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Abstract
This paper develops an algorithm for personalized route recommendations in traffic networks,
using crowdsourced connected vehicle data. Current policies usually consider mini- mal travel
and/or minimum energy paths for planning a route between a given origin-destination pair
in a road network. How- ever, individual driving preferences may involve a combination,
in varying proportions, of the time and energy aspects while choosing a route, and may
also depend on additional features such as the type of vehicle, amount of expected speed
variations along the routes, turns, etc. These additional factors need to be considered to
provide individualized route recommendations for different drivers. This paper uses individual
driving histories to, i) create a generalized probabilistic model of the driver-specific features
given certain macroscopic traffic conditions for each road segment between a chosen origin-
destination pair, and, ii) learn a personal cost function based on the predicted features. The
algorithm for recommending routes for different drivers is validated using Simulation of Urban
MObility (SUMO)-based simulation of an urban road network.
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Personalized Routing using Crowdsourced Connected Vehicle Data

Anuj Tiwari, Karl Berntorp, Stefano Di Cairano, and Marcel Menner

Abstract— This paper develops an algorithm for personalized
route recommendations in traffic networks, using crowdsourced
connected vehicle data. Current policies usually consider mini-
mal travel and/or minimum energy paths for planning a route
between a given origin-destination pair in a road network. How-
ever, individual driving preferences may involve a combination,
in varying proportions, of the time and energy aspects while
choosing a route, and may also depend on additional features
such as the type of vehicle, amount of expected speed variations
along the routes, turns, etc. These additional factors need to be
considered to provide individualized route recommendations for
different drivers. This paper uses individual driving histories to,
i) create a generalized probabilistic model of the driver-specific
features given certain macroscopic traffic conditions for each
road segment between a chosen origin-destination pair, and, ii)
learn a personal cost function based on the predicted features.
The algorithm for recommending routes for different drivers is
validated using Simulation of Urban MObility (SUMO)-based
simulation of an urban road network.

I. INTRODUCTION

Connected and automated vehicles (CAVs) have been
proposed for future transportation systems as a solution to
improve traffic flow, efficiency, and safety, and there is a rich
history of research literature in this direction [1]–[3]. More
recently, the use of connected vehicles as mobile sensing
platforms for Crowdsourced Vehicular Sensing (CVS) [4],
[5] has been proposed, which can be used for modeling urban
traffic networks [6], for instance to predict individual driver
behavior using location-specific crowdsourced data [7].

This paper proposes using the crowdsourced vehicular data
about traffic conditions in urban traffic networks for optimum
route prediction for individual drivers. Previous work on
route choice models have focused on minimum travel and
fuel consumption paths [8]–[12]. However, individual route
preferences can depend on additional factors, in addition
to the travel time and fuel consumption, such as route
familiarity, type of roads, such as urban streets or highways,
etc. This paper proposes using personalized driving histories
of individual drivers to predict optimum paths based on
personal preferences. The personal preference over route
choices can be modeled as the cost of choosing one route
over another based on past driving patterns. However, it is not
trivial to find a mathematical formulation of the personalized
cost associated with route choices.
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The approach proposed in this paper is to use driving his-
tories to learn the route choice models of individual drivers
by extracting a surrogate cost function from such data.
The availability of sophisticated onboard sensing in con-
nected vehicles enables CAVs to relay microscopic vehicle-
specific data, which may include the ego vehicle’s speed,
acceleration, and energy consumption, corresponding to the
surrounding traffic conditions, described through the macro-
scopic features consisting of averaged surrounding traffic
speed, acceleration, etc. Such microscopic vehicle-specific
data are expected to be different for the same macroscopic
traffic conditions, depending on different driving behaviors.
For instance, conservative drivers can have slower speeds in
the same free-flow traffic conditions, as compared to aggres-
sive drivers. The main contribution of this paper is to develop
an algorithm for learning a personal cost function for route
choices of drivers, by statistically modeling the relationship
between micro-macro traffic features from individual driving
histories, and predicting personalized optimal routes for trips
between a given origin-destination pair. Specifically, first
the driving history is represented as feature vectors, with
microscopic and macroscopic features, for an individual
driver, and then the implicit cost function of the ego vehicle
is modeled as a joint probability using a Gaussian Mixture
Model (GMM). The GMM of the feature vectors models the
correlation between microscopic and macroscopic features
that captures the past driving behaviors of individual drivers
for different traffic conditions. Second, given the macro-
scopic features provided by the crowdsourced connected
vehicle data, which depict the traffic conditions, the most
likely ego vehicle behavior is predicted using the GMM from
driving history. Third, the cost for choosing a given route
is estimated based on the likelihood of the feature vectors
along the route in the driving history, where the feature
vectors consist of the microscopic predicted features from the
GMM and the macroscopic features from the crowdsourced
data. Finally, the paper presents the implementation of the
proposed data-based algorithm through a simulation example
in Simulation of Urban MObility (SUMO) [13], [14], where
connected vehicle data and individual ego vehicle driving
histories are created for a realistic urban traffic road network.

A. Related Work

Personalizing vehicle control: Related work often con-
siders personalized vehicle control or data-based controller
calibration, see e.g., [15]–[23]. The work in [15] calibrates
a motion planner for personalizing the autonomous driving
experience. In [16], an optimal controller is calibrated us-
ing driving data. The work in [17] uses a game-theoretic



controller for vehicle interactions using various types of
driver models, [18] calibrates an agent-based simulation
to reproduce the individual/group traffic behaviors, [19]
proposes risk-aware model predictive control and Gaussian
processes to model the evolution of the environment using
traffic data, and [20] uses a maximum likelihood method
to learn a cost function for model predictive contouring
control. In [21], a cost function is calibrated for multi-agent
dynamic games. Similar to our approach, [22] also learns
a non-parametric cost function, which is subsequently used
for energy-optimal control of electric vehicles. However,
few papers address vehicle route choice models based on
personal driving preferences, which can be a function of
many variables besides time of travel and energy efficiency.

Vehicle routing: Vehicle routing algorithms are a subset
of combinatorial optimization problems which have been
studied for applications such as freight distribution and
collection, and transportation networks [24]. In the context
of transportation networks, vehicle routing has been mainly
studied for minimizing travel time and uncertainty, and fuel
consumption, e.g., in [8] Support Vector Machine (SVM)
is used to create non-parametric driver route choice models
based on travel time, travel time fluctuations, and fuel
costs as the route attributes. Similarly, energy-optimal route
planning has been proposed in [12], which provides a fuel-
optimal route in addition to optimal speed and gear profiles
for a given origin-destination pair for heavy duty vehicles.
However, in the case of personal vehicles, travel time, its
reliability, and fuel consumption are not the only factors
that affect the driver’s route choices. There can be other
attributes that may inform a driver’s choices, e.g., familiarity
of the route’s surrounding area, type of roads, ease of driving,
etc., which can potentially be inferred from driving history
information as presented in this paper. Moreover, a driver’s
route choice may result from trading-off multiple different
or conflicting objectives.

B. Outline

The rest of the paper is organized as follows. The al-
gorithm for learning the route choice model is derived in
Section II, its application to an example urban network
is shown through SUMO simulations in Section III, and
concluding remarks are given in Section IV.

II. MATHEMATICAL FORMULATION

This section presents the algorithm for modeling the
personalized choice behavior from driving history, which
is then used to predict the individual cost for traveling on
routes.

The driving history of a vehicle on the road network
is represented using feature vectors Xi ∈ Rn, where i
corresponds to a road edge i ∈ NE in the network with
NE being the total number of segments in the network, and
n = nV +nE with nV microscopic vehicle-specific features
and nE macroscopic traffic features, or conditions, of road

edge i. Hence, a feature vector is composed of

Xi =

[
xV,i

xE,i

]
where xV,i ∈ RnV are the microscopic vehicle features and
xE,i ∈ RnE the macroscopic edge features. It is assumed
that each ego vehicle’s driving history is stored as a set of
feature vectors Xi.

Let CV (Xi) be the unknown cost associated with a road
segment i for an ego vehicle, where X is a state describing
the vehicle behavior and features of the road. In general, the
cost CV (X) for the ego vehicle may be difficult to model
using, e.g., a parametric model such as a quadratic cost
function. Hence, in this paper we model CV (X) using a
probability density function (PDF), P (X), with

CV (X) = − log (P (X)) . (1)

Using the negative logarithmic likelihood is sensible as
we model P (X) being a distribution from the exponential
family. As a result, we can model traffic/vehicle data mea-
surements Xi as samples from P (X),

Xi ∼ P (X), (2)

which, in turn, we can utilize to reason about P (X) using
measurements Xi. The reasoning for choosing a probabilistic
model is that road conditions that have been observed more
frequently for a specific driver are also more likely for future
route choices. Hence, this paper

• develops an algorithm for learning a driver’s cost func-
tion as in (1) for route choices using driving history
given by samples (2) and

• uses such a driver-specific cost function to predict an
optimal route for a given origin-destination pair using
crowdsourced data depicting current traffic conditions
on the road network.

A. Modeling driving behavior as joint PDF

The implicit cost function of an ego vehicle is modeled
from its driving history as a joint probability as in (2)
between the microscopic ego vehicle features xV,i, such as
vehicle speed, acceleration, energy consumption, etc., and
macroscopic road features xE,i, such as speed averaged over
all the vehicles on the road, congestion, average energy
consumption, etc. These are stored as the feature vectors Xi

at different road edges i ∈ NE . Such a mapping between
microscopic features models the ego vehicle’s behavior in
different traffic conditions, while also learning the more
frequented, and hence preferable, road conditions from in-
dividual driving histories. Therefore, this approach leads to
learning of driver’s tendencies and preferences from driving
histories, and provides a method to model the implicit cost
function intrinsic to a driver for making route choices.

This paper uses a data-based approach, where (2) is
approximated using a GMM and fitted to the ego vehicle’s
feature vectors from driving history, to obtain the joint
probability between the microscopic ego vehicle features
xV,i, and macroscopic road edge features xE,i. Let K be



the number of Gaussian distributions in the GMM. Then,
the GMM is

P (X) = P

([
xV

xE

])
=

K∑
k=1

πk N
([

xV

xE

]∣∣∣∣ µk,Σk

)

=

K∑
k=1

πk pk

([
xV

xE

])
, (3)

where πk is the mixing coefficient, µk and Σk are the
mean vector and covariance matrix, respectively, of the kth

Gaussian distribution pk(X) in the GMM (3), and,

N (X|µ,Σ) = 1√
(2π)|Σ|

exp

(
−1

2
(X−µ)TΣ−1(X−µ)

)
.

The mean µk ∈ Rn and covariance Σk ∈ Rn×n of the kth

Gaussian component in the GMM (3) can be segmented into
their microscopic and macroscopic features as follows,

µk =

[
µkV

µkE

]
, Σk =

[
ΣkV V

ΣkV E

ΣkEV
ΣkEE

]
, (4)

where µkV
∈ RnV and µkE

∈ RnE are the mean vectors
of the kth Gaussian for the microscopic and macroscopic
features respectively, and ΣkV V

∈ RnV ×nV and ΣkEE
∈

RnE×nE are the covariance matrices of the microscopic and
macroscopic features respectively, and ΣkV E

= ΣT
kEV

is the
cross-covariance matrix.

B. Predicting ego vehicle behavior given macroscopic con-
ditions

The Gaussian mixture distribution of the joint probability
of feature vectors in (3) can be used to predict an individual’s
driving behavior on a road edge i, i.e., xV,i, from the
crowdsourced macroscopic traffic conditions, xE,i, on the
road edge i.

First, the joint probability distribution (3) is formulated as

P

([
xV,i

xE,i

])
=

K∑
k=1

πk pk

([
xV,i

xE,i

])

=

K∑
k=1

πkpk(xE,i) pk(xV,i|xE,i)

=

K∑
k=1

ckpk(xV,i|xE,i), (5)

where pk(xE,i) is the marginal probability distribution of
macroscopic features xE,i on road edge i, pk(xV,i|xE,i)
is conditional probability distribution of the microscopic
vehicle features xV,i given the macroscopic traffic conditions
xE,i on road edge i, and ck = πkpk(xE,i) is the contributing
factor of individual conditional probabilities pk(xV,i|xE,i).

Second, the conditional probability is leveraged to predict
the vehicle features. In this paper, we choose the Gaussian
distribution with the highest contributing factor ck,

k∗ = argmax
k

ck = argmax
k

πkpk(xE,i), (6)

to obtain the predicted microscopic vehicle features x̂V,i on
road edge i as

x̂V,i = µk∗
V,i

+Σk∗
V E,i

Σ−1
k∗
EE,i

(
xE,i − µk∗

E,i

)
. (7)

Remark 1: If the different modes of driving, defined by
each Gaussian in the GMM, are well separated, the simplified
choice of k∗ in (6) for predicting the ego vehicle behavior
is fairly accurate. However, other choices are possible. For
instance, in the case of not well-separated Gaussians in the
GMM, we can use the overall joint probability distribution
in (5), rather than a single Gaussian as in (7), which could be
done by using particle filtering for obtaining the conditional
probability distribution [25].

C. Edge cost based on driving history

The cost of choosing a road edge i on a trip is quantified
using it’s macroscopic traffic conditions xE,i and the corre-
sponding predicted microscopic vehicle features x̂V,i, which
leads to the predicted feature vector on road edge i as

X̂i =

[
x̂V,i

xE,i

]
.

The cost CV,i of choosing edge i is the negative log-
likelihood of the predicted feature vector, X̂i,

CV,i = − log

(
P

([
x̂V,i

xE,i

]))
, (8)

which quantifies the likelihood of the predicted feature vector
based on the joint distribution P ([x̂V,i, xE,i]

T ) obtained
from the driving history of the ego vehicle. Hence, for a given
origin-destination pair on a road network, the crowdsourced
data from connected vehicles on the road edges are used to
first predict an ego vehicle’s microscopic features, and then a
personalized cost based on driving history is computed on the
road edges of the network. Finally, the minimum cost path
is chosen for personalized routing for the origin-destination
pair using Dijkstra’s algorithm [26]. Note that other routing
algorithm can also be applied, using the assigned cost of
route edge i in (8).

III. SIMULATION RESULTS

In this section, SUMO is used for collecting traffic data
over a realistic road network, and the GMMs are used
for predicting the cost of individual route choices using
macroscopic road and microscopic driver features.

A. SUMO simulation setup

The example road network for the simulation study is
constructed from a section of the Cambridge, MA city,
see Fig. 1, using OpenStreetMap. OpenStreetMap is an
open-source collaborative mapping initiative, which can be
imported in SUMO leading to a graph as shown in Fig. 2.
Traffic data are generated by populating the road network
with heterogeneous vehicles of different vehicle types and
driver behavior, see the SUMO documentation [13], [14].
Passenger vehicles, taxis, delivery vehicles, trucks and trail-
ers vehicle types in SUMO are used to create heterogeneity



Fig. 1. The urban road network example of Cambridge, MA used for the
simulation study.

Fig. 2. The exported underlying graph structure of the example urban road
network in Fig. 1, as a set of nodes in red and directed edges in blue.

in the traffic conditions. Both periodic and random trips are
generated for these vehicles to populate the road network
during the SUMO simulation, which runs for a duration of
two 2 hours to simulate both recurring traffic along major
roads, and random trips between nodes in the road network.
The vehicles over the duration of the simulation, and the
congestion keeps on increasing, making the first hour of
simulation to have more free flow conditions over the road
network, while congestion appearing in the second hour of
the simulation depicting rush hour conditions. Additionally,
six ego vehicles, as shown in Table I, are defined to generate
individual driving histories. Vehicles 1 to 3 have smaller
max acceleration, and smaller gains for maintaining desired
time headways in the Adaptive Cruise Control (ACC) car
following model in SUMO. On the other hand, Vehicles 4 to
6 have higher max acceleration, and higher gains in the ACC
car following model to simulate more aggressive behavior.
Random trips on the road network to create driving histories
for the ego vehicles are generated during the simulation.

B. Design choices

Microscopic and macroscopic features: The vehicle spe-
cific microscopic features over the edge i, xV,i, considered
in the example study are mean vehicle speed, mean vehicle
acceleration, mean energy consumption, mean vehicle noise,
and travel time. Mean vehicle noise relates to speed varia-
tions indicating the level of accelerations and decelerations.
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Fig. 3. The training error in blue and validation error in red of the the
GMMs for the six ego vehicles defined in Table I.

TABLE I
SIX DIFFERENT EGO VEHICLES IN SUMO

Ego Max Max Vehicle Car-Following
Vehicle Acc. Decel. Type Model

1 2m/s2 2.2m/s2 HDV ACC (conservative)
2 2m/s2 2.2m/s2 PC ACC (conservative)
3 2m/s2 2.2m/s2 EV ACC (conservative)
4 4m/s2 2.2m/s2 HDV ACC (aggressive)
5 4m/s2 2.2m/s2 PC ACC (aggressive)
6 4m/s2 2.2m/s2 EV ACC (aggressive)

The macroscopic traffic conditions on edge i xE,i are the
mean speed, mean acceleration, mean energy consumption
averaged over all the vehicles on the road edge, and edge
occupancy and vehicle density on the road edge.

Number of Gaussians in the joint PDF model: The Gaus-
sian mixture distribution of the joint probability of feature
vectors, relating the microscopic ego vehicle features xV,i

to the macroscopic road edge features xE,i, modeling the
driver behavior using driving history data, requires the tuning
of the hyper-parameter K in (5), where K is the number
of Gaussians in the GMM. The number of Gaussians K in
the probability distribution P (X) based driving history is
selected through the hyperparameter tuning shown in Fig. 3.
The feature vectors from the driving history of each of
the ego vehicles are split into training (80%) and test data
(20%), and the negative log-likelihood of the training and
test data given the fitted GMM model are shown in Fig. 3,
for increasing number of Gaussians K. The training error
on the training data with the GMM keeps decreasing with



Fig. 4. Qualitative illustration of the personalized route prediction for
the different ego vehicles in Table I using crowdsourced-vehicle data at
a particular time instant, and individual driving histories based GMMs,
between a given origin-destination pair on the example road network in
Fig. 1 and 2.

increasing number of Gaussians K in the model. However,
the validation error with the test data increases with GMM
for large K due to overfitting. In the current example
simulations, the number of Gaussians is selected as K = 40,
so that the fitted GMM is not too complex, while also
keeping the error small for both training and test data.

C. Qualitative illustration of different route choices

The personalized route prediction for the six ego vehicles
on the example urban road network in Fig. 1 are presented
in Fig. 4 for a given origin-destination pair of nodes on the
road network, at a specific time instant during the SUMO
simulation. The prediction algorithm provides four distinct
paths for the Vehicles 1, 2, 3, and 4 as optimum based on
their driving history for the same origin-destination pair. As
shown in Fig. 4, Vehicles 5 and 6 have the same predicted
optimum route as Vehicles 3 and 1, respectively. This spe-
cific example qualitatively presents the algorithm’s ability to
predict different optimum paths for different vehicles based
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Fig. 5. Quantitative analysis of the overlap between predicted routes for
the different ego vehicles in Table Iaveraged over 10 time instants and seven
randomly selected origin-destination pairs in the example road network in
Fig. 2 when the traffic is non-congested.
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Fig. 6. Quantitative analysis of the overlap between predicted routes for
the different ego vehicles in Table Iaveraged over 10 time instants and seven
randomly selected origin-destination pairs in the example road network in
Fig. 2 when the traffic is congested.

on driving history and crowdsourced connected vehicle data
for particular traffic conditions.

Although the six ego vehicles characteristics are different
as in Table I, the predicted optimum paths can coincide, as
shown in Fig. 4 for a particular time instant for the example
road network in Fig. 1, because of the limited number of
major road segments between the origin-destination pair in
the small urban area.

D. Quantitative results

The personalized route predictions for the six different ego
vehicles in Table I are averaged over different time instances
during the SUMO simulation and over seven randomly
selected origin-destination pairs, and presented through the
confusion matrices in Figs. 5 and 6, which quantify the
percentage overlap of the predicted routes between the dif-
ferent ego vehicles. For instance, the (i, j)th element of the



confusion matrices shows the averaged similarity between
the predicted routes of Vehicle i and Vehicle j. Therefore,
smaller off-diagonal elements of confusion matrix depicts
more diverse route choices. Fig. 5 shows the confusion
matrix for the time instances when the considered example
traffic network in Fig. 2 is not congested, i.e., when most
vehicles are in free flow and can make different decisions
based on different characteristics in Table I. Fig. 6 shows
the confusion matrix when the traffic network is congested.
It can be seen that the overlap between the predicted routes
becomes larger for the different ego vehicles when the traffic
network becomes congested. However, in the non-congested
state, when the different vehicles can choose different behav-
iors based on personal cost functions, the overlap between
vehicle predictions is reduced.

The predicted routes at a particular time in Fig. 4 for
the example road network show reasonable choices between
the specific origin-destination pair. Furthermore, the different
characteristics of the ego vehicles do lead to differences in
the predicted routes, which is already constrained by limited
number of choices in the small urban network. This shows
the ability of the proposed algorithm to capture differences
in preferences from individual driving histories. A more
comprehensive quantitative evaluation averaged over multi-
ple time instances and origin-destination pairs shows that the
algorithm predicts different routes for the ego vehicles in
less congested period of simulation in Fig. 5 when vehicles
are free to make different decisions. On the other hand, in
congested situation, when most major roads are blocked, the
algorithm predicts more similar routes as shown in Fig. 6.

IV. CONCLUSIONS

This paper presented a personalized vehicle routing algo-
rithm based on individual driving histories and using crowd-
sourced connected vehicle data. The algorithm developed
a generalized approach to learn route choice models of
individual drivers by providing a cost function based on driv-
ing history and connected vehicle data. The driving history
of individual drivers captured individual route preferences,
which can be based on more attributes than the commonly-
used features of travel time and energy efficiency. SUMO
simulations on a realistic road network showed the ability of
the algorithm to predict personalized route choices for the
same traffic conditions.
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