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Trajectory Generation for Online Payload Estimation of Robot
Manipulators: A Supervised Learning Based Approach

Xiaoming Duan1, Yebin Wang2, Diego Romeres2, Toshiaki Koike-Akino2, Philip V. Orlik2

Abstract— This paper studies the optimal trajectory gener-
ation problem for online payload estimation to enable flexible
manipulation, where the robotic manipulators pick, transport,
and place various types of workpieces. Prevailing work focuses
on offline estimation and solve time-consuming optimization
problem for the optimal trajectory and initial configuration.
By contrast, online estimation requires a quick trajectory
generation process where the initial configuration, largely
determined by the workpiece and environment layout, is not
a design variable. Parameterizing joint trajectories by sinu-
soidal functions with the amplitudes being design variables,
we adopt a supervised learning based approach to fulfill real-
time trajectory generation where the mapping from the initial
joint positions to the optimal amplitudes is established. This
approach shifts the burden of solving computationally intensive
and time-consuming trajectory design problems offline and
facilitates the fast online generation of identification trajecto-
ries. The effectiveness of the trajectory generation method is
demonstrated through simulation.

I. INTRODUCTION

Driven by the desire to reduce human intervention in mod-
ern manufacturing processes, the past decade has witnessed
the burgeoning of research on smart factory. How to en-
hance autonomy and flexibility of existing factory automation
equipment is viewed as an intermediate step toward smart
factory. As far as robotic manipulator is concerned, a key
ingredient of flexibility is the capability to handle a variety of
workpieces. This work investigates one of the key challenges
to achieve flexible manipulation: fast trajectory generation
for online payload estimation.

An accurate load estimate is crucial for the implementation
of precise model-based control algorithms in robotic ma-
nipulator applications. The unknown load inertia parameters
are usually identified from the dynamic motion data gener-
ated by the manipulator. It has long been recognized that
sufficient excitation of the manipulator is necessary for the
load parameters to be accurately identified. Thus, adequately
exciting trajectories shall be designed in order to achieve
desirable estimation performance. Moreover, in the context
of flexible manipulation, where the load identification task
has to be frequently executed, the excitation trajectory should
be generated in a fast fashion.

Designing a sufficiently excited trajectory typically re-
sorts to solving complicated optimization problems, where
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the objective function depends on the trajectory parameters
(design variables) in a highly nonlinear manner. Therefore,
it is undesirable to repeatedly solve the trajectory design
problem whenever a new load is attached and needs to
be identified, especially in an online setting. Motivated by
this, we propose a supervised learning-based approach to
fast trajectory generation, where instances of offline solved
design problems are utilized to build a prediction model
for online uses. The trajectory parameters can be quickly
obtained through the learned model, which leads to a great
reduction in the computation time.

The estimation of link and load inertia parameters for
robotic manipulators has been widely studied in the liter-
ature. Early work [12] and [1] have shown that the dynamic
model of the manipulator can be transformed into a linear
form in terms of the link/load parameters, and a (weighted)
least squares algorithm can be applied to estimate the un-
known parameters. Comprehensive procedures for estimat-
ing the dynamic parameters of a robotic manipulator were
described in [22] and [25]. The authors in [13] proposed an
online recursive total least squares method to estimate the
load parameters based on the measurements of the force-
torque sensor. By exploiting the linear separation of the load
and link parameters, the authors in [8] estimate the load
parameters under the condition that the link parameters are
already known. Identification experiments for both link and
load parameters were conducted in [3] where a linear matrix
inequality is imposed to ensure parameter feasibility. The
authors in [9] proposed an iterative reweighted least squares
method to estimate the inertia parameters of the manipulator,
where the friction models and physical feasibility of parame-
ters were taken into account. Estimation methods that ensure
physical feasibility of the inertia parameters were discussed,
for example, in [20], [23], and [14].

Regarding the trajectory design problem for the parameter
identification, sinusoidal functions were first proposed to
parameterize the excitation trajectory in [21], where the
authors also developed a maximum-likelihood parameter
estimation method. Fast trajectory design for the parameter
identification of robotic manipulators was studied in [10],
where the objective function was simplified via approxima-
tion. In [5], different excitation trajectories were designed
so that different parameters of the payload can be separately
identified. The authors in [17] proposed to use the optimized
B-splines to parameterize the excitation trajectory. A direct
computation of the gradient of a commonly used design
criterion, i.e., the condition number of the linear regressor,
was developed in [2]. The optimal excitation trajectory



design was also studied for other robotic structures such as
in [4].

The design of the excitation trajectory in the aforemen-
tioned works is usually achieved through solving nonlinear
optimization problems. This is suitable for the one-shot
offline identification task where the computation time is not a
main issue. However, when the identification task has to be
performed from different initial joint configurations rather
frequently in the context of flexible manipulation, a faster
trajectory generation method becomes indispensable. The
main contributions of this paper are as follows. We propose
a supervised learning based framework for the fast trajectory
generation in load identification tasks. The prediction model
is learned offline by solving many instances of the trajectory
design problem, and the optimal trajectory is generated
online through prediction and correction.

The rest of this paper is organized as follows. We in-
troduce the preliminaries of the load estimation for robotic
manipulators in Section II. The main results are presented
in Section III. The effectiveness of the proposed approach
is demonstrated via simulation in Section IV. Finally, we
conclude the paper in Section V.

Notation: Let R, Rn and Rm×n be the set of real
numbers, the set of real vectors of dimension n and the set of
real matrices of dimension m by n, respectively. The bold
symbols will be used to denote vectors and matrices. For
a vector v =

[
v1 v2 v3

]> ∈ R3, we define the cross
product operator as

v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 .
For vectors v1,v2 ∈ R3 and v =

[
v>1 v>2

]>
, we define

v̂ =

[
v̂1 03×3
v̂2 v̂1

]
.

The identity matrix in dimension n is denoted by In.

II. PRELIMINARIES

A. Dynamical model of robotic manipulators

The dynamics of an n degrees of freedom serial robotic
manipulator is governed by

M(q)q̈ + C(q, q̇)q̇ + N(q, q̇) = τ , (1)

where q ∈ Rn is the generalized coordinate (angular and
linear positions for revolute and prismatic joints, respec-
tively), M(q) ∈ Rn×n is a positive definite mass matrix,
C(q, q̇) ∈ Rn×n is the Coriolis matrix, N(q, q̇) ∈ Rn
includes gravity and other forces such as the friction, and
τ ∈ Rn is the actuator torque. The dynamical model (1)
contains all the inertia parameters of the links. Specifically,
the inertia parameters of the i-th link of the manipulator for
i ∈ {1, . . . , n} are given by

φi =
[
Ixxi Ixyi Ixzi Iyyi Iyzi Izzi mip

>
i mi

]>
,

(2)

where mi is the mass, pi =
[
xi yi zi

]>
is the center of

mass and

Ii =

Ixxi Ixyi Ixzi
Ixyi Iyyi Iyzi
Ixzi Iyzi Izzi


is the moment of inertia, all with respect to the origin of
the i-th joint frame. The overall inertia parameters of the
manipulator can be organized as

φ =
[
φ>1 φ>2 · · · φ>n

]>
.

When a payload with inertia parameters mL, pL and IL (in
the last joint frame) is attached to the end effector, the inertia
parameters of the last link becomes [8]

m′n = mn +mL,

p′n =
mnpn +mLpL

mn +mL
,

I ′n = In + IL.

(3)

As a result, the combined inertia parameters of the manipu-
lator and the payload are

φ′ =
[
φ>1 φ>2 · · · φ>n−1 φ′n

>
]>

,

where φ′n comprises of m′n,p
′
n,I

′
n given by (3).

B. Identification model and objectives

In order to enable precise model-based control algorithms,
the inertia parameters of the links and the payload must
be identified. It turns out that the dynamical model (1) (in
the absence of friction) can be reorganized in a linear form
regarding the inertia parameters (without load)

Y(q, q̇, q̈)π = τ , (4)

where Y(q, q̇, q̈) ∈ Rn×r is the state-dependent regressor
matrix with the number of columns r ≤ 10n and π ∈ Rr is
the set of identifiable (base) parameters [11, Chap. 12]. The
parameter vector π consists of linear combinations of the
original inertia parameters φ, and its specific form depends
on the structure of the manipulator. The identification equa-
tion (4) is linear in terms of the identifiable parameters, and
the coefficient matrix (a.k.a. the regressor) depends on the
state (position, velocity) and acceleration of the manipulator.
Since the payload only affects the inertia parameters of the
last link, a similar equation as (4) can be derived for the case
when a payload is present as follows

Y(q, q̇, q̈)π′ = τ ′. (5)

Combining (4) and (5) and assuming that the inertia param-
eters of the manipulator links are known a priori, we obtain
the main identification equation for the load parameters

YL(q, q̇, q̈)πL = τL, (6)

where YL(q, q̇, q̈) ∈ Rn×rL , πL ∈ RrL and τL = τ ′ − τ =
τ ′ −Y(q, q̇, q̈)π. The identification equation (6) is usually
an underdetermined system of linear equations, and multiple
samples of (q, q̇, q̈) and the corresponding torques τL must
be collected so that a (weighted) least squares method can be



applied. Suppose N samples of the motion data and torque
outputs are available, then we arrive at the following equation

YL(q(t1), q̇(t1), q̈(t1))
YL(q(t2), q̇(t2), q̈(t2))

...
YL(q(tN ), q̇(tN ), q̈(tN ))

πL =


τL(t1)
τL(t2)

...
τL(tN )

 . (7)

With a little abuse of notation, we will use YL(q, q̇, q̈) and
τL to denote the regressor and the torques in (7), respectively.

In summary, to identify the load parameters πL, one needs
to sample the motion states (q, q̇, q̈), construct the regres-
sor YL(q, q̇, q̈), measure and compute the corresponding
actuator torques τL, and finally solve a (weighted) least
squares problem. The solution quality of (6) highly depends
on the properties of the coefficient matrix YL(q, q̇, q̈). A
well designed trajectory along which the motion samples
are taken leads to a regressor with desirable properties and
thus helps improve the estimation performance. Following
the discussion in [16] and [11, Eq. 12.14], we adopt the
optimality criterion for the regressor below in this paper1

f(YL) = cond(YL) +
1

σmin(YL)
, (8)

where cond(·) is the condition number and σmin(·) is the
minimum singular value. The optimality criterion f(YL)
takes value from (1,∞), and an arbitrarily generated iden-
tification trajectory can result in a large value of f(YL),
making the load estimation sensitive to measurement noise.
Therefore, the identification trajectory should be carefully
designed so that the objective function f(YL) is minimized.

C. Trajectory parameterization

Sufficient excitation is necessary for accurate estimation
of manipulator parameters. Parameterizing the trajectories
by sinusoidal functions is a common practice [22]. For
illustration purpose, we parameterize the trajectory of joint
i as follows

qi(t) = qi(0) +

K∑
k=1

(
Ak sin(kωf t) +Bk cos(kωf t)

)
, (9)

where qi(0) is the initial joint position, ωf is the base
frequency of the sinusoidal functions, K is the number of
harmonic components, and Ak and Bk are amplitudes. The
predetermined design choices for the joint trajectory (9) are
ωf and K, and the amplitudes are the optimization variables
that can be tuned so as to minimize the objective function
f(YL) in (8). The initial joint positions depend on the
configuration where the identification task starts, and thus
are not design variables. In this paper, we focus on the case
when the joint trajectories all have the same amplitudes, i.e.,
Ak and Bk are not joint dependent. This is to simplify the
notation, and the proposed method can be easily extended
to heterogeneous cases. On the other hand, we allow the

1The particular objective function can be chosen differently and does not
affect the overall framework. For example, the regressor may need to be
reweighted when the inertia parameters are badly scaled [16].

joints to have different initial joint positions. Based on (9),
we compute the joint velocity and acceleration as

q̇i(t) =

K∑
k=1

kωf
(
Ak cos(kωf t)−Bk sin(kωf t)

)
, (10)

q̈i(t) =

K∑
k=1

(kωf )2
(
−Ak sin(kωf t)−Bk cos(kωf t)

)
. (11)

III. MAIN RESULTS

In this section, for completeness, we first describe a
method to numerically construct the regressor YL(q, q̇, q̈)
based on the Newton-Euler inverse dynamics, which is
seamlessly incorporated into the trajectory design problem
later on. Then, we propose a supervised learning based
framework to generate an optimal identification trajectory.

A. Regressor construction via the Newton-Euler Algorithm

The recursive computation of the regressor YL(q, q̇, q̈)
has been recognized and well known in the literature [15],
[24], [26]. Here, we give a description based on [7] and
[6, Chap. 5] and specialize it to serial robotic manipulators
(instead of manipulators with a tree structure). This treatment
allows us to utilize the associated software package. To
simplify the exposition, we assign frames that have origins
fixed at the joints and rotate with the links. The original
Newton-Euler inverse dynamics algorithm is presented in
Algorithm 1 with the following notation for i ∈ {1, . . . , n}:
vi ∈ R6, ai ∈ R6 and Si(qi) ∈ R6 are the velocity,
acceleration and twist of joint i, respectively; Fi ∈ R6 and

Gi =

[
Ii mip̂i

mip̂i
> miI3

]
(12)

are the wrench and inertia parameters of link i; Adi(qi) ∈
R6×6 is the adjoint representation of the homogeneous
transformation from joint i− 1 to joint i with joint 0 being
a fixed inertia frame; g =

[
0 0 9.81

]>
represents the

gravitational acceleration.
In order to obtain the regressor for the load identification

task, we only need to keep track of the impact of the load
parameters on the torque output. For a vector x ∈ R6, we
define a linear mapping [·] : R6 7→ R6×10 as follows

[x] =
x1 x2 x3 0 0 0 0 x6 −x5 0
0 x1 0 x2 x3 0 −x6 0 x4 0
0 0 x1 0 x2 x3 x5 −x4 0 0
0 0 0 0 0 0 0 −x3 x2 x4
0 0 0 0 0 0 x3 0 −x1 x5
0 0 0 0 0 0 −x2 x1 0 x6

 .

Then, the following equation holds

Gix = [x]φi,

where Gi and φi are defined in (12) and (2), respectively.
Thus, line 4 of Algorithm 1 can be rewritten as

Fi = Gi · ai − v̂i
> · Gi · vi = ([ai]− v̂i

> · [vi])φi. (13)



Algorithm 1 Newton-Euler Inverse Dynamics Algorithm
Input: The kinematic structure of the manipulator, the iner-

tia parameters Gi of link i, the position qi, velocity q̇i
and acceleration q̈i of joints i for i ∈ {1, . . . , n}, the
initial conditions v0 = 06 and a0 =

[
0 0 0 g>

]>
Output: The actuator torque τi for i ∈ {1, . . . , n}

Forward Iterations
1: for i = 1 to n do
2: vi = Adi(qi) · vi−1 + Si(qi) · q̇i
3: ai = Adi(qi) · ai−1 + Si(qi) · q̈i + v̂i · Si(qi) · q̇i
4: Fi = Gi · ai − v̂i

> · Gi · vi
5: end for

Backward Iterations
6: for i = n to 1 do
7: τi = Si(qi)

> · Fi
8: Fi−1 = Fi−1 + Adi(qi)

> · Fi
9: end for

10: return τi for i ∈ {1, . . . , n}

Algorithm 2 Regressor Construction Algorithm
Input: The kinematic structure of the manipulator, the po-

sition qi, velocity q̇i and acceleration q̈i of joints i ∈
{1, . . . , n}, the initial conditions v0 = 06 and a0 =[
0 0 0 g>

]>
Output: The regressor YL(q, q̇, q̈)

Forward Iterations
1: for i = 1 to n do
2: vi = Adi(qi) · vi−1 + Si(qi) · q̇i
3: ai = Adi(qi) · ai−1 + Si(qi) · q̈i + v̂i · Si(qi) · q̇i
4: end for
5: Y0 = [an]− v̂>n · [vn]

Backward Iterations
6: for i = n to 1 do
7: Yi = Si(qi)

> ·Y0

8: Y0 = Adi(qi)
> ·Y0

9: end for
10: return YL(q, q̇, q̈) =

[
Y>1 · · · Y>n

]>

Finally, we obtain the regressor by propagating (13) through
the backward iterations. We present the numerical method in
Algorithm 2.

Since we are interested in the load identification task, the
regressor constructed by Algorithm 2 only keeps track of the
impacts of the load inertia parameters on the torque outputs.
However, similar modifications can be easily applied to con-
struct the regressor for the identification of link parameters.
Moreover, given the regressor constructed by Algorithm 2,
the base parameters can be determined by a singular value
decomposition on YL(q, q̇, q̈). We use Algorithm 2 in the
evaluation and optimization of the objective function f(YL).

B. Supervised learning based trajectory generation

Typically, sufficiently excited trajectories are generated by
solving an optimization problem where the amplitudes Ak
and Bk of the harmonic functions in (9) are optimization

variables and f(YL) in (8) is the objective function. In this
subsection, we propose a supervised learning based approach
to approximate the optimal trajectory generation process.
The model is trained using instances of the solved trajectory
generation problems and the excitation trajectory is predicted
online given the starting configuration of the joints.

In solving the trajectory generation problem, the following
parameters need to be preselected:
• base frequency ωf of the trajectory in (9);
• the number of harmonic function components K in (9);
• the total execution time tN in (7) (usually integer

multiples of 2π
ωf

);
• the number of samples N along the trajectory in (7)

and how the samples are spread out.
Once the above parameters are fixed, given the initial joint
configuration of the manipulator q(0), we can solve the
following optimization problem.

Problem 1 (Trajectory design problem): Given the kine-
matic structure, the initial joint configuration q(0) and the
motion constraints q̄, ¯̇q and ¯̈q of the manipulator, select the
base frequency ωf , the number of components K of the
trajectory, the total execution time tN , and the number of
samples N , find a sufficiently excited trajectory, i.e., solve
the following trajectory design problem:

minimize
Ak,Bk∈R

cond(YL) +
1

σmin(YL)

subject to YL is given by (7),
qi(t), q̇i(t), and q̈i(t) satisfy (9), (10), (11), resp.,
K∑
k=1

√
A2
k +B2

k ≤ q̄, (14)

K∑
k=1

kωf

√
A2
k +B2

k ≤ ¯̇q, (15)

K∑
k=1

(kωf )2
√
A2
k +B2

k ≤ ¯̈q. (16)

K∑
k=1

Bk = 0, (17)

K∑
k=1

kAk = 0. (18)

In Problem 1, the inequalities (14)-(16) encode the phys-
ical constraints on the movement range, velocity and accel-
eration of the joints, where we overestimate the magnitude
of the harmonic functions by using the following inequality

|Ak sin(kωf t) +Bk cos(kωf t)| ≤
√
A2
k +B2

k.

The equalities (17) and (18) ensure that the initial joint
position is q(0) and the initial velocity is 06. The offline
training phase consists of the following steps:

1) determine the trajectory parameters ωf , K, tN , N and
the joint constraints q̄, ¯̇q and ¯̈q;

2) sample initial conditions q(0) from Q where Q is a
compact set of possible initial conditions (e.g., Q =
[−π4 ,

π
4 ]n);



3) solve Problem 1 and obtain optimal Ak’s and Bk’s
corresponding to the sampled initial conditions;

4) learn the mapping M : Rn 7→ R2K that maps the
initial conditions q(0) to the amplitudes (Ak, Bk)
using the data set {q(0), {Ak, Bk}K1 }M1 with M ≥ 1.

Since the linear regressor YL depends on the state of the
manipulator, the optimal excitation trajectory is related to the
starting configuration of the joints. Therefore, if the mapping
M captures such a relationship, then the optimal trajectory
can be generated without solving the optimization problem
explicitly. Specifically, once the model M is learned by a
supervised learning approach based on the input (q(0)) and
the output (optimal Ak’s and Bk’s), the online trajectory
generation problem is transcribed to a simple function evalu-
ation. The supervised learning method could in principle use
any function approximator e.g., a linear model, a Gaussian
Process or a neural network, our choices will be outlined
in Sec. IV. The predicted trajectory may need to be further
processed so that the constraints (14)-(18) are enforced.

Remark 1 (Solution quality): Problem 1 is a highly non-
linear and nonconvex optimization problem, and we usually
settle with locally optimal solutions. In fact, finding the exact
optimal trajectories may not be the main concern in the
identification task; instead, excitation trajectories with small
objective values are sufficient in practice.

Remark 2 (Constraints enforcement): Given a joint con-
figuration q(0), it is difficult to ensure that the predicted
amplitudes M(q(0)) generated by the prediction model
satisfy the constraints (14)–(18). However, bringing the pre-
dicted amplitudesM(q(0)) back to the constraint set can be
achieved by

1) subtracting the predicted Ak’s and Bk’s from their
(weighted) averages, i.e.,

Ãk = Ak −
∑K
k=1 kAk∑K
k=1 k

,

B̃k = Bk −
∑K
k=1Bk
K

,

so that Ãk and B̃k satisfy constraints (17) and (18);
2) uniformly scaling down Ãk’s and B̃k’s (if necessary)

so that constraints (14)–(16) are enforced.

IV. SIMULATION

This section verifies the effectiveness of the proposed su-
pervised learning based trajectory generation method through
simulation. We consider a 6 axis manipulator with all rev-
olute joints. The kinematic structure of the manipulator is
specified by the relative positions of the joint origins in the
reference configuration. The detailed technical information
of the manipulator is proprietary and not disclosed here.

A. Parameter settings

The trajectory parameters adopted in the simulation are
documented in Table I. Note that the period of the harmonic
functions with the base (lowest) frequency ωf = π

2 is exactly
equal to the execution time tN = 4s. We take N = 100

TABLE I
TRAJECTORY PARAMETERS

Parameter ωf K tN N Q q̄ ¯̈q

Value π
2

3 4s 100 [−π
4
, π
4

]6 π
4

4rad/s2

samples uniformly along the trajectory, which results in a
25Hz sampling frequency. The velocity and acceleration of
the joints are computed using (10) and (11), respectively.
Although we do not impose a constraint on the joint velocity,
the constraints q̄ on the movement range and ¯̈q on the
acceleration automatically ensure a reasonable range for the
joint velocity. We use Algorithm 2 to construct the objective
function and solve Problem 1 by the fmincon function in
MATLAB.

B. Supervised learning based approaches

We consider two common supervised learning approaches
in the simulation, i.e., the linear regression with polynomial
basis functions and the Gaussian process (GP) [19].

1) Linear regression: In the linear regression model, we
parameterize the amplitudes of the optimal trajectory by
cubic functions of the initial joint positions, i.e., for k ∈
{1, . . . ,K},

Ak = ak0 +

n∑
i=1

aki qi(0) +

n∑
i,`≥1

aki`qi(0)q`(0)

+

n∑
i,`,s≥1

aki`sqi(0)q`(0)qs(0),

where ak’s are parameters to be learned from the solved
trajectory design problems. Similar parameterization also
applies to the amplitudes Bk’s.

2) Gaussian processes: In the GP model, we parameterize
each amplitude of the optimal trajectory by an independent
GP, i.e.,

y = GP(x) + η,

where y is the amplitude output, x ∈ R6 is the initial joint
configuration, and η ∼ N (0, σ2) is an independent zero-
mean Gaussian random variable with variance σ2. The kernel
function of the GP model is the squared exponential function

K(x1,x2) = α exp(−‖x1 − x2‖22
2`2

),

where α > 0 is the length scale and ` > 0 is the signal
variance. The GP model is trained using the companion
MATLAB toolbox GPML [18] of the book [19], and the
hyperparameters α, ` and σ2 are determined by maximizing
the marginal likelihood p(y |x).

Since the first joint of the studied manipulator has its
rotating axis in the vertical direction, the initial position
of this joint does not affect the design of the excitation
trajectory. Therefore, in both of the supervised learning
approaches, the input is the initial positions of the other 5
joints. Note that in this case, we have 56 parameters for each
amplitude output in the linear regression model.
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C. Simulation results

As discussed in Remark 1, the exact trajectories with the
optimal amplitudes are not the main concern. Instead, the
predicted trajectories should have good performance mea-
sured by the metric f(YL) as well as the estimation accuracy
of load parameters. We uniformly sample M = 2000 initial
joint configurations from Q, solve Problem 1 and obtain the
optimal amplitudes, and train the learning models using the
first 1600 data points. We test the prediction performance for
the rest 400 different initial configurations.

To ensure that the predicted trajectories lie in the constraint
set of Problem 1, we follow the post-processing steps in
Remark 2. Specifically, the predicted Ak’s and Bk’s are
first subtracted from their (weighted) averages, respectively.
Moreover, if the amplitudes still violate constraints (14)-(16),
then they are uniformly scaled down until they are on the
boundary of the constraint set, i.e., all the inequalities (14)-
(16) are satisfied and at least one of them is tight. On the
other hand, it is empirically found that the amplitudes of
almost all the optimal excitation trajectories returned by the
fmincon function are on or close to the boundary of the
constraint set. Therefore, we scale up the amplitudes of the
predicted trajectories if they are strictly inside the constraint
set, until they hit the boundary. This is consistent with the
intuition that more modes of the manipulator are excited
when the excitation trajectories could reach a larger range.

Computation time: We first compare the computation
time for different methods to compute the coefficients of the
optimal excitation trajectories. Computations were performed
on a 2.6 GHz processor. We generate optimal trajectories for
the same set of 400 initial joint configurations in the test
set using fmincon, the linear regression and GP models,
respectively. The computation time are reported in Fig. 1 (in
logarithmic scale) as box plots (see boxplot function in
MATLAB). As can be seen, the offline fmincon function
takes time that is in the order of 10 seconds or more. In
contrast, both the linear regression and GP models consume
much less time. In particular, the linear regression model
takes time that is in the sub-millisecond range. The outliers
in the linear regression case are due to the fact that the time
consumption of the post-processing steps described earlier
dominates that of the matrix multiplication.

fmincon linear regression GP

Computation method

10

20

30

40

50

60

70

80

90

100

110

O
bj

ec
tiv

e 
va

lu
e

Objective value comparison

Fig. 2. Comparison of objective values

Performance metric f(YL): We compare and plot the
performance of the optimal trajectories in the test set and
the performance of the (post-processed) predicted trajectories
by the two learning approaches in Fig. 2. Although the
coefficients of trajectories predicted by both learning models
do not match well with that of the optimal trajectories found
by the fmincon function, their performance is decent in
terms of the objective value. In fact, from Fig. 2, the majority
of the predicted trajectories have comparable performance
metrics as that of the optimal ones. Moreover, the GP model
has slightly better performance than the linear regression
model, in the sense of a lower median value as well as a
smaller variance. Since Problem 1 is highly nonlinear, there
exist many locally optimal solutions. However, it appears
that the objective function is relatively flat in a large region,
which partly explains the good performance of the predicted
trajectories despite the mismatch between the coefficients of
the trajectory parameters.

Estimation accuracy: We compare the estimation ac-
curacy of the payload parameters using optimal trajectories
computed by the fmincon function and the learned models.
Based on (7), the sampled states, and corresponding torques
along a trajectory, we formulate the load estimation problem
as a least-squares problem with a semidefinite constraint that
enforces physical feasibility (mass needs to be nonnegative
and the inertia matrix needs to be positive semidefinite). The
added noise to the torque measurement on the right hand
of (5) follow a Gaussian distribution with a zero mean and
a standard deviation being 10−2 times the magnitude of the
true torque2. The estimation accuracy of the load parameters
is defined by

‖π̂L − πL‖2
‖πL‖2

,

where π̂L is the estimated inertia parameters. We repeat
the experiment for each trajectory for 10 times and report
the average estimation accuracy. As shown in Fig. 3, the
estimation performance of the trajectories predicted by both
linear regression and GP are very close to those generated
by the fmincon function (except for a few outliers). This
validates the effectiveness of the proposed framework, i.e.,

2Since we assume the inertia parameters of the manipulator are known a
priori, the torques in (7) can then be computed.
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Fig. 3. Estimation accuracy using the predicted trajectories
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Fig. 4. Estimation accuracy for a different payload

it achieves a tremendous reduction on the computation time
and retains comparable performance.

On the other hand, since the optimization of the excitation
trajectory does not depend on the particular payload that is
applied, we expect the designed trajectories to be robust
against the change of payloads. Fig. 4 shows the results
of estimation accuracy when we double the mass of the
payload (and thus the moment of inertia). Again, comparable
estimation accuracy is achieved by using the learned model.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a supervised learning based
framework for the trajectory generation in load identification
tasks for robotic manipulators. We trained the mapping
from the initial joint configuration to the optimal excitation
trajectory using the instances of the solved trajectory design
problems. As a result, the online trajectory generation is tran-
scribed to simple function evaluations and thus drastically
speeds up. For future work, we will study how to achieve
effective online load identification without interrupting the
normal operations of manipulators, and how to better pa-
rameterize the optimal trajectory and generate training data
to improve prediction accuracy of the optimal trajectory.
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