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Abstract
This paper proposes a method for motion planning of tractor-trailer combinations having ac-
tive trailer steering. Autonomous driving (AD) in structured environments involves a set of
predefined requirements that the vehicle should satisfy, such as lane following, safety distances
to surrounding obstacles, speed preferences, or ride smoothness. We have previously shown
that by interpreting the motion-planning problem as a nonlinear, non-Gaussian estimation
problem, we can leverage particle filtering to efficiecntly determine suitable vehicle trajec-
tories satisfying such requirements. In this paper, we extend the motion planner to deter-
mine safe and drivable trajectories for semi-trailer articulated vehicles in scenarios requiring
complex maneuvers. In a closed-loop simulation study, the trajectories are tracked with a
few centimeter accuracy, validating dynamic feasibility of the proposed method.
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Abstract— This paper proposes a method for motion planning
of tractor-trailer combinations having active trailer steering.
Autonomous driving (AD) in structured environments involves
a set of predefined requirements that the vehicle should satisfy,
such as lane following, safety distances to surrounding obstacles,
speed preferences, or ride smoothness. We have previously
shown that by interpreting the motion-planning problem as
a nonlinear, non-Gaussian estimation problem, we can leverage
particle filtering to efficiecntly determine suitable vehicle trajec-
tories satisfying such requirements. In this paper, we extend the
motion planner to determine safe and drivable trajectories for
semi-trailer articulated vehicles in scenarios requiring complex
maneuvers. In a closed-loop simulation study, the trajectories
are tracked with a few centimeter accuracy, validating dynamic
feasibility of the proposed method.

I. INTRODUCTION

While fully AD-capable vehicles are still mostly at the
research and development stage, production vehicles are
commonly being equipped with advanced driver-assistance
systems (ADAS), such as adaptive cruise control and lane-
change assist. Passenger vehicles with autonomous driving
(AD) capabilities are increasingly being tested on public
roads, even with commercialization plans in the near future,
e.g., in the transportation sector. This is driven by both
safety and economic aspects, such as the high number of
traffic accidents associated with overtaking and lane-change
maneuvers, potential fuel savings, and labor shortage [1].

The emergence of articulated vehicles such as (long)
tractor-trailer combinations has led to reduced costs for
goods transportation and reduced fuel consumption, and
thereby decreased environmental footprint. However, tractor-
trailer combinations have decreased maneuverability, partic-
ularly in urban areas where, e.g., performing 90-deg turns in
intersections and maneuvering roundabouts are two common
tasks that are made more difficult with an articulated vehicle
and related to the swept path, which is larger for articulated
vehicles [2]. The swept path is defined by the outer path of
the tractor front wheel axle and the path of the center of the
trailer wheel axle. Also, the kinematics of articulated vehicles
are significantly different from non-articulated ones. This
creates additional challenges from a control and planning
perspective, such as the risk of jackknifing, and how to
reverse and navigate narrow streets and turns [3], [4]. One
solution to improve maneuverability of articulated vehicles is
to have active trailer steering, in addition to the conventional
tractor steering. While this idea has been around since the
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Fig. 1. Schematic of the considered articulated vehicle geometry and related
notation.

1930’s, recently, several methods for trajectory tracking have
been developed, see, e.g., [5].

Here, we extend our previously developed particle filter
(PF) based motion-planning approach for automated cars to
compute motion plans for articulated vehicles comprising
a tractor-trailer setup with active trailer steering. Particle
filtering is a sampling-based technique for solving non-
linear estimation problems. PFs numerically approximate
the probability density function (PDF) of the variables of
interest given the measurement history, by generating random
trajectories and assigning a weight to them according to how
well they predict the observations. The driving requirements,
such as staying on the road, right-hand traffic, and obstacle
avoidance, are known ahead of planning, and we formulate
the driving requirements as measurements generated by an
ideal system. We demonstrate that, with suitable modifica-
tions, our planner can produce feasible motion plans also for
articulated vehicles with active trailer steering. Our method
also reduces the swept path compared to passive trailers, a
key consideration for tractor-trailer combinations [2].

Approaches for motion planning of passenger vehicles
relying on model predictive control (MPC) have been devel-
oped for specialized scenarios [6], [7]. However, a typical
limiting factor with these approaches is nonconvexity. This
results in achieving only a locally optimal solution, which
may be significantly far from the globally optimal one.
Motion planning in autonomous vehicle research is often
performed using either sampling-based methods such as
rapidly-exploring random trees (RRTs) [8], [9], graph-search
methods [10], [11] such as A* or D* [12], [13] to get a global
solution, possibly using MPC for a local refinement of the
motion plan and for tracking [14], [15].

Most motion-planning methods have been developed for
passenger cars but there has been some work tailoring
motion-planning methods for improved performance and
safety. E.g., [16] leverages optimization-based techniques
for path planning of articulated vehicles on narrow streets,



[17] considers the motion-planning problem for reversing by
adapting the closed-loop RRT, and [18] considers tractor-
trailer path planning in semi-structured environments. While
our method is sampling based as [17], it is based on estima-
tion theory and as such naturally can include environment
and modeling uncertainty. Furthermore, because unlike [18]
our method is designed for structured scenarios, it generates
control inputs according to predefined stochastic require-
ments rather than states, and therefore is less susceptible
to the dimensionality issues due to the increasingly complex
models associated with articulated vehicles.

Notation: Throughout, ym:k := {ym, . . . ,yk},
p(x0:k|y0:k) denotes the conditional probability density
function of the state trajectory x ⊂ X ∈ Rnx at time tk ∈ R
conditioned on the measurement y ⊂ Y ∈ Rny from time t0
to time tk. Given mean vector µ and covariance matrix Σ,
N (µ,Σ) and N (x|µ,Σ) stand for the Gaussian distribution
and PDF, respectively. The notation x ∼ p(·) means x
sampled from p(·) and ∝ reads proportional to.

II. MODELING

We refer to the automated vehicle as the standard 1
trailer vehicle (S1T), because generally, there can be multiple
trailers attached to the tractor. Other vehicles in the region
of interest (ROI) of the S1T are designated as other vehicles
(OV). Note that the OVs can be either autonomous or manual
vehicles, and either moving or at standstill. Our method
considers general discrete-time nonlinear vehicle models for
describing the time evolution of the S1T,

xk+1 = f̄(xk) + ḡ(xk)uk, (1)

with the state xk ∈ Rnx , input uk ∈ Rnu , and k is the time
index corresponding to time tk.

We introduce the following assumptions.
Assumption 1: Positions and velocities of the OVs relative

to the EV at the current time are known.
The quantities involved in Assumption 1 can be measured

and estimated by onboard sensors such as cameras, Lidars,
radars, and/or ultrasound sensors attached to the EV. The
future states of the OVs over the planning horizon are not
assumed to be known a priori, but the prediction of the future
state of OVs is incorporated into the planning method.

Assumption 2: The road geometry, number of lanes, and
the direction of travel in each lane is known.

The quantities involved in Assumption 2 are usually
known over the region of interest (ROI) from maps and
onboard cameras. The relevant road information over the ROI
is collected in the road state xRD.

A. Vehicle Model for Motion Planning

A model based on force-mass balances is generally more
accurate than a kinematic model, but for regular driving the
differences are small. In this paper we use the discretized
version of the kinematic S1T (Fig. 1) from [5],1

1Note that due to the different definition of the trailer angle θ, the
equations of motion differ from [5].
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ṗX
ṗY
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(2)

where pX , pY are the longitudinal and lateral position of
the tractor rear wheel axle in the world frame, respectively,
ψ is the heading (yaw) angle of the tractor, ψ̇ is the yaw
rate, θ is the heading (yaw) angle of the trailer, α is relative
heading angle of the trailer given by α = θ − ψ, vX is the
longitudinal velocity of the tractor in the vehicle frame, δs is
the steering angle of the front wheels of the tractor, ϕs is the
steering angle of the trailer wheels, l is the wheel base, a is
the distance from the rear tractor axle to the hitching point,
and b is the distance from the trailer axle to the hitching
point. The input u1 is the tractor acceleration, u2 is the front
steering rate of the tractor at the road, and u3 is the rear
steering rate of the trailer at the road. Using the rates as
inputs instead of the angles allows smooth steering and to
constrain the rate of changes of the respective steering angle.

We impose various state and input constraints on the
vehicle. The steering angles δs, ϕs, the steering rates δ̇s,
ϕ̇s, and the acceleration v̇X are subject to linear constraints,
which can be compactly written as

U = {uk : umin ≤ uk ≤ umax}. (3)

The road-boundary constraint can be written as

Γ(pX , pY ) ≤ 0, (4)

where Γ is constructed from point-wise road data.
The constraints due to the OVs can take any shape. For

instance, if the motion of the OVs is estimated by means
of Kalman filters, a natural choice is to model the OVs as
(conservative) ellipsoids. The spatial extent of the collision
area of the S1T around the o-th OV is denoted with Bo, and
the corresponding OV state is xOV

o = [pOV
X,o p

OV
Y,o ψ

OV
o vOV

x,o]
T.

We define the (deterministic or probabilistic) collision area
at time step k as Ok(x

OV
o,0,Bo), which depends on the

measured/estimated OV state xOV
o,0 at k = 0. Denote the

planning horizon with Tf , the predicted collision area of the
o-th OV for k ∈ [0, Tf ] is

Sk,o = O0:k(x
OV
o,0,Bo). (5)

The area the motion planner should avoid up until time index
k is computed as the union over all OV trajectory sets (5),

Sk =

M⋃
o=1

Sk,o. (6)



B. Driving Requirements

The proposed method is based on that nominal driving
requirements can be determined a priori. These requirements
can be summarized in the vector yk ∈ Rny for each time
step k. We model the driving requirements to maintain a
(possibly time varying) nominal velocity vnom, be positioned
in the middle of the lane corresponding to the driving mode,
that is, to have zero deviation from the middle of the lane of
both the tractor and the trailer, and ideally keep the distance
larger than dmin from the surrounding vehicles.

The resulting trajectory from the motion planner will
not exactly track yk, due to, e.g., conflicting requirements,
input constraints, the vehicle kinematics limiting the drivable
space, or sensing and modeling errors. The driving require-
ments are modeled as output equations on the vehicle states,

ŷk = h(xk,Sk,xRD) + ek, (7)

where h is a nonlinear function relating the S1T state xk, OV
obstacle set Sk (hence also {xOV}Mo=1), and road information
xRD, to the driving requirements. Furthermore, ek ∈ Rne

is the slack, which results in a probabilistic cost on the
driving requirements. We model ek as a stochastic Gaussian
disturbance with covariance Rk according to ek ∼ (0,Rk),
which may depend on the vehicle and driving mode. In this
paper, we use the driving requirement function

h(xk,Sk,xRD) =
[
vx,k pe,k qe,k d1,k · · · dM,k

]
,

(8)
where pe,k and qe,k are the lateral deviations of the tractor
and the trailer from the middle of the lane in the road-aligned
frame, and dj,k is the distance to the jth obstacle.

We make the following assumption to incorporate the
trailer constraint on qe,k into the driving requirements.

Assumption 3: The trailer heading angle θ or the relative
angle of the trailer to the tractor α = θ − ψ, is known.
In practice, Assumption 3 does not exactly hold as θ or α
are estimated online with some finite precision. However,
we account for estimation errors by including uncertainty in
the vehicle model and requirement function. From α and the
dimensions of the S1T, we can determine the coordinates
of any point on the trailer. In this paper, we determine
the closest reference point from the middle of the lane to
compute the lateral deviation of the trailer rear-axle point in
the trailer’s (local) frame of reference. The motion planner
repeats this process at every time step in the planning and
computes inputs that minimize this deviation while also
trading-off with the other objectives.

III. MOTION PLANNING USING PARTICLE FILTERING

The objective of our previously developed PF-based mo-
tion planner [19] is to determine an input trajectory and
corresponding motion plan over the planning horizon Tf that
navigates the road safely while satisfying input constraints
(3), road constraints (4), and obstacle constraints (6). In
addition, we want to minimize deviations from the predefined
driving requirements (7).

In a Bayesian framework, by adding process noise wk to
the vehicle model (1), (1) and (7) can be formulated as

xk+1 ∼ p(xk+1|xk), (9a)
yk ∼ p(yk|xk,x

RD,Sk), (9b)

where xk+1 and yk are regarded as samples.
Given the vehicle dynamics (1), the goal of the motion-

planning method is to generate an input trajectory uk, k ∈
[0, Tf ] over the planning horizon Tf satisfying the input
constraints (3) such that the resulting trajectory obtained
from (1) obeys (4), avoids the obstacle set (6), and reaches
the goal region Xgoal, i.e., xTf

∈ Xgoal, which is assumed
to be given by a higher-level route planner.

The main idea in the approach is to determine the state
trajectory PDF p(x0:T |y0:T ,x

RD,ST ), conditioned on the
driving requirements y0:T and the global information as a
finite weighted sum over the planning horizon, and then to
extract the trajectory from the PDF. By doing this iteratively,
we construct a trajectory x0:Tf

based on the driving require-
ments. The driving requirements are the equivalent of sensor
measurements in a traditional estimation problem.

We implement the motion planner in a receding horizon.
The trajectory is computed for a time interval Tf but is only
applied for ∆t ≤ Tf , and the maximum allowed (allocated)
computation time for finding the motion plan is δt. We keep
a committed tree, which is the part of the tree that will be
executed. In the beginning of a planning phase, the measured
S1T position is obtained, and the N1TT position over the
allocated computation time δt is predicted, compared, and
matched with a node being the closest node in the tree. Such
node becomes the root node of the planning phase. The part
of the tree that is not a descendant of the end node is deleted.

Algorithm 1 Proposed Planning Method
1: Input: State estimate x̂, goal region Xgoal, tree T .
2: Propagate x̂ with the allocated time slot δt.
3: Set root node of T corresponding to x̂.
4: Delete part of T that is not a descendant of the root

node.
5: Update obstacle set (6) and road constraint (4) to com-

pute allowed region Xfree.
6: Set tCPU ← 0
7: while tCPU ≤ δt do
8: Determine {x0:T ,u0:T−1} using a PF.
9: if x0:T is obstacle free then

10: Add x0:T as vertices Vnew to T .
11: Add u0:T−1 as edges Enew to T .
12: end if
13: end while
14: Determine lowest-cost safe state trajectory xbest and

corresponding controls ubest.
15: Apply {xbest,ubest} for time ∆t, repeat from Line 1.

Algorithm 1 describes the planner. When the computation
time exceeds δt, the safe trajectory with lowest accumulated
cost C is chosen for execution (Line 15, Algorithm 1).



TABLE I
THE PARAMETER CHOICES FOR THE SIMULATION STUDY.

Parameter Unit Value Meaning

N - 100 # particles
∆t s 0.5 Execution time
δt s 0.1 Allocated computation time
Ts s 0.1 Sampling period motion planner
Tf s 10 Planning horizon
h ms 25 Controller sampling period
T - Tf/Ts Prediction time
dmin m 4 Safety distance
δmax (ϕmax) deg 15 Maximum steering angle
δ̇max (ϕ̇max) deg/s 10.5 Maximum steering rate
v̇X,max m/s2 0.5 Maximum acceleration

IV. RESULTS

This section presents and analyzes results from simulations
in scenarios of a tractor-trailer combination traveling in
obstacle-free environments, when confronted with OVs in
the same lane, and during tight turning.

A. Parameters

Table I shows the different parameters in the planner, sym-
metric input constraints, and symmetric state constraints. The
planner replans a Tf = 10s trajectory every = 0.5s, with an
alloted computation time δt = 0.1s. In this way, we account
that while the sensors can detect long-range obstacles over
the planning horizon Tf , they are more reliable for shorter
distances (corresponding to ∆t). The discretization period of
the dynamics is Ts = 0.1s.

The cost for each node in the tree T can be chosen
differently, e.g., as a distance from the goal, the offset from
a nominal path, the offset from a nominal velocity, the
distance to OVs, or a combination thereof. In the current
implementation we penalize the offset from the nominal
velocity, the tractor’s and the trailer’s deviation from the lane
center, and the distance to OVs located less than a safety
distance dmin from the ego vehicle. The Q and R used are

Q = diag(12, (
100π

180
)2, (

100π

180
)2),

R = diag(22, 12, 12, 0.22)
(10)

where diag(.) denotes a diagonal matrix.

B. Results in Highway Driving Scenario

Fig. 2 displays four snapshots of an excerpt of a situation
where a vehicle is located in front of the EV, in the same lane,
which necessitates a lane change. Subsequently, the proposed
method successfully plans a new trajectory for the EV to
change lane. In particular, at (t = 21s), the planner observes
the obstacle and computes a smooth path to change lane.
At all times, the planner is trading off between minimizing
deviation of the tractor and trailer rear-axle midpoint from
the centerline of the road segment, and tracking the reference
velocity as close as possible. From (t = 23s) to (t = 27s),
the vehicle successfully overtakes the OV.

Figs. 3 and 4 display results when the motion planner is
executing in closed loop with a high-level decision maker
and a low-level tracking controller, similar to [20]. Fig. 3

shows a comparison of the planned and attained velocities,
as well as the trajectories when the articulated vehicle
comes to a stop from a certain initial nominal velocity, and
Fig. 4 displays a comparison of the planned and attained
velocities, as well as the trajectories when the articulated
vehicle takes a sharp turn. In both cases, the controller
successfully tracks the velocity references determined by
the motion planner. Secondly, Figs. 3 and 4 also present
the corresponding tracking error between the reference path
computed by Algorithm 1 and the actual trajectory driven by
the vehicle. The tracking error remains smaller than 10cm in
all of the above scenarios, indicating that the motion planner
determines realistic trajectories, even in sharp turns, which
can be closely followed by a low-level controller.

C. Impacts of Active Trailer Steering in Cornering

To validate impact of the active trailer steering in the
motion planning, we evaluate the swept path with and
without trailer steering for a turning maneuver consisting of;
(i) driving a straight-line section; (ii) performing a 270 deg
turn to the right; and (iii) driving straight again. The swept
path is defined by the outer path of the tractor front wheel
axle and the path of the center of the trailer wheel axle.

Fig. 5 shows the resulting swept paths with and without
trailer steering. Irrespective of using active or passive trailer,
both configurations manage to plan a path closely following
the middle of the lane (indicated in dashed). However, for
the passive trailer configuration, the trailer due to lack of
controllability will follow the planning enforced for the
tractor. For the case of active trailer, however, the planner
manages to decrease the deviations from the middle of the
lane, although to exactly plan a path for both the tractor
and trailer is not feasible due to input constraints and the
dimensions of the trailer. Here, note that it is possible to
trade off deviations of the tractor to deviations of the trailer,
but in this particular simulation the cost function was chosen
to prioritize the tractor mid-lane deviations.

Fig. 6 displays the deviation of the trailer to the middle of
the lane, corresponding to the planned trajectories in Fig. 5.
Overall, the active trailer reduces the mid-lane deviations in
the planning from about 5m to 1.5m.

V. CONCLUSION

We extended our previously proposed PF-based motion
planner [19] from passenger vehicles to a tractor-trailer
combination with active trailer steering. The method formu-
lates the motion-planning problem as a nonlinear stochastic
estimation problem and therefore by construction accounts
for environmental and modeling uncertainties. We showed
that the method is suitable for online motion planning of
articulated vehicles and that the generated trajectories are
dynamically feasible and can be closely tracked by a subse-
quent low-level controller. Our results indicate that the plan-
ner provides drivable trajectories for a number of different
scenarios, such as lane following, lane change and obstacle
avoidance. In addition, by having active trailer steering, the
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Fig. 2. Four snapshots from a simulation of a tractor-trailer combination overtaking a stand-still OV.
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Fig. 3. Results when Algorithm 1 runs in closed-loop with a high-level decision maker and low-level tracking controller. The plots show the tracking
error, reference, planned and actual velocities, and trajectories when the vehicle is coming to a stop.

motion plans determined by our planner substantially reduce
the swept path compared to passive trailer steering.
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Fig. 4. Results when Algorithm 1 runs in closed-loop with a high-level decision maker and low-level tracking controller. The plots display the tracking
error, reference, planned and actual velocities, and trajectories when vehicle is taking a sharp turn.
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