap radius is r = 41.6 mm, and the stack length is
l = 80 mm. The line-to-line voltage and frequency are 200 V
and 60 Hz, respectively. In order to quantitatively study the
behavior at different eccentricity levels, a few modifications
have been made to the motor. As shown in Fig. 1, mounting
structures are custom-made and used to replace the original
bearings in the motor to support the rotor (only the mount
on the load side is visible in the photo). The stator assembly
of the motor is mounted on a linear stage, whose position in
the horizontal direction, hence the eccentricity level, can be
accurately adjusted using two pairs of micrometers mounted
on each side of the linear stage. The load is provided by a
powder brake.

With the modified motor setup, different static eccentricity
levels in the horizontal direction can be created. In our
experiment, a total of 6 eccentricity levels were created when
the motor is stand still; data from phase current sensors and
air gap sensors were recorded for each eccentricity level at 10
kHz sampling frequency under no-load condition. The eccen-
tricity levels were set at 1.5%, 17.2%, 24.1%, 40.5%, 47.1%,
64.6% respectively, with percentage defined as the ratio of the
maximum air gap deviation and the nominal air gap size. Our

Fig. 1: The experiment setup for induction motor eccentricity
study.

intention is to conduct experiments with multiple eccentricity
levels from small to large. In addition to the pre-set static
eccentricity, there is also a periodic oscillation for each gap
sensor reading, indicating a small dynamic eccentricity level,
which is around 6%. This mixed eccentricity effect creates
side band signals in the current spectrum at fc = fs ± fr and
higher harmonics, where fs is the supply frequency and fr is
the rotation frequency.

There is no significant change observed from the measured
time-domain stator current data at different eccentricity levels.
In order to understand and distinguish the data according
to eccentricity level, typically detailed spectrum analysis is
required. Fig. 2 shows the obtained spectrum using fast Fourier
transform from measured phase A data of length 60 s. From
the figure we can see that the frequency spectrum of the
current are very similar for all cases, only the amplitudes
of some components change with the different eccentricity
level. To further understand the fault signatures and effectively
determine the eccentricity condition based on these signatures,
we can use physics-based models to identify and extract the
fault components, or apply data-driven algorithms to extract
fault features and distinguish these data.

III. PHYSICS-BASED ECCENTRICITY MODEL

In this work, we develop MWFM based simulation model
for eccentric motor analysis, and the overall flow is described
in Fig. 3. The simulation model takes in parameters including
motor design parameters, supply voltage, load condition and
fault condition, calculates the inductance terms between rotor
and stator windings of the motor for each rotor position, and
updates the dynamic signals during the operation of the motor
including stator current, speed, and torque. Signal processing
techniques such as FFT can be applied to the simulated stator
current signal in order to obtain the spectrum. All signal
components related to eccentricity faults can then be identified.

In this model, the motor dynamics are described by coupled
circuit equations. For a 3-pahse squirrel-cage induction motor,
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Fig. 2: Phase A current spectrum obtained from Fourier trans-
form from the measured data at all six different eccentricity
levels.
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Fig. 3: The process of using MWFM based simulation model
for the simulation and analysis of eccentric motor.

the stator voltage and flux linkage, rotor voltage and flux

linkage are described by the following equations respectively:

Vs = RsIs +
d

dt
Λs, (1)

Λs = LssIs + LsrIr, (2)

Vr = RrIr +
d

dt
Λr, (3)

Λr = LrsIs + LrrIr, (4)

where Vs, Vr , Is, Ir, Rs, Rr, Λs, Λr are the stator and rotor
voltage, current, resistance, and flux linkage, respectively.

The electromagnetic torque is calculated by

Te =
1

2
I⊤s

∂Lss

∂θr
Is + I⊤s

∂Lsr

∂θr
Ir +

1

2
I⊤r

∂Lrr

∂θr
Ir, (5)

where θr is the rotor’s mechanical angle. The mechanical
equations are given as

d

dt
ωr =

1

J
(Te − TL), (6)

d

dt
θr = ωr, (7)

where ωr is the mechanical speed, TL is the load torque, and
J is the inertia.

Inductance terms and their derivatives are critical in deter-
mining the motor current and torque, as can be seen from
equations (1) through (5). The calculation of inductances at
each rotor position is done with MWFM, which calculates
the inductance between two windings by the integration of
the product of the two winding functions and the air gap
permeance function, over all stator angles. For winding i and
winding j, the inductance is evaluated as

Lij(t) = µ0lr

∫ 2π

0

ni(ϕ, t)Mj(ϕ, t)g
−1(ϕ, t)dϕ, (8)

where µ0 is the free-space permeability, r is motor radius at
the air gap, l is the stack length, ni(ϕ, t) is the winding turns
function for winding i, and Mj(ϕ, t) is the modified winding
function for winding j. From the equation, we can see that
the air gap function g(ϕ, t), which describes the spatial and
temporal air gap profile, is especially important in calculating
the motor performance under eccentricity conditions.

For a slotless motor, the air gap is uniform with nominal
size denoted as g0. In actual induction motors, the slots in
both stator and rotor effectively make the air gap length
larger than g0. A Carter’s coefficient Kc is introduced to
represent the increase. The exact value of Carter’s coeffi-
cient can be calculated based on the shape and geometrical
parameters of the slots. Static eccentricity can be described
by a time-invariant sinusoidal modulation to the air gap with
amplitude denoted as δSE . Dynamic eccentricity introduces a
time-varying modulation to the air gap function, and can be
described by a sinusoidal function with amplitude denoted as
δDE .

Under these conditions, the air gap function can be written
as:

g(ϕ, t) = g0Kc − δSEg0 cos(ϕ)− δDEg0 cos(ϕ− ωrt). (9)



In addition, due to the nonlinear property of the iron core,
saturation occurs at high flux density region, making the
permeability lower than unsaturated case and non-uniformly
distributed, and the effective inductance between windings
smaller. We describe this saturation effect with a saturation
factor ksat [18], and apply it to the calculated inductance
terms as obtained with equation (8). The exact value of
the saturation factor depends on the geometrical design of
the motor and the magnetic material properties, and can be
pre-determined with numerical simulations. The process of
identifying the model parameters is described in Ref. [19].

Dynamic simulations can then be conducted to obtain the
motor current signals at each condition. Fig. 4 shows the
simulated time-domain signal and the frequency spectrum of
stator current at static eccentricity level of 40% and dynamic
eccentricity level of 6%, together with the corresponding
experiment data. We can see that the simulation results
agree very well with the experiment data, especially the low-
frequency side bands that are associated with eccentricity fault.

(a) (b)

(c) (d)

Fig. 4: The simulated (left) and corresponding experiment
measurement (right) of phase current signal in time-domain
(top), and the low-frequency components (bottom) of the
spectrum obtained from Fourier transform at SE level of 40%.

We further run simulations with the model under different
eccentricity conditions, obtain the stator current signals, and
extract the frequency component at the side band of fs −
fr. We use it as a fault indicator, and compare the simulated
result with those obtained with experiment data. As shown
in Fig. 5, very good match between MWFM simulation result
and experiment data is achieved at different eccentricity levels.

We want to point out that the proposed physical model
based on MWFM is not the only model for analyzing motor
faults. Depending on the required accuracy and simulation
time, available computation resources, we can choose the
most suitable method. For example, if the accuracy is ut-
most important, then time-stepping finite-element simulations

Fig. 5: MWFM simulation and experiment data comparison
of the frequency component fs − fr amplitude as function of
eccentricity level.

should be used for the most detailed transient analysis of
motors under faulty conditions. Simple harmonic analysis of
faulty motor can be conducted analytically to identify the
fault components. However, such analysis will not be able to
provide quantitative accuracy of the amplitude of these fault
components corresponding to the fault severity. In this regard,
the MWFM simulation model provides a trade-off between
computation complexity and quantitative accuracy in mapping
the fault level with fault component amplitude.

While the simulation model based on MWFM approach
is not exactly new, we have investigated in details how
different aspects of the motor model, especially slotting effect
and saturation effect, can affect the amplitude of frequency
components related to eccentricity faults. We have also built a
customized experiment setup to obtain measurement data and
performed detailed spectrum analysis to validate the accuracy
of the model. While there have been more involved model-
ing methods for saturation effect [18], we took a different
approach by applying a correction factor to the calculated
inductance values, which is simpler to implement with the
MWFW model. We have demonstrated the effectiveness of the
method with quantitative comparison of fault components in
the stator current spectrum between simulation and experiment
at different eccentricity levels.

IV. DATA-DRIVEN APPROACH WITH TOPOLOGICAL DATA
ANALYSIS

On the other hand, the physics-based models, while ac-
curate, do require detailed design parameters of the motor
to achieve the accuracy. Such parameters are not always
available, and complete physical model may not be able to be
established to effectively perform fault detection tasks. Under
these circumstances, we would like to explore data-driven
approaches to address the problem by utilizing the available
experiment data.

Since the eccentricity fault is highly sensitive and embedded
in the current signal, it is challenging to apply the machine



learning and deep learning algorithms developed for vibra-
tion analysis directly [8]. Topological data analysis (TDA)
offers a mathematical tool to extract the shape information
from a given data space [20]. Largely driven by the recent
development of persistent homology technique, TDA has been
actively investigated for various data analysis tasks in different
disciplines, from image analysis [21] and time-series data
analysis [22], to chemistry [23], and material science [24].
TDA extracts the intrinsic shape information in a data space,
and is robust to deformations and noises. While most TDA
applications focus on discovering major shapes in the data
and ignore smaller features, we show that the eccentricity fault
information can be discovered in the smaller features in the
stator current data, and can be reliably used for fault detection
and quantification [25].

Simply speaking, persistent homology describes the evo-
lution of topological features in a data space. In this study
we focus on the low-dimensional features H0, which counts
the number of connected components with increasing filtering
radius ϵ. While more rigorous definitions and detailed descrip-
tions are available elsewhere [26], a very high-level description
of the calculation procedure is presented here:

1) Data points are sampled to form a point cloud. In our
case, the point cloud of the time-domain 3-phase current
data is naturally formed by taking a data segment and
placing it in 3D Euclidean space.

2) Rips complex is constructed from the point cloud for
a given threshold radius ϵ, which includes all topologi-
cal features with pair-wise Euclidean distance between
points no larger than ϵ.

3) The homology, which counts the number of topological
features, is determined from the Rips complex.

4) Persistent homology is obtained by tracking the evolu-
tion of homology at different filtration radius ϵ.

Persistent homology can be represented and visualized in
different ways. Here we describe it in the form of Betti
sequence, which counts the number of features for a given
range of filtration radius ϵ, and can be vectorized with fixed
length for different data and suitable for machine learning
studies.

Using the TDA procedure, Fig. 6 shows the computed H0

Betti sequences of the phase current data measured at six
different eccentricity levels. In each case, point cloud is formed
from a total of 1,024 data points segmented from the three-
phase stator current measurement, whose main topology is a
circle in 3D space. When the filtration radius is ϵ = 0, all data
points are disconnected, hence the number of H0 features is
the same as the total data points of 1,024. With gradually
increasing filtration radius, neighboring data points start to
merge together, and the number of H0 features monotonically
decreases. Eventually with a large enough ϵ, all points are con-
nected, and there is only one H0 feature left. When eccentricity
level is smaller, the data points are closer to a perfect circle
defined by the fundamental component. When the eccentricity
level increases, the data points deviate further from the circle,

and the distance between neighboring data points increases.
Hence H0 features can stay longer before merged together.
Therefore, the area under Betti curve increases with increasing
eccentricity level. The thresholded Betti curve effectively
filters out the large fundamental component without a physical
model.

Fig. 6: The calculated H0 Betti sequence from time-domain
data samples of different eccentricity levels.

We can further quantitatively evaluate the similarity of the
obtained Betti curves with pair-wise Euclidean distance, which
is defined as

dαβ =

√√√√ N∑
i=1

(|αi − βi|)2, (10)

where α and β represent two Betti curves, and N is the
total length of each curve. Smaller dαβ value indicates similar
curves α and β and vice versa.

TABLE I: Pairwise Euclidean Distance between H0 Betti
sequences of different Eccentricity Levels

Eccentricity Level 1 2 3 4 5 6
1 (1.5%) 0 1832 3525 7000 7248 7836

2 (17.2%) 1832 0 1921 5648 5929 6609
3 (24.1%) 3525 1921 0 3813 4116 4913
4 (40.5%) 7000 5648 3813 0 452 1544
5 (47.1%) 7248 5929 4116 452 0 1196
6 (64.6%) 7836 6609 4913 1544 1196 0

Table I shows the calculated Euclidean distance between
each pair of Betti curves generated from measurement data
at six different eccentricity levels. It is clearly seen that the
Euclidean distance between the H0 curve associated with
the smallest eccentricity level of 1.5% and other curves
increases monotonically with increasing eccentricity level.
Similar behaviour is seen from the table between Betti curves
of different eccentricity levels: the larger the difference in
eccentricity levels, the larger the Euclidean distance between
their corresponding Betti curves.

From Fig. 6 and Table I, we can see that the proposed TDA
approach can effectively distinguish very similar data sampled
from different conditions, and correlate the topological feature
with fault severity.



TABLE II: Eccentricity Level Prediction Performance with
Trained Regression Model

Training Data RMSE (%) MAE (%)
Time-domain data 29.3 28.3

H0 sequence 8.6 7.1

With the capability of effectively separating data from
different eccentricity conditions, the extracted TDA features
can be used to train machine learning models for fault predic-
tion and quantification. A practical application scenario is to
train a model based on existing measurement data, and make
predictions when a new measurement is received at a later
time, when the fault level is most likely higher. To mimic this
task, we train a model using only measurement data from the
four smaller eccentricity levels , and use the data from two
larger eccentricity levels to test the prediction accuracy of the
trained model.

For comparison, a quadratic regression model is trained with
time-domain stator current data and the transformed H0 Betti
sequence data respectively. The prediction results are shown
in Table II, where RMSE represents root-mean-square error
and MAE represents mean absolute error. Model trained with
time-domain data fails to make reasonable predictions as both
errors are close to 30%. On the other hand, model trained with
TDA data makes much more accurate predictions, with RMSE
and MAE both below 10%, showing the effectiveness of the
proposed method.

V. DISCUSSIONS

From the above investigation, we can see that by exploring
motor physics with available motor design parameters, very
good accuracy can be achieved for motor with eccentricity
faults. Other than the good accuracy, one main advantage of
the physics-based model is its generality and transferability.
The model can be easily updated for the same motor under
different load profile and fault conditions, and applied to a
new motor with different parameters. The fault signals from
the model are also easily explanable. Therefore, physics-
based modeling should be the first choice when motor design
parameters are available when dealing with fault detection
problems.

Compared with physical-model based MCSA, which re-
quires extensive domain knowledge in electric machines, and
detailed design parameters to be able to identify and quantify
fault signatures, no knowledge of the motor physics is required
for the data-driven approach based on TDA. In addition, the
prediction accuracy is achieved using a short data segment of
around 0.1 s with trained model, while conventional frequency
analysis techniques require at least a few seconds to tens
of seconds data in order to resolve the fault components in
frequency domain. These advantages make TDA based method
especially suitable for fault detection purposes when design
parameters for physical model are not available, while exper-
iment data is available. Their comparisons are summarized in
Table III.

Physics models can be established for other types of motor
faults. As a mathematical tool, the TDA method could also be
extended to the detection and classification of other types of
motor faults. As future work, we will explore both methods
for other fault types. We will establish physics models and
evaluate the topological features of various motor faults, in-
cluding H0 and other features, compare them with the features
obtained from eccentricity fault conditions, and examine the
capability of TDA to discriminate different types of faults.

VI. CONCLUSIONS

In this paper, we presented and compared two types of
approaches for motor eccentricity fault detection and quantifi-
cation. For physics-based modeling approach, we improved the
accuracy of modified winding function method by accounting
for the motor physics including slotting and saturation effects.
Dynamic simulations conducted with the model can obtain
stator current data under various conditions, and achieve
quantitative agreement with experiment data when comparing
the extracted fault component related to eccentricity. For
data-driven approach, we proposed topological data analysis
method to effectively extract features related to eccentricity
fault and distinguish data from different eccentricity levels,
achieved without physical model. Physics models can easily
adapt to new faults and new motors by updating design
parameters and conditions, and should be the first choice
when dealing with fault detection tasks. When motor design
information is not readily available, data-driven approach is
more suitable. We showed that TDA based data-driven models
can be developed to effectively perform eccentricity fault
detection and prediction. Both approaches can be extended
to other fault classification and quantification tasks.
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