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Abstract
This paper addresses the need for a framework that combines software and hardware imple-
mentation level optimization to improve the energy efficiency of sparse quantized deep neural
networks (DNN). The proposed joint neural architecture optimization approach explores the
best design in each paradigm, from Python simulation to hardware-FPGA implementation.
As a result, it reaches the best power and area requirements in FPGA implementation. We
evaluate our method on a real-time signal-processing DNN model and find that it achieves
1.7x improvements in power and 40x in area compared to the baseline implementation of the
same model. Our findings demonstrate the effectiveness of the proposed framework in opti-
mizing power and area requirements for DNNs, which is important for IoT and edge devices
where resource constraints are acute.
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Abstract—This paper addresses the need for a framework that
combines software and hardware implementation level optimiza-
tion to improve the energy efficiency of sparse quantized deep
neural networks (DNN). The proposed joint neural architecture
optimization approach explores the best design in each paradigm,
from Python simulation to hardware-FPGA implementation. As
a result, it reaches the best power and area requirements in
FPGA implementation. We evaluate our method on a real-time
signal-processing DNN model and find that it achieves 1.7×
improvements in power and 40× in area compared to the baseline
implementation of the same model. Our findings demonstrate the
effectiveness of the proposed framework in optimizing power and
area requirements for DNNs, which is important for IoT and edge
devices where resource constraints are acute.

Index Terms—co-optimization, design automation, FPGA

I. INTRODUCTION

Deep neural networks (DNN) have gained widespread popu-
larity in various domains, including computer vision and signal
processing. However, despite their high performance, DNN
models are known to be energy-intensive [1]. For instance,
the energy required to train a large DNN model for natural
language processing can result in a significant carbon foot-
print, with an estimated 284 metric tons of CO2 emissions,
equivalent to the lifetime emissions of five cars [2]. This
has led to the emergence of a new research direction called
“green AI" [3]–[6], which aims to balance the tradeoff between
power efficiency and inference accuracy. Green AI models
have shown promise in accelerating DNN models, particularly
on field-programmable gate array (FPGA) platforms [7]–[9].

The energy consumption of DNN models is primarily
attributed to their architecture, particularly the computation-
ally expensive vector-matrix multiplication and bias addition
operations. FPGAs often use highly customized digital sig-
nal processing (DSP) blocks to implement these operations.
Additionally, the size of training parameters, such as weights
and biases, is another critical factor affecting energy con-
sumption, with larger parameter sets requiring more energy.
Therefore, various green AI models have been proposed to
address this challenge, including knowledge distillation, prun-
ing, and quantization techniques, aimed at reducing the size
of DNN models while maintaining high inference accuracy.
These models are designed to downsize DNN models while
maintaining high inference accuracy.

Although sparse DNNs have lower computational com-
plexities from a software perspective, their efficient hardware
implementation might require significant resources. There-
fore, an optimized design must consider the software and
hardware requirements to minimize energy consumption. By

jointly optimizing a DNN model from both domains, we
can balance computational efficiency and energy consumption,
resulting in a fast and energy-efficient implementation. This
paper proposes a framework for optimizing DNN models
from Python implementation to FPGA deployment to achieve
energy-efficient designs. Our key contributions are as follows:

• We present a software-hardware design methodology
for generating machine learning models optimized for
energy-efficient hardware implementation.

• We find that an optimal word size for fixed precision data
that leads to compact circuitry.

• Our methodology enables the efficient implementation of
sparse quantized DNN, which can significantly reduce the
model’s energy consumption.

The following sections are organized as follows. Section II
highlights the related works, section III describes the proposed
method, section IV demonstrates the efficacy of the proposed
method, and section IV-D concludes the paper.

II. RELATED WORKS

Optimization techniques for machine-learning models target
accuracy, lighter implementation, and reduced power con-
sumption. This activity can be divided into two general fronts.

A. Model Optimization in Python

One popular approach to optimizing a DNN model is to
reduce the precision of the weights and activations, reducing
the amount of data that needs to be transferred and pro-
cessed. This can be achieved through weight quantization [10],
[11] and activation quantization techniques, such as Fixed-
Point Quantization and Dynamic Fixed-Point Quantization.
The Hardware-Aware Automated Quantization (HAQ) [12]
framework leverages reinforcement learning to determine the
quantization policy for different neural networks and hard-
ware architectures, effectively reducing latency and energy
consumption with negligible loss of accuracy. [13] outlines
SqueezeNet, in which a set of modifications made to the
network architecture to achieve energy goal, includes aggres-
sive channel reduction, separable 3×3 convolutions, and an
element-wise addition skip connection, and optimization of the
architecture by simulation, but no FPGA targeted optimization
is discussed. Another approach is to compress the size of the
DNN model through techniques such as pruning [14], knowl-
edge distillation [15], and parameter sharing [16]. Pruning
removes unimportant connections or filters in the network. At
the same time, knowledge distillation trains a smaller network
to mimic the behavior of a more extensive network.
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B. Model Optimization in FPGA

Hardware-level optimizations have been extensively studied
to improve the power efficiency of DNNs. These optimiza-
tions include designing specialized hardware accelerators and
optimizing the hardware architecture, which can significantly
reduce power consumption [17]. Fixed-point arithmetic is
often used instead of floating-point arithmetic to represent
weights and activations in DNNs, which takes less energy
for computation [18]. Binary weights can also be restricted to
only two possible values, which significantly reduces power
consumption and hardware complexity by replacing multiply-
accumulate operations with simple additions [19]. Optimiza-
tion techniques can be applied to reduce power consumption
in DNNs implemented on FPGAs, including software-level
techniques like quantization and hardware-level techniques
such as pipelining, parallelization, etc. We optimize both
software and hardware domains for power efficiency.

III. PROPOSED METHOD

A general overview of the proposed approach is given in
Fig. 1. The framework consists of Python simulation, C++
simulation, FPGA synthesis, and implementation for finding
optimized RTL or FPGA implementation from a base ML
model designed in Python. The general steps are as follows.

A. Python Simulation

In this step ML model, hyperparameter, and architecture
selection are performed, and various optimization techniques
are applied to maximize performance for the specific prob-
lem. Two crucial techniques used in this step are weight
quantization and pruning. Weight quantization reduces the
precision of neural network weights to reduce memory and
computation requirements during inference. At the same time,
pruning removes weights that have little effect on the output,
reducing computation during inference. The optimized models
or weights are the outcome of this step.

B. Pareto Selection

The complexity of a DNN model is often related to the
number of non-zero parameters (nnz) associated with each
ML model. Three weight quantization schemes are considered
to optimize DNNs for efficient hardware implementation: no

quantization, Power of Two (PoT) quantization, and Additive
PoT (APoT) quantization. A Pareto optimization approach
selects the most power-efficient solutions based on trade-offs
between accuracy and nnz. The Pareto front is identified, and
the Pareto-optimal solutions providing the best performance
for a given power budget are selected based on their trade-
offs between accuracy and nnz in two steps.

The first step generates Pareto solutions for each quanti-
zation scheme by plotting accuracy against the nnz. The set
of solutions with the best trade-off between accuracy and
complexity is selected. In the second step, the most optimized
solutions are selected for RTL synthesis by comparing the
Pareto fronts generated by the three quantization schemes and
refining them to obtain the final Pareto front.

It is possible that some solutions only varies on one axis or,
in some case, even overlap. In that case, the most promising
solution can be selected using the following rules. Let S be a
set of Pareto solutions and nnz(s) be the number of non-zero
parameters, nmse(s) denote the normalized mean squared
error or dB, P (s) denote the power consumption, C(s) denote
the number of channels used, H(s) denote the number of
hidden layers in the solution set s. Select s∗ such that:

1) If solutions vary on nnz, but nmse is constant, pick one
with the lowest nnz.

s∗ = argmin{nnz(s) : s ∈ S}.

2) If solutions vary on nmse, pick one with the lowest
nmse.

s∗ = argmin{nmse(s) : s ∈ S}

3) The most power-efficient quantization will be selected if
multiple solutions overlap with different quantizations.

s∗ = argmin{P (s) : s ∈ S}

4) If more than one solution overlaps with the same quanti-
zation, the solution with the lowest number of channels
will be selected.

s∗ = argmin{C(s) : s ∈ S}

5) If multiple solutions overlap with the same quantization
and the same number of channels, then the solution with
the lowest number of hidden will be selected.

s∗ = argmin{H(s) : s ∈ S}

The aforementioned set of five rules will be henceforth referred
to as “exclusion rules”, with subsequent sections referring to
them by their assigned rule number as appropriate.

C. Code Conversion, HLS Simulation and Synthesis

Transforming machine learning models from Python im-
plementation to HDL code using the Vitis [20] includes
converting CNN layers, activation functions, and multi-input
multi-output convolutions (FIR) to C++ code while retaining
the optimizations made in Python. The conversion comprises
CNN layers, activation functions, and multi-input multi-output
convolutions (FIR) while maintaining Python’s optimizations.



To ensure accuracy, the converted C++ code must undergo
csimulation. Some device and FPGA-specific tasks can be
performed in this step: code transformation. The FIR function
can also be optimized for performance and efficiency by
creating three versions: regular multiplication, PoT, and APoT.

D. HDL Implementation

In the Vitis HLS tool, the implementation step plays a
crucial role in transforming the high-level C++ design into an
optimized hardware design that meets the specific constraints
and requirements of the target FPGA device. This process
accurately estimates the resources required for the design, in-
cluding the number of logic cells, DSP blocks, memory blocks,
and other FPGA resources. This step is critical for ensuring
that the design meets power constraints. The implementation
step generates the RTL HDL, which can program the FPGA
to implement the hardware design. The HDL code can be
VHDL or Verilog, depending on the user’s preference. An
approximate power estimation can be obtained in this step.

E. QoR Analysis

Quality of Results (QoR) is a key metric to evaluate the
overall quality of FPGA designs, considering factors such as
performance, power consumption, area utilization, and timing.
To facilitate a comparative analysis of QoR, designers can use
various methods, such as timing analysis to check if the design
meets the timing constraints, resource utilization analysis
to ensure the design fits within the target FPGA device’s
capacity, and power analysis to measure the design’s power
consumption, which can be optimized for low power. These
analyses can be performed at different stages of the design
flow, including simulation, synthesis, and implementation.

IV. EXPERIMENT AND ANALYSIS

We demonstrate the application of our proposed method for
joint optimization of a real-world low-latency, high-throughput
CNN network. The experiments are conducted on a machine
with an Intel(®) Core™ i7-8700K CPU @ 3.70GHz, 64GB
main memory, and Ubuntu 20.04.5 LTS. The target FPGA
synthesis board is Xilinx ZCU104, and Vitis HLS 2022.1 is
used to synthesize the kernels.

A. Proposed CNN Model

We optimize a 1D CNN-based Digital Pre-Distortion (DPD)
model to mitigate distortion caused by power amplifier (PA)
nonlinearities in digital communication systems. DNNs have
shown promising results in mitigating nonlinear distortion in
PAs [21], [22]. We use a 1D CNN-based DPD system with
two input and two output channels, which can have an arbitrary
number of hidden channels. Our approach involves training a
neural network with large input/output signal pairs to learn the
PA’s nonlinear behavior. Then, the neural network pre-distorts
the input signal before amplification by the PA, canceling out
the nonlinear distortions introduced by the amplifier. The pro-
posed CNN model includes adjustable network configuration
parameters such as kernel size, quantization type, number of

TABLE I: Candidate Pareto Solutions. Kernel refers to kernel
size. Pruning (prun.) is a percentage.

kernel quant. hid_ch hid_layer prun. nmse nnz

7
no_quant

4 2 30 -30.13 78
8 2 65 -29.88 78

apot 14 2 95 -28.63 20

5
no_quant 10 2 83 -28.82 34

apot
8 2 95 -25.80 6
4 2 95 -21.17 4

3
no_quant 8 2 83 -28.30 16

apot 4 2 99 -12.84 2

hidden channels, number of hidden layers, and percentage of
weights to be pruned.

B. Optimization in Python and Pareto Solution Selection

The optimization scope includes kernel size (four different
values: 3, 5, 7, and 11.), quantization type (no quantization,
PoT, APoT), number of hidden layers (2 or 3), number of
hidden channels (2, 4, 6, 8, 10, 14, 16), and pruning percentage
(0, 30, 65, 83, 91, 95, 98, 99). A total of 840 samples
are collected by sweeping through all configurations, with
metrics including normalized mean squared error (nmse) and
the number of non-zero weights (nnz). The impact of each
optimization technique on QoR is analyzed, including hidden
channels, pruning percentage, nmse, and nnz. Pareto solutions
are identified for each quantization type based on the results.

Fig. 2 shows that 216 Pareto optimal solutions are obtained
after optimizing the Python code for three types of quantiza-
tion. However, the large search space reduced the number of
solutions to 112 by following the second step, as shown in
Fig. 3 (a). Then, further exclusion rules are applied, resulting
in the top 50 solutions. Eight of these top 50 solutions are
presented in Table I.

C. Optimization in HLS

The following parts of this section describe optimization in
the HLS domain. Optimization occurs in a couple of aspects.

Optimal word_size: Using fixed precision representation in
FPGA has several advantages, including reduced power con-
sumption, increased speed of operations, and a more compact
area requirement. Fixed precision representation reduces the
number of bits required to represent a floating point number,
resulting in a smaller circuit size and lower power consump-
tion. It also allows for better control over precision levels and
value ranges, which can be optimized to suit specific appli-
cation requirements. We compared the convolution outcomes
for various inputs and arbitrary precision points to determine
the optimal word size for fixed precision representation in
CNN implementation. The results of our experiments, shown
in Fig. 3 (b), indicate that a word size of 16 or <16, 6>, where
the integer part is 6, and the floating part is 10, provides the
best outcome in terms of mean squared error (MSE).

Pragma Insertion: Pragmas can substantially benefit HLS
by reducing power consumption and optimizing memory
access. They are commonly used for loop unrolling, data
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pipelining, array partitioning, etc., to minimize the number
of operations and data movements in the design. By inserting
pragmas in C++ source code of the CNN, DSP blocks and
other resources can be conserved.

Synthesis and Implementation: After determining the
optimal word size and quantization type for a neural network,
specific parameters, including kernel size, number of channels,
number of layers, pruning percentage, and quantization type,
need to be identified from Pareto solutions. Next, we generate
C++ code and synthesize it in Vitis HLS to estimate the FPGA
footprint. The impact of the number of hidden channels on
the power consumption and number of non-zero values (nnz)
is shown in Fig. 4 (a) and (b), respectively. Based on these
observations, a hidden channel size of 4 is optimal, resulting in
three Pareto solutions. Synthesis and implementation profiles
of these solutions are presented in Table II.

TABLE II: Synthesis and implementation profile. CNN model
as kernel_hidden layers_hidden channels_pruning percentage

CNN Model quant. DSP FF LUT Power (W)
5_1_4_95 apot 0 36831 439933 0.77
5_1_4_0 not_quant 40 82286 557820 1.2

7_1_4_30 no_quant 38 32901 321813 1.07
7_1_4_0 no_quant 50 17050 71555 1.1

3_1_4_99 apot 0 77040 711369 0.95
3_1_4_0 no_quant 25 152828 990968 1.395

D. Discussion

It is often intuitive that PoT implementation of the kernel
would be more energy efficient. Still, we find that APOT yields
better nmse and power consumption for a certain dataset and
DNN. Our implementation of the convolution operation is zero
aware. Therefore, the higher power requirement of PoT kernel
operation could be explained by PoT implementation circuitry
spending more energy determining if the weight value is non-
zero. Table II shows the optimized designs against their non-
optimized counterparts. In every row, the number of DSPs in
the optimized CNN has been reduced because of the careful
use of pragma or code transformation. Optimization techniques
worked better in APoT quantizations but not in LUT and FF
optimization in no-quantizations. The PoT kernels are absent
from the top Pareto solutions as we prioritized nmse over nnz.
The PoTs have a higher chance of being on the Pareto fronts
if we prioritize nnz.

V. CONCLUSION

This paper proposes a framework to address the chal-
lenge of hardware-software optimization of DNN models by
presenting a design methodology for generating optimized
hardware implementation. By jointly optimizing the hardware
and software components, it is possible to achieve a balance
between computational efficiency and energy consumption,
resulting in a system that is both fast and energy-efficient. The
contributions of the framework include saving critical circuit
resources and efforts spent in discovering multiple designs
for rapid hardware prototyping and enabling the efficient
implementation of sparse DNNs.
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