
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

GPU-APUMPEDI: A Parallel Algorithm for Computing
Approximate Pan Matrix Profiles of Time Series

Zhang, Jing; Nikovski, Daniel; Nakamura, Takaaki

TR2023-091 July 15, 2023

Abstract
The Matrix Profile (MP) of a test time series with respect to a base time series has been
shown to be a versatile primitive for many data mining tasks including time series anomaly
detection. The MP records distances from all subsequences in the test time series to their
respective nearest neighbors in the base time series. The Pan Ma- trix Profile (PMP) is a
matrix with each row being an MP corresponding to a single subsequence length, and com-
puting explicitly an exact PMP is slow. We propose a GPU-based approximation algorithm
called GPU- APUMPEDI to compute the PMP under unnormalized Euclidean dis- tance by
combining GPU-based MP algorithms and linear interpolation. We validate its efficiency and
effectiveness through extensive numerical experiments on the UCR Anomaly Archive.

International conference on Time Series and Forecasting 2023

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

GPU-APUMPEDI: A Parallel Algorithm for
Computing Approximate Pan Matrix Profiles of

Time Series

Jing Zhang1, Daniel Nikovski1, and Takaaki Nakamura2

1 Mitsubishi Electric Research Labs, Cambridge, MA, USA
{jingzhang,nikovski}@merl.com

2 Mitsubishi Electric Corporation, Kamakura, Japan
nakamura.takaaki@dy.mitsubishielectric.co.jp

Abstract. The Matrix Profile (MP) of a test time series with respect
to a base time series has been shown to be a versatile primitive for
many data mining tasks including time series anomaly detection. The
MP records distances from all subsequences in the test time series to
their respective nearest neighbors in the base time series. The Pan Ma-
trix Profile (PMP) is a matrix with each row being an MP corresponding
to a single subsequence length, and computing explicitly an exact PMP
is slow. We propose a GPU-based approximation algorithm called GPU-
APUMPEDI to compute the PMP under unnormalized Euclidean dis-
tance by combining GPU-based MP algorithms and linear interpolation.
We validate its efficiency and effectiveness through extensive numerical
experiments on the UCR Anomaly Archive.

Keywords: Approximate Pan Matrix Profile, GPU, unnormalized Eu-
clidean distance, interpolation, time series anomaly detection

1 Introduction

The Matrix Profile (MP) has been introduced as a useful tool for various data
mining tasks in time series data [1]. The MP keeps track of the distances between
the nearest neighbors of subsequences in a given time series. Algorithms based
on the Fast Fourier Transform (FFT) or Dynamic Programming (DP) have been
proposed to calculate the MP with the use of the normalized Euclidean distance
metric [1,2]. Additionally, algorithms based on DP [3] or a special data structure
such as a double-ended queue [4] have been developed to compute the MP with
unnormalized Euclidean distance metric. The best time complexity for these
algorithms is O(n2), with n being the length of the given time series, and is
independent of the subsequence length.

Despite its usefulness, the MP requires the user to set the critical parameter of
subsequence length for similarity search. To eliminate this need, the Pan Matrix
Profile (PMP) was proposed [5]; it is a matrix with each row being a Matrix
Profile for a different subsequence length. This makes the PMP a parameter-free

2 GPU-APUMPEDI: A Parallel Algorithm for Pan Matrix Profiles

version of the MP, with further potential for various time series data mining
tasks. However, computing an exact PMP is slow, with a time complexity of
O(|M |n2), where M is the list of all considered subsequence lengths, and |M |
is the number of subsequence lengths in M . To speed up the computation, the
SKIMP approximation algorithm was proposed in [5], which optimizes the order
of the candidate subsequence lengths to compute the MPs. However, as noted in
[5], the normalized ℓ2 distance is used in the computation, making it impossible
to predict or produce an upper or lower bound for the MP for a given subsequence
length.

Recently, other works [6,7] have attempted to eliminate the single param-
eter in MP computation, but specifically for the purpose of discord discovery
(anomaly detection). The authors propose the MERLIN and MERLIN++ al-
gorithms for finding arbitrary-length discords in massive time series archives.
If we do not consider using GPU-based parallel computing, the MERLIN++
algorithm is the state-of-the-art in terms of speed, but it only focuses on finding
discords as quickly as possible and avoids keeping track of the anomaly scores
of most of the subsequences. On the other hand, the MP/PMP algorithms pro-
vide more information, including the anomaly scores of non-discords, which can
be important for analysts in some situations. We also note that the output of
the MERLIN++ algorithm is exactly the same as that of the MERLIN algo-
rithm; the only advantage of the later version is the relatively faster speed. It is
also worth pointing out that there still exist a lot of iterative computations in
MERLIN++, making it difficult to be ported to a GPU-based version.

Based on the monotonicity of the MPs with respect to subsequence lengths
under unnormalized distances, [8] proposed an alternative algorithm, APUM-
PEDI, short for Approximating Pan Matrix Profile under Unnormalized Eu-
clidean Distance by Interpolation, to save computation time of (approximate)
PMPs under unnormalized distances. However, it does not readily use the par-
allel computational power of modern GPUs, thus still facing speed bottlenecks
when dealing with longer time series (for example one with 1 million data points).
Thus, it is desirable to devise a GPU-based algorithm that further speeds up
APUMPEDI.

Our contributions in this work are three-fold: (i) We extend the APUMPEDI
algorithm to enable it to deal with more general PMP computation situations
where we could have a base time series X∗ and a test time series X and the for-
mer is not necessarily the same as the latter. (ii) We port the extended APUM-
PEDI algorithm to a GPU-based version. (iii) We conduct extensive numerical
experiments to show the efficiency and effectiveness of our GPU-APUMPEDI
algorithm. In particular, we consider several comparison studies using the UCR
Anomaly Archive, thus showing the speed-up factors of GPU-APUMPEDI with
respect to CPU-based alternatives and demonstrating the excellent anomaly de-
tection performance compared to UCR-MP (MP under normalized distance) and
MERLIN algorithms.

The paper is structured as follows. Section 2 extends the definition of the
MP/PMP of time series and the monotonicity of the PMP under unnormalized

2. PRELIMINARIES 3

Euclidean distances. Section 3 details the GPU-APUMPEDI algorithm. The re-
sults of numerical experiments are presented in Section 4. We provide conclusions
in Section 5 and a brief implementation of the GPU-APUMPEDI algorithm in
the Appendix.

Notation: A time series X is composed of real-valued samples, each denoted
by xt, taken at time indices ranging from 0 to n − 1. The j-th subsequence of
X can be defined as Xj,...,j+m−1 = [xj , xj+1, . . . , xj+m−1] for any subsequence
length m such that 1 ≤ m ≤ n − 1 and 0 ≤ j ≤ n −m. The length of a list A
is indicated by |A|, and the index of a value m in a list M is shown as m@M .
A range of elements from [L,U] with a step size of S (0 < S < U − L) can be
expressed as range(L,U, S), which is a list of all values that can be calculated
as L + i × S, where i is an integer. We write “w.r.t.” as a shorthand for “with
respect to.”

2 Preliminaries

We first extend the definitions of the Matrix Profile [4] and the Pan Matrix
Profile [9], under unnormalized Euclidean distances, to the case where we could
have a base time series X∗ that is not the same as the investigated time series
X itself. For simplicity, we henceforth use UMP (resp., PUMP) (the letter “U”
indicates “unnormalized” and is pronounced /"2/) to denote the Matrix Profile
(resp., Pan Matrix Profile) of a test time series X w.r.t. a base time series X∗,
under unnormalized Euclidean distance (i.e., the ℓ2 distance).

Definition 1 (UMP)
The UMP of time series X = [x0, x1, . . . , xn−1] w.r.t. X

∗ = [x∗
0, x

∗
1, . . . , x

∗
n∗−1]

is a new time series Y = [y0, y1, . . . , yn−m], where for 0 ≤ j ≤ n−m,

yj = min
0≤j′≤n∗−m

d(Xj,...,j+m−1, X
∗
j′,...,j′+m−1),

where d(·, ·) is the ℓ2 distance, and 1 ≤ m ≤ n∗ − 1 is a predefined subsequence
length (window size).

In other words, at time index j, the value of the UMP of X w.r.t. X∗ is the
unnormalized Euclidean distance between the j-th subsequence and its nearest-
neighbor subsequence in X∗.

Definition 2 (PUMP)
Given a list of subsequence lengths M = [m0,m1, . . . , m|M |−1], the PUMP of
time series X = [x0, x1, . . . , xn−1] w.r.t. X

∗ = [x∗
0, x

∗
1, . . . , x

∗
n∗−1] is an |M | × n

matrix P with each row filled by an UMP of X w.r.t. X∗, which corresponds to
a specific subsequence length; in particular,

P [i, j] = min
0≤j′≤n−mi

d(Xj,...,j+mi−1, X
∗
j′,...,j′+mi−1), (1)

∀0 ≤ i ≤ |M | − 1, 0 ≤ j ≤ n−mi, where d(·, ·) is the ℓ2 distance and mi is the
subsequence length corresponding to the i-th row that satisfies 1 ≤ mi ≤ n∗ − 1.

4 GPU-APUMPEDI: A Parallel Algorithm for Pan Matrix Profiles

Note that, in Definition 2, we initialize the unfilled entries of P (i.e., P [i, j],∀0 ≤
i ≤ |M | − 1, n − mi < j ≤ n − 1) as 0. Next, we list a proposition about the
monotonicity of the PUMP with respect to the subsequence lengths. The idea
of its proof is the same as the one for [9, Theorem II.1].

Proposition 1 (Monotonicity of PUMP) Assume for the list of subsequence
lengths M = [m0,m1, . . . , m|M |−1] we have mi1 < mi2 ,∀0 ≤ i1 < i2 ≤ |M | − 1.
Then the PUMP of time series X = [x0, x1, . . . , xn−1] w.r.t. X

∗ = [x∗
0, x

∗
1, . . . , x

∗
n∗−1]

defined by (1) satisfy P [i1, j] ≤ P [i2, j],∀0 ≤ i1 < i2 ≤ |M |−1, 0 ≤ j ≤ n−mi2 .

As pointed out in [9], Proposition 1 would not hold for the PMP under normal-
ized Euclidean distances.

3 Algorithm

3.1 The Extended APUMPEDI Algorithm

In this section, we extend the APUMPEDI (stands for “Approximating Pan
Matrix Profile under Unnormalized Euclidean Distance by Interpolation”) algo-
rithm to compute the PUMP for a test time series X w.r.t. a base time series X∗.
The algorithm works as follows. Once we have computed the UMPs of X w.r.t.
X∗ for a set of selected subsequence lengths, we do interpolation for each and
every missing subsequence length; e.g., if we have done computing the UMPs of
X w.r.t. X∗ for the following 5 subsequence lengths, [10, 20, 30, 40, 50], then we
do interpolation for the corresponding intervals (10, 20), (20, 30), (30, 40), and
(40, 50), respectively, to obtain approximate UMPs of X w.r.t. X∗ for subse-
quence lengths within these intervals. As pointed out in [8], the above idea is
essentially different from that of the SKIMP algorithm [5]; the SKIMP algorithm
orders the selected subsequence lengths and computes MPs under normalized
distance for only a portion of them from the beginning.

We are now in a position to formalize the algorithm. Let L (resp., U) denote
the minimum (resp., maximum) subsequence length such that 2 ≤ L < U ≤ n−1,
S ∈ (0, U − L) the step size, and θ ∈ (0, 1] the completion rate for the PUMP
computation. We wrap up the steps as Alg. 1, where Lines 10 through 18 describe
the interpolation procedure. We apply a dynamic programming based algorithm
[3] for the UMP subroutine (Line 8 in Alg. 1), which computes UMP of X w.r.t.
X∗, for a given subsequence length m. For the Interpolate subroutine (Line
13), we use linear interpolation (see [8] for details) for simplicity of porting the
algorithm to a GPU-based version. It is seen that, assuming n∗ ≤ n, the time
complexity of this algorithm is O(θ|M |n2), and the space complexity is O(|M |n),
where |M | = ⌈(U − L) /S⌉ is the number of all predesignated candidate subse-
quence lengths.

Algorithm 1 Approximating Pan Matrix Profile under Unnormalized
Euclidean Distance by Interpolation

1: procedure APUMPEDI(X∗, X, L, U, S, θ)

4. NUMERICAL RESULTS 5

2: n← length of X
3: M ← range

(
L,U, S

)
4: P ← |M | × n matrix of NaN’s
5: M ′ ← range

(
L,U,

⌊
1
θ

⌋
· S

)
6: for m in M ′ do
7: i← m@M
8: P [i, :]← UMP(X∗, X,m)
9: end for

10: xvec ← M ′

11: for j in range(0, n, 1) do
12: yvec ← [P [m@M, j] for m in M ′]
13: f(·)← Interpolate(xvec, yvec)
14: for m in M \M ′ do
15: i← m@M
16: P [i, j]← f(m)
17: end for
18: end for
19: return P
20: end procedure

3.2 GPU-APUMPEDI

To port the above APUMPEDI algorithm to a GPU-based version, in Algorithm
1, we compute Lines 8, 11-18 in parallel by using GPU CUDA cores, respectively.
For the convenience of interested readers, we provide a Python/Numba3/STUMP
[10] based implementation at the Appendix.

4 Numerical Results

4.1 Data Set

We use the UCR Anomaly Archive [11] benchmark data set, which encompasses
250 distinct univariate time series from various fields like human medicine, bi-
ology, meteorology, and industry. The time series in the archive include both
naturally occurring and artificially induced anomalies, with the majority being
artificially generated. This offers a more in-depth analysis based on the type
of anomaly introduced. The UCR Anomaly Archive was initially utilized in an
anomaly detection contest prior to the 2021 ACM SIGKDD conference and was
published by Wu and Keogh [12]. It serves as an alternative to commonly em-
ployed benchmark data sets, such as Yahoo S5 [13], Numenta [14], and NASA
[15], which have been criticized for trivial anomalies, unrealistic anomaly densi-
ties, mislabeled ground truth, etc. Each time series in the UCR Anomaly Archive
features a single anomaly, sometimes subtle, occurring after a particular time
stamp, with the data prior to that stamp considered normal. The time series

3 https://numba.pydata.org/

6 GPU-APUMPEDI: A Parallel Algorithm for Pan Matrix Profiles

in the archive have lengths varying from 6,684 to 900,000 data points, with
anomalies ranging from 1 to 1701 data points in length.

4.2 Computation Time

We conduct all the experiments on a PC with an AMD Ryzen 9 3950X CPU
and an NVIDIA GeForce RTX 3090 GPU. We show the results (logarithmic
computation time (seconds) vs. data index) of a set of comparison experiments on
computation time in Fig. 1. The investigated algorithms are GPU-APUMPEDI,
GPU-PUMP, and CPU-PUMP. We take L = 20, U = 200, S = 1, θ = 0.1 for
GPU-APUMPEDI, and take L = 20, U = 200, S = 1 for GPU-PUMP and CPU-
PUMP. The indices of the time series we include are 20, 40, . . . , 200. The lengths
of the corresponding base time series X∗ and test time series X are listed in
Table 1. Also shown in Table 1 are the speed-up factors, where “speed-up factor
I” denotes the speed-up factor for GPU-APUMPEDI w.r.t. GPU-PUMP, and
“speed-up factor II” denotes the speed-up factor for GPU-APUMPEDI w.r.t.
CPU-PUMP. It is not surprising that all “speed-up factor I” values are close to
10, because we set θ = 0.1 for GPU-APUMPEDI, and this would enable GPU-
APUMPEDI to only cost about ten percent of the computation time compared
to GPU-PUMP. Some of the “speed-up factor I” values are less than 10, due
to the fact that the interpolation procedure still consumes some computational
resources. Of particular interest are actually the “speed-up factor II” values,
which range from 12 up to 434, depending on the lengths of X∗ and X for each
time series. During our experiments, we found that the larger these lengths, the
larger the “speed-up factor II” values we would see. For the longest time series
(No. 240 with length 240, 030 for X∗ and length 659, 970 for X), the running
time of GPU-APUMPEDI is about 20 minutes, while the running time of CPU-
PUMP would be a few days.

Table 1: Specifications of selected time series and speed-up results.
time series # 20 40 60 80 100 120 140 160 180 200

length of X∗ (k) 5 6 22 30 5 15 1 3.5 20 20
length of X (k) 7 24.066 43 160.05 25.001 15 6.321 7.808 35 108.001
speed-up factor I 8 9 9 10 8 8 9 8 10 10
speed-up factor II 14 48 102 434 52 32 12 15 87 265

4.3 Anomaly Detection Results

Metric We use the UCR score as the performance metric for our comparison
study. Given any time series from the UCR Anomaly Archive, if its ground-truth
anomaly starts at begin and ends at end, then the length of the anomaly is len
= end - begin + 1. Letting the prediction of an algorithm be an integer Q,

4. NUMERICAL RESULTS 7

Fig. 1: The logarithmic computation time (seconds) vs. data index. We use log-
arithmic timing values instead of the raw values for the purpose of better visu-
alization; note that some of the computation time values for GPU-APUMPEDI
are too small (compared to the much larger timing values for CPU-PUMP), and
they would be almost invisible if directly plotting them in the same plot.

then Q is labeled as correct if and only if min(begin-len , begin-100) <
Q < max(end+len, end+100).

Results We compare three algorithms for time series anomaly detection: (i)
MERL UMP, (ii) UCR MP, and (iii) MERLIN. The essential idea of MERL UMP
and UCR MP is the same (i.e., we compute the matrix profile of the test time
series X w.r.t. the base time series X∗, identify the maximum value in the ma-
trix profile, find the corresponding time index, and assign this time index as
the detected anomaly location), but the former uses unnormalized Euclidean
distance, whereas the latter uses normalized Euclidean distance. Similar to [16],
the reason why we include MERLIN is because it is the built-in method pro-
vided with the UCR Anomaly Archive, which is the benchmark data set in our
study. We also note that both MERL UMP and UCR MP can be computed in
parallel using a GPU (or multiple GPUs), while MERLIN (and MERLIN++)
involves a lot of iterative steps which brings difficulty for parallel computation.
In other words, although MERLIN++ is the current state-of-the-art in terms
of CPU-based computation, it is definitely not the fastest when comparing to
other algorithms that can make use of GPUs. As a matter of fact, during our ex-
periments, the MERLIN/MERLIN++ algorithms fell behind MERL UMP and
UCR MP in terms of speeds, because the latter two can make use of the compu-
tational power of the GPU. We point out that our GPU-APUMPEDI algorithm
here could play a big role (in terms of saving computation time) for MERL UMP
when θ is set relatively small (say 0.1).

In Figure 2 we plot the UCR scores of the three investigated algorithms for
subsequence lengths ranging from 5 to 200. For MERLIN, a few subsequence
lengths less than 60 led to divergent results and we skip those. It is seen that

8 GPU-APUMPEDI: A Parallel Algorithm for Pan Matrix Profiles

MERL UMP consistently performs the best when the subsequence length is less
than 110, while UCR MP and MERLIN have very close scores and their scores
are slightly higher than MERL UMP’s when subsequence lengths exceed 110.

To see more clearly the effectiveness of our GPU-APUMPEDI algorithm,
in Figures 3 through 7, we plot 5 time series (X∗ in green, X in blue, and
the ground-truth anomaly in red) from the UCR Anomaly Archive, and their
respective approximate PUMP’s heatmap. Note that these approximate PUMPs
are computed using the GPU-APUMPEDI algorithm with L = 20, U = 200, S =
1, θ = 0.1. It is seen that the heatmaps derived from No. 100, 140, and 160 time
series directly indicate the correct anomaly; the lightest area corresponds to the
largest UMP values, thus helping us locate the time index of the anomaly.

0 25 50 75 100 125 150 175 200
Subsequence Length

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or

e

MERL_UMP
UCR_MP
MERLIN

Fig. 2: The UCR scores on the UCR Anomaly Archive of the three investigated
anomaly detection algorithms for subsequence lengths ranging from 5 to 200.

5 Conclusion

In this study, we extended the APUMPEDI algorithm to enable it to deal with
more general PMP computation situations where we could have a base time series
and a test time series and the former could be different from the latter. We ported
the extended APUMPEDI algorithm to a GPU-based version. Finally, through
extensive numerical experiments, we showed the efficiency and effectiveness of
our algorithm.

References

1. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F.,
Mueen, A., Keogh, E.: Matrix profile i: all pairs similarity joins for time series:

5. CONCLUSION 9

(a) The time series No. 100.

(b) The heatmap of the corresponding PUMP.

Fig. 3: Time series No. 100 from the UCR Anomaly Archive and the heatmap
of its PUMP derived using the GPU-APUMPEDI algorithm with L = 20, U =
200, S = 1, θ = 0.1. The lightest area correctly indicates an anomaly.

(a) The time series No. 120.

(b) The heatmap of the corresponding PUMP.

Fig. 4: Time series No. 120 from the UCR Anomaly Archive and the heatmap
of its PUMP derived using the GPU-APUMPEDI algorithm with L = 20, U =
200, S = 1, θ = 0.1. The lightest area introduces a false anomaly.

10 GPU-APUMPEDI: A Parallel Algorithm for Pan Matrix Profiles

(a) The time series No. 140.

(b) The heatmap of the corresponding PUMP.

Fig. 5: Time series No. 140 from the UCR Anomaly Archive and the heatmap
of its PUMP derived using the GPU-APUMPEDI algorithm with L = 20, U =
200, S = 1, θ = 0.1. The lightest area correctly indicates an anomaly.

(a) The time series No. 160.

(b) The heatmap of the corresponding PUMP.

Fig. 6: Time series No. 160 from the UCR Anomaly Archive and the heatmap
of its PUMP derived using the GPU-APUMPEDI algorithm with L = 20, U =
200, S = 1, θ = 0.1. The lightest area correctly indicates an anomaly.

5. CONCLUSION 11

(a) The time series No. 180.

(b) The heatmap of the corresponding PUMP.

Fig. 7: Time series No. 160 from the UCR Anomaly Archive and the heatmap of
its PUMP derived using the GPU-APUMPEDI algorithm with L = 20, U =
200, S = 1, θ = 0.1. The lightest area could arguably correctly indicate an
anomaly, but with lower confidence than the cases for No. 100, 140, and 160.

a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th
international conference on data mining (ICDM). (2016) 1317–1322

2. Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.C.M., Funning, G., Mueen, A.,
Brisk, P., Keogh, E.: Matrix profile ii: Exploiting a novel algorithm and gpus to
break the one hundred million barrier for time series motifs and joins. In: 2016
IEEE 16th international conference on data mining (ICDM), IEEE (2016) 739–748

3. Akbarinia, R., Cloez, B.: Efficient matrix profile computation using different dis-
tance functions. arXiv preprint arXiv:1901.05708 (2019)

4. Zhang, J., Nikovski, D.: Algorithms for fast computation of matrix profiles of time
series under unnormalized Euclidean distances. In: International Conference on
Applied Statistics and Data Analytics, available at https://www.merl.com/
publications/docs/TR2022-040.pdf. (2022)

5. Madrid, F., Imani, S., Mercer, R., Zimmerman, Z., Shakibay, N., Keogh, E.: Matrix
profile xx: Finding and visualizing time series motifs of all lengths using the matrix
profile. In: 2019 IEEE International Conference on Big Knowledge (ICBK), IEEE
(2019) 175–182

6. Nakamura, T., Imamura, M., Mercer, R., Keogh, E.: Merlin: Parameter-free dis-
covery of arbitrary length anomalies in massive time series archives. In: 2020 IEEE
International Conference on Data Mining (ICDM). (2020) 1190–1195

7. Nakamura, T., Mercer, R., Imamura, M., Keogh, E.: Merlin++: parameter-free
discovery of time series anomalies. Data Mining and Knowledge Discovery (2023)
1–40

https://www.merl.com/publications/docs/TR2022-040.pdf
https://www.merl.com/publications/docs/TR2022-040.pdf

12 GPU-APUMPEDI: A Parallel Algorithm for Pan Matrix Profiles

8. Zhang, J., Nikovski, D.: APUMPEDI: Approximating pan matrix profiles of
time series under unnormalized Euclidean distances by interpolation. In: The
8th International conference on Time Series and Forecasting, available at https:
//www.merl.com/publications/docs/TR2022-088.pdf. (2022)

9. Zhang, J., Nikovski, D.: Algorithms for fast computation of pan matrix profiles of
time series under unnormalized Euclidean distances. In: International Conference
on Applied Statistics and Data Analytics, available at https://www.merl.com/
publications/docs/TR2022-041.pdf. (2022)

10. Law, S.M.: STUMPY: A Powerful and Scalable Python Library for Time Series
Data Mining. The Journal of Open Source Software 4(39) (2019) 1504

11. Keogh, E., Taposh, D.R., Naik, U., Agrawal, A.: Multi-dataset time-series anomaly
detection competition. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. available at https://compete.hexagon-ml.com/
practice/competition/39/. (2021)

12. Wu, R., Keogh, E.: Current time series anomaly detection benchmarks are flawed
and are creating the illusion of progress. IEEE Transactions on Knowledge and
Data Engineering (2021)

13. Laptev, N., Amizadeh, S., Billawala, Y.: S5-a labeled anomaly detection dataset,
version 1.0 (16M). In: available at https://webscope.sandbox.yahoo.com/
catalog.php?datatype=s&did=70. (2015)

14. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms–the
numenta anomaly benchmark. In: 2015 IEEE 14th international conference on
machine learning and applications (ICMLA), IEEE (2015) 38–44

15. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detect-
ing spacecraft anomalies using LSTMs and nonparametric dynamic thresholding.
In: Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining. (2018) 387–395

16. Rewicki, F., Denzler, J., Niebling, J.: Is it worth it? An experimental compari-
son of six deep-and classical machine learning methods for unsupervised anomaly
detection in time series. arXiv preprint arXiv:2212.11080 (2022)

https://www.merl.com/publications/docs/TR2022-088.pdf
https://www.merl.com/publications/docs/TR2022-088.pdf
https://www.merl.com/publications/docs/TR2022-041.pdf
https://www.merl.com/publications/docs/TR2022-041.pdf
https://compete.hexagon-ml.com/practice/competition/39/
https://compete.hexagon-ml.com/practice/competition/39/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

5. CONCLUSION 13

Appendix

We note that in the following implementation, we do not explicitly introduce the
completion rate parameter θ; instead, one could implicitly tune θ by changing
the value of STEP SIZE.

1 @cuda.jit
2 def gpu_apumpedi(an_array):
3 i, j = cuda.grid(2)
4 if i < an_array.shape[0] and j < an_array.shape[1]:
5 m = j + LOW_BOUND
6 num_steps = int((m - LOW_BOUND)/STEP_SIZE)
7 m_L = LOW_BOUND + num_steps*STEP_SIZE
8 m_H = m_L + STEP_SIZE
9 u_L = an_array[i, m_L-LOW_BOUND]
10 u_H = an_array[i, m_H-LOW_BOUND]
11 an_array[i, m-LOW_BOUND] = u_L + \
12 (m - m_L)*(u_H - u_L)/STEP_SIZE

13 milestone_win_sizes = range(LOW_BOUND, UP_BOUND+1, STEP_SIZE)
14 x = sorted(milestone_win_sizes)
15 ary = np.zeros((len(ts[tp:])-x[0]+1, x[-1]-x[0]+1))

16 for m in x:
17 ary[:len(ts[tp:])-m+1, m-x[0]] = \
18 stumpy.gpu_stump(np.array(ts[tp:]), m, \
19 T_B=np.array(ts[:tp]), \
20 normalize=False, ignore_trivial = False)[:, 0]
21 for j in x:
22 for i in range(len(ts[tp:])-j+1, ary.shape[0]):
23 ary[i, j-x[0]] = ary[i, j-x[0]-(x[1]-x[0])]

24 d_ary = cuda.to_device(ary)

25 threadsperblock = (32, 32)
26 d0, d1 = d_ary.shape[0], d_ary.shape[1]
27 blockspergrid_x = math.ceil(d0 / threadsperblock[0])
28 blockspergrid_y = math.ceil(d1 / threadsperblock[1])
29 blockspergrid = (blockspergrid_x, blockspergrid_y)

30 gpu_apumpedi[blockspergrid, threadsperblock](d_ary)

31 h_ary = d_ary.copy_to_host()

	Title Page
	page 2

	
	Lecture Notes in Computer Science

