
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Moving Horizon Estimation for Digital Twins using Deep
Autoencoders

Chakrabarty, Ankush; Vinod, Abraham P.; Mansour, Hassan; Bortoff, Scott A.; Laughman,
Christopher R.

TR2023-088 July 11, 2023

Abstract
Digital twins have emerged in recent years as black-box, software-based simulation tools that
can mirror the behavior of complex dynamical systems. Digital twin simulations generate
the same outputs as the target system using internal states; however, these states are not
readily available online from the real system. In this paper, we develop a data-driven moving
horizon estimation framework capable of using online noisy measurements of the real system
in order to estimate digital twin states. Our framework combines the high expressiveness
of deep autoencoders with a moving horizon state estimator that accurately predicts the
internal state of the black-box digital twin without access to an analytical model of the
system dynamics. We demonstrate that our approach outperforms extended and Koopman
Kalman filter solutions on a benchmark reverse van der Pol oscillator example.

World Congress of the International Federation of Automatic Control (IFAC) 2023

c© 2023L̇icensed under the Creative Commons BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Moving Horizon Estimation for Digital
Twins using Deep Autoencoders

Ankush Chakrabarty ∗ Abraham P. Vinod ∗ Hassan Mansour ∗

Scott A. Bortoff ∗ Christopher R. Laughman ∗

∗ Mitsubishi Electric Research Laboratories, Cambridge, MA 02139,
USA. (Corresponding author e-mail: achakrabarty@ieee.org).

Abstract: Digital twins have emerged in recent years as black-box, software-based simulation
tools that can mirror the behavior of complex dynamical systems. Digital twin simulations
generate the same outputs as the target system using internal states; however, these states are
not readily available online from the real system. In this paper, we develop a data-driven moving
horizon estimation framework capable of using online noisy measurements of the real system in
order to estimate digital twin states. Our framework combines the high expressiveness of deep
autoencoders with a moving horizon state estimator that accurately predicts the internal state
of the black-box digital twin without access to an analytical model of the system dynamics. We
demonstrate that our approach outperforms extended and Koopman Kalman filter solutions on
a benchmark reverse van der Pol oscillator example.

Keywords: Learning, state observers, nonlinear systems, Koopman operator, system
identification, black-box models.

1. INTRODUCTION

Nonlinear state observer design generally requires knowl-
edge of system dynamics and uses analytical models whose
mathematical structure can be exploited for synthesis (Si-
mon, 2006; Rajamani, 1998; Chakrabarty et al., 2017). In
the absence of a complete mathematical model, opera-
tional data collected from the system can be utilized to
learn the unmodeled dynamics, for instance, using neural
networks (Lei et al., 2021; Zhao et al., 2022; Chakrabarty
et al., 2019) or Bayesian optimization (Chakrabarty and
Benosman, 2021; Riva et al., 2022) and subsequently com-
pute state estimator gains.

Advancements in modeling and numerical computing has
resulted in the construction of high-fidelity simulation soft-
ware, injected with physics-informed modules designed by
domain-experts, with the capacity to mirror the behavior
of complex dynamical systems; these software tools are
often referred to as digital twins (Grieves and Vickers,
2017). Digital twins have proven effective virtual prox-
ies for numerous application areas, including: mechatron-
ics (Classens et al., 2021; Xu et al., 2021), energy sys-
tems (Zhan et al., 2022; Li et al., 2020; Bortoff and Laugh-
man, 2019), and vehicles (Bhatti et al., 2021; Riva et al.,
2022). A digital twin can be used for simulating a wide
range of operating conditions (Tao et al., 2018), thereby
enabling one to collect simulation data for observer synthe-
sis. Unfortunately, there are two challenges to using digital
twins for estimator design. First, a digital twin is usually
composed of modules that are ‘black-box’, made opaque
for reasons such as protection of proprietary information,
reduction of code complexity, or improvement of user in-
terfacing and experience. Therefore, a digital twin may
not admit a simple model structure with which one can
perform classical model-based estimator design. Second, a

digital twin typically contains an internal representation
of a ‘state’ of the dynamical system being mirrored, and
subsequent controller design and closed-loop verification
is performed using such an internal state. Therefore, state
estimators for digital twins must be designed to estimate
this specific internal state; this is in contrast to other data-
driven state estimation methods where the state represen-
tation is at the discretion of the designer. Therefore, it
is imperative to design state estimation algorithms that
can integrate with black-box simulation environments and
generate estimates of pre-defined digital twin states purely
from output data online.

In this paper, we adopt a deep autoencoder (AE)-based
approach to directly learn a predictive model from simu-
lation data without requiring transparency of digital twin
modules, and to preserve the internal state representation
of the digital twin by training on a dataset that contains
both state and output trajectories. Online, when only mea-
sured outputs are available from the true system, we adopt
a moving horizon estimator framework with the AE-based
predictive model to estimate the digital twin state directly
using the measurements. Note that this problem setup is
specific to simulator-driven design, where states and out-
puts are available during training since these are generated
by the twin, and only system outputs are available online
from which the prescribed state must be reconstructed.
We reiterate that this different from standard data-driven
modeling and estimation frameworks, where only output
data is available during training and the concept of a state
is a design choice (for example, a latent variable of an
autoencoder).

AEs have recently been used to learn transformations that
‘lift’ the dynamics of the nonlinear system to a latent space
where a finite-dimensional linear state-space model can



provide a satisfactorily accurate predictive model (Lusch
et al., 2018). The benefit of AE-based approaches, there-
fore, is that the observer design can leverage the linear
system representation and classical observer gain tuning
methods can be applied. Since the decoder of the AE is an
inverse of the encoder, one can tractably project the dy-
namics to and from the latent space, respectively. In fact,
the effectiveness of learning lifting transformations in non-
linear system identification has been reported in Masti and
Bemporad (2021) and Beintema et al. (2021). These lift-
ing approaches are linked to Koopman operator-theoretic
designs, where the linear state-transition operator learned
by the AE represents a finite approximation of the Koop-
man operator (Mauroy et al., 2020). Note that the afore-
mentioned references use AEs for model identification with
no explicit investigation of state estimation. In fact, to
the best of our knowledge, only (Forgione et al., 2022)
describes a deadbeat observer approach for initial state
estimation, but this is only for the purposes of initializing
an encoder network state for forward predictions, not for
sustained online state estimation. Koopman Kalman fil-
tering (KF) is described in Surana and Banaszuk (2016a);
Surana (2016) where the authors describe a method for
transforming the given nonlinear system to a Koopman
canonical form which consequently allows linear observer
design. However, this method requires some model knowl-
edge and specific structure to be applicable, and relies on
kernel methods for the case when unmodeled dynamics
exist, which does not scale well to large, high-dimensional
datasets.

Our main contributions are: (i) the proposal of a data-
driven framework for estimating digital twin states from
online system outputs; (ii) using a novel combination of
deep autoencoders trained on simulation data and moving
horizon estimators capable of performing without access
to analytical models of the system dynamics; and, (iii)
demonstrating the potential of the proposed approach by
comparing against extended and Koopman KFs (which
assume some model knowledge) on a benchmark example.
The rest of the paper is organized as follows. In Section 2,
we present the problem statement, and the proposed AE-
based moving horizon estimator is described in Section 3,
along with a discussion about hyperparameter selection.
In Section 4, we demonstrate the effectiveness of the
proposed algorithm on a benchmark example, and perform
an ablation study. Finally, we conclude in Section 5.

2. PRELIMINARIES

We consider black-box simulators such as digital twins
with internal dynamics

xt+1 = f(xt), (1a)

yt = h(xt), (1b)

where t ∈ N is the time-index, x ∈ Rnx is the simulator
state, y ∈ Rny is the measured output, and f , h are un-
modeled state update and output functions, respectively.
The dynamics (1) are unknown to the designer, but we
assume f and h exist and are well-defined. It is assumed
that the system response is bounded from any initial
condition x ∈ Rnx , and that f and h are such that the
state x is observable from the output y.

Unlike classical input-output system identification where
the concept of a state is selected by the designer, in
simulator-driven identification the state-space is fixed by
the digital twin simulator, and the outputs are nonlinear
functions of these prescribed states. Therefore, we assume
access to a bounded training datasetDtrain ≜ {(xt, yt)}t⊂N
comprising state-output pairs collected by offline simula-
tions of the digital twin; the data is assumed to have been
collected by persistently exciting the system (1), which
is a standard assumption for model identification (Ljung,
1998). In general, this dataset may comprise trajectories
from different initial conditions. State-feedback controllers
designed on these digital twin simulators require the sim-
ulator states x online, but the states are typically not
measured, and therefore have to be estimated from only
the measurement outputs y.

The objective of this paper is to estimate the simulator
states {xt}t≥0 online from the outputs {yt}t≥0, based
on a representation of the dynamics (1) learned using
the dataset Dtrain. To this end, our proposed approach
involves: (i) learning a deep autoencoder model that is
capable of replicating the state and output dynamics
of (1), and (ii) constructing a moving horizon estimator
that leverages the autoencoder model to generate an
estimate of the current state based on a window of past
measurements.

3. AUTOENCODER-BASED MOVING HORIZON
ESTIMATOR (AE-MHE)

This section proposes an autoencoder-based moving hori-
zon estimator (AE-MHE) to achieve data-driven nonlinear
state estimation. We first describe the architecture of the
autoencoders used and detail the training loss used. Next,
we describe the optimization problem formulation for the
moving horizon estimator. We conclude with a detailed
discussion of various hyperparameters associated with our
approach.

3.1 Architecture

In order to construct our state estimator, we first propose
a deep autoencoder-based dynamical model, illustrated in
Fig. 1. The input to the autoencoder is the simulator
state xt, which is passed through an encoder to compute a
latent encoding ψt ∈ Rnψ . The latent encoding is updated
using a linear state-transition operator A : nψ 7→ nψ. The
updated latent ψt+1 is passed through a state-decoder Dx
that returns the state estimate x̄t+1. A separate decoder
Dy generates an estimate ȳt of the output yt based on the
latent variable ψt. That is,

ψt = Ex(xt), (2a)

ψt+1 = A(ψt), (2b)

x̄t+1 = Dx(ψt+1) = Dx ◦ A ◦ Ex(xt), (2c)

ȳt = Dy(ψt) = Dy ◦ Ex(xt). (2d)

Note that one can enforce A and Dy to be state-transition
and output matrices (respectively) by selecting them to be
linear layers with zero bias.

The state-transition operator A can be viewed as a Koop-
man operator that enables a linear description of the non-
linear dynamics (1) in the high-dimensional latent space



Fig. 1. Deep autoencoder for proposed state estimation.

Rnψ Lusch et al. (2018); Mauroy et al. (2020). A short-
coming of Koopman-based system identification is that
the latent space that enables a linear description may be
hard to identify in practice, incurring modeling errors. AE-
based dynamical models use the training data set to define
the latent space with the goal of reducing such modeling
errors.

3.2 Training Loss

Training the deep autoencoder involves computing the
weights of the encoder Ex, the two decoders Dx and Dy,
and the state transition operator A. To this end, we
use a multi-step reconstruction loss with regularization.
Formally, at index t we can select the current state xt
as the input and a window of length Ĥ of current/future
states

Xt+1:t+Ĥ = {xt+1, xt+2, · · · , xt+Ĥ},
along with the future outputs

Yt:t+Ĥ−1 = {yt, yt+1, · · · , yt+Ĥ−1},
using the data in Dtrain. Subsequently, with xt, we can
generate estimates X̄t+1:t+Ĥ and Ȳt:t+Ĥ−1 using the au-

toencoder (2).

We will use the following notation to describe the training
loss function. Let Qt1:t2 = {qt1 , · · · , qτ , · · · , qt2} denote

any tensor with qτ ∈ Rnq , along with its estimate Q̂t1:t2 .

Then, MSE(Qt1:t2 , Q̂t1:t2) ≜
1

nq(t2−t1)
∑t2
τ=t1

∥qτ − q̂τ∥22.

For training, we minimize the loss function

ℓ = ℓrecon + ℓpred,X + ℓpred,Y + λregℓreg, (3)

where the first three terms are mean-squared-error (MSE)
losses, with

ℓrecon = MSE (xt,Dx ◦ Ex(xt)) ,
denoting the reconstruction loss of the autoencoder with-
out a state update,

ℓpred,X = MSE
(
Xt+1:t+Ĥ , X̄t+1:t+Ĥ

)
,

denoting the multi-step prediction error on the states of
the system, and

ℓpred,Y = MSE
(
Yt:t+Ĥ−1, Ȳt:t+Ĥ−1

)
is the multi-step prediction error computed over the out-
puts. As suggested in Lusch et al. (2018), we also penalize
the A operator via the L1 regularization loss

ℓreg = ∥A∥2
with regularization coefficient λreg > 0 to inject stability
to the learned A.

3.3 Moving Horizon Estimation

We propose a moving horizon estimator for state estima-
tion using the autoencoder model equations (2).

At each time index t, given a H-length window of mea-
surements Yt:t+H , we generate an estimate of the state xt
by solving the following optimization problem,

min
Xt−H:t

H−1∑
τ=0

∥δxτ ∥
2
Qf

+

H∑
τ=0

∥δyτ∥
2
Rf

(4a)

subject to:

ȳt−τ = Dy ◦ Ex(xt−τ ), ∀ τ ∈ N0:H (4b)

x̄t−τ+1 = Dx ◦ A ◦ Ex(xt−τ ), ∀ τ ∈ N0:H (4c)

δxτ = x̄t−τ − xt−τ , (4d)

δyτ = ȳt−τ − yt−τ , (4e)

where Na:b is the set of natural numbers between and
including a, b ∈ N. To solve (4), we generate a sequence of
state estimates {xt−τ}Hτ=0 that minimizes a weighted sum
of the state and output prediction errors. We define the
state prediction error in (4d) using the deviations between
the generated state estimates and the one-step predic-
tions using (4c). We define the output prediction error
in (4e) using the deviation between the supplied output
measurements and the outputs estimated using (4b). We
use Qf ⪰ 0 and Rf ≻ 0 in (4a) are weighting matrices to
enforce preferences over specific state dimensions.

Since the encoder and decoder transformations may be
nonlinear, (4) is a nonlinear least squares problem. We
solve (4) using limited memory BFGS (Liu and Nocedal,
1989) implemented using automatic differentiation that
leverages the PyTorch library (Paszke et al., 2019a) and
Pytorch-minimize (Feinman, 2021). Alternatively, one
could utilize standard nonlinear least squares techniques
like Levenberg–Marquardt algorithms (Boyd and Van-
denberghe, 2018) or nonlinear moving horizon estimators
using the identified nonlinear dynamics (Rawlings et al.,
2020).

3.4 Remarks on hyperparameter selection

The main hyperparameters of the AE are the number of
layers in the encoder and the decoder, the type of state-
transition operator, and the latent dimension. Since the
encoder represents a ‘lifting’ transformation, it usually
needs a depth of at least three layers in order to be
expressive enough to represent complex nonlinear trans-
formations; this implies the decoder(s) (which behaves as
the inverse transformation of the encoder) must also be
deep enough to be expressive. Classically the encoder and
decoder(s) have the same depth, but this is not mandatory.

The state-transition operator A is defined as a linear
layer with no bias, as we want to represent the dy-
namics by a linear system, following Koopman-theoretic
arguments (Mauroy et al., 2020). The selection of the
latent variable dimension is a trade-off: since the state-
transition operator is a finite-dimensional approximation
of the Koopman operator, one wants nψ to be large, so
that the approximation error is small. Conversely, choosing
nψ too large can result in increased computational expen-
diture during training and will result in a large A matrix



which may be unwieldy for linear systems design methods.
Prior art such as Masti and Bemporad (2021) has shown
that multi-step prediction in training is necessary for good
generalization at inference, indicating a need to choose a
large Ĥ. We recommend choosing Ĥ ≥ 5.

We also briefly discuss the design choices for the parame-
ters associated with solving (4). The optimization problem
(4) has three parameters — the weighting matrices Qf and
Rf , and the window length H. The choice of weighting
matrices are governed by the preference over the individ-
ual state dimensions, and the accuracy requirements over
state and output predictions. We chose Qf = 10Inx and
Rf = Iny to emphasize higher accuracy in the moving
horizon estimator. Solving (4) with longer window lengths
typically improves the estimation quality at the cost of
higher data requirements. Additionally, since (4) is a
nonlinear optimization problem, the computational effort
to solve (4) increases considerably with longer window
lengths. Empirically, we observed that the choice of H ≥ 7
provided a good compromise between these contending
desiderata. We also note that the deep autoencoder can
generate gradients for the objective and constraints of (4)
by well-studied automatic differentiation tools. One can,
therefore, utilize these gradients to accelerate the solver
used to solve (4).

4. SIMULATION RESULTS

To illustrate our algorithm, we consider the reverse van
der Pol oscillator[

x1,t+1

x2,t+1

]
=

[
x1,t − τx2,t

x2,t + τ
(
x1,t − x2,t + x21,tx2,t

)] ,
yt = x21,t + x2,t,

as the unknown dynamical system inside a digital twin,
where τ = 0.1 is the sampling time. Note that this system
has been previously studied in (Surana and Banaszuk,
2016b), and therefore gives us an opportunity to use the
authors’ proposed Koopman Kalman filter (KKF) and
extended Kalman filter as baselines for comparison.

4.1 Implementation and data collection

We use an autoencoder with the architecture described
in Fig. 1, with the following hyperparameters. The input
layer is 2-dimensional to admit the state of the oscillator,
so is the output layer; the latent dimension is selected to
be one of nψ = 16, 32, and 64, to study the effect of
the latent variable size on estimation performance. The
encoder has a depth of 5 layers, each of which is activated
by rectified linear unit (ReLU) functions, and initialized by
uniform Xavier initialization; see Goodfellow et al. (2016)
for more details. The number of neurons from input to
latent is: 128-256-256-256-128. The state-transition layer
is a linear layer with no bias, so effectively A is a matrix
of size nψ×nψ, which depends on the nψ we use. The state
and output decoders are both five layers deep, with ReLU
activations, and follow the same neuronal pattern as the
encoder. While we do not provide an explicit comparison of
predictive performance with the number of layers, we can
report that reducing the number of layers to below four
in the encoder (and therefore, both decoders to maintain
parity) results in severely degraded training performance.

In order to collect data for training, we sample 200 unique,
random initial conditions within [−1, 1]2 and simulate the
oscillator for T = 51 time samples, as reported in Surana
and Banaszuk (2016b). The states and outputs are stored

for training, and we use Ĥ = 10 (i.e. ten future states and
outputs are predicted) for computing the autoencoder loss
function. The regularization coefficient is set to λreg =
10−3. We use the Adamax solver (Kingma and Ba, 2015)
for training with a step-size of 0.001, and learning rate
scheduling which cuts the step size by half after every 500
training iterations with plateaued loss. Implementation
is entirely in Python 3.10 and PyTorch (Paszke et al.,
2019b). For estimation, we select a window of length
H = 15, (we will justify this later in this section) with
Qf = 10I and Rf = I. The estimator optimization
problem is solved using automatic differentiation using
Pytorch-minimize (Feinman, 2021). We reiterate that the
entire training process is based solely on simulation data;
no model information is assumed.

4.2 Effect of latent dimension, nψ

For testing the moving horizon estimator, we select an
initial condition distinct from any initial condition in the
training set, and simulate forward on [0, 20] s, with only
outputs measured every 0.1 s. The output is corrupted
by zero-mean, 0.01-variance Gaussian noise. Fig. 2 shows
the performance of the proposed approach. The top row of
subplots illustrate the evolution of the states of the system
over time, with the black continuous line being the true
state, and the blue, orange, and green lines indicating state
estimates with an autoencoder with latent dimension 16,
32, and 64, respectively. In the lower row, the left subplot
shows the noisy measured output, and the right subplot
shows the norm of the state estimation error evolving over
time. We observe that despite the selection of different
latent dimensions and measurement noise, the proposed
method works satisfactorily well and the estimation error
reduces to a small neighborhood around the origin. As
nψ decreases, the condition number of Aψ increases from
1.8× 104 for nψ = 16 to 6.0× 104 for nψ = 32 to 1.2× 105

for nψ = 64.

4.3 Effect of window length, H

To understand the effect of estimation performance on the
length of the moving horizon window, we refer the reader
to Fig. 3, where the top plot shows the sum-of-squared
state estimation error with varying window lengths from
H = 3 to H = 20. Corresponding statistics of time
taken to compute a state estimate is provided in the lower
subplot. For this numerical example, we observe that the
error decreases rapidly up to H = 7, and then gradually
till H = 15, after which the decrease is unremarkable.
As expected, the corresponding time to compute a state
estimate increases linearly in this small range of H ∈
{3, 4, . . . , 20}. Therefore, a suitable trade-off can be made
between computational speed and error to select H; we
choose H = 15 to that end.

4.4 Comparison to other baselines and an ablation

We also compare our approach to the KKF and EKF
reported in Surana and Banaszuk (2016b). Here, nψ = 32



Fig. 2. Estimation of states x from noisy output y, along
with estimation error norm ∥e∥.

Fig. 3. Comparison of sum-squared-error and time per
estimator call with varying estimator window length.

and H = 15. We admit that while we have tried to keep
the comparison fair by maintaining the same measure-
ment noise level, identical initial conditions and forward
simulation time for testing, there are some differences.
To our understanding, the prior art assumes some model
knowledge/structure, which we do not. Conversely, we do
not optimize code for speed, and therefore, our estimator
is most likely slower than the prior art.

The results of the comparison is shown in Fig. 4, where the
red and black lines are the median state estimation error
norm of the EKF and the KKF, respectively; no statistics
were reported. Our proposed moving horizon estimator
is run 100 times to compute median and 95% confidence
intervals of the state estimation error (all from the same
initial condition as the KKF/EKF, but with varying
noise seeds). The plots in Fig 4 show that the proposed
AE-based MHE approach consistently outperforms the
competitors despite the lack of a model of the dynamics.

A further comparison is made to try to understand the
importance of Aψ, whose linearity is not exploited in the
MHE optimization problem (4). To this end, we remove
the Aψ layer, and redo the training and estimation with
this ablated network, which we refer to in Fig. 4 as AE-
MHE-No-A. An important difference in this training loop is
that since there is no state-transition operator Aψ, Ĥ = 1
by default, which can limit the predictive performance.
The corresponding MHE problem therefore reduces to
a similar framework to the neural deadbeat estimator
proposed in §2.5 of Forgione et al. (2022). While this
ablated network is promising, and at times outperforms
KKF and EKF, our proposed AE-MHE is superior to AE-
MHE-No-A everywhere except for a small subset of time
near the 40 and 60-second marks.

Fig. 4. Comparison of estimation error norm of AE-MHE
against Koopman KF (KKF), extended KF (EKF),
and ablation method AE-MHE-No-A.

5. CONCLUSIONS

We demonstrated in this work that digital twin states of
complex dynamical systems can be accurately estimated
from online measurements using a combination of a deep
autoencoder and moving horizon state estimation. The
deep autoencoder can directly learn from simulation data
the mapping from the state space to the observations
along with identifying a latent space where a linear, finite-
dimensional, state-space model can provide a satisfacto-
rily accurate predictive model. We demonstrate through
numerical simulations that the proposed framework de-
livers smaller estimation error compared to state of the
art extended and Koopman Kalman filtering approaches.
We will investigate stability properties of the estimator in
future.

REFERENCES

Beintema, G., Toth, R., and Schoukens, M. (2021). Non-
linear state-space identification using deep encoder net-
works. In Learning for Dynamics and Control, 241–250.
PMLR.

Bhatti, G., Mohan, H., and Singh, R.R. (2021). Towards
the future of smart electric vehicles: Digital twin tech-
nology. Renewable and Sustainable Energy Reviews, 141,
110801.



Bortoff, S.A. and Laughman, C.R. (2019). An extended
Luenberger observer for HVAC application using FMI.
In Modelica, 157–015.

Boyd, S. and Vandenberghe, L. (2018). Introduction to
Applied Linear Algebra: Vectors, Matrices, and Least
Squares. Cambridge University Press, 1 edition.

Chakrabarty, A. and Benosman, M. (2021). Safe learning-
based observers for unknown nonlinear systems using
Bayesian optimization. Automatica, 133, 109860.

Chakrabarty, A., Corless, M.J., Buzzard, G.T., Żak, S.H.,
and Rundell, A.E. (2017). State and unknown input
observers for nonlinear systems with bounded exoge-
nous inputs. IEEE Transactions on Automatic Control,
62(11), 5497–5510.

Chakrabarty, A., Zemouche, A., Rajamani, R., and Benos-
man, M. (2019). Robust data-driven neuro-adaptive
observers with Lipschitz activation functions. In 2019
IEEE 58th Conference on Decision and Control (CDC),
2862–2867. IEEE.

Classens, K., Heemels, W.M., and Oomen, T. (2021). Dig-
ital twins in mechatronics: From model-based control to
predictive maintenance. In 2021 IEEE 1st International
Conference on Digital Twins and Parallel Intelligence
(DTPI), 336–339. IEEE.

Feinman, R. (2021). Pytorch-minimize: a library
for numerical optimization with Autograd. URL
https://github.com/rfeinman/pytorch-minimize.

Forgione, M., Mejari, M., and Piga, D. (2022). Learning
neural state-space models: Do we need a state estima-
tor? arXiv preprint arXiv:2206.12928.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT press.

Grieves, M. and Vickers, J. (2017). Digital twin: Miti-
gating unpredictable, undesirable emergent behavior in
complex systems. In Transdisciplinary perspectives on
complex systems, 85–113. Springer.

Kingma, D.P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Y. Bengio and Y. LeCun
(eds.), 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

Lei, Q., Ma, Y., Liu, J., and Yu, J. (2021). Neuroad-
aptive observer-based discrete-time command filtered
fault-tolerant control for induction motors with load
disturbances. Neurocomputing, 423, 435–443.

Li, W., Rentemeister, M., Badeda, J., Jöst, D., Schulte,
D., and Sauer, D.U. (2020). Digital twin for battery
systems: Cloud battery management system with online
state-of-charge and state-of-health estimation. Journal
of energy storage, 30, 101557.

Liu, D.C. and Nocedal, J. (1989). On the limited memory
bfgs method for large scale optimization. Mathematical
programming, 45(1), 503–528.

Ljung, L. (1998). System Identification. In Signal Analysis
And Prediction, 163–173. Springer.

Lusch, B., Kutz, J.N., and Brunton, S.L. (2018). Deep
learning for universal linear embeddings of nonlinear

dynamics. Nature communications, 9(1), 1–10.
Masti, D. and Bemporad, A. (2021). Learning nonlinear

state–space models using autoencoders. Automatica,
129, 109666.

Mauroy, A., Susuki, Y., and Mezić, I. (2020). Koopman
Operator In Systems And Control. Springer.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. (2019a). Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing
Systems, 8024–8035.

Paszke, A., Gross, S., et al. (2019b). PyTorch: An imper-
ative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32,
8024–8035. Curran Associates, Inc.

Rajamani, R. (1998). Observers for Lipschitz nonlinear
systems. IEEE transactions on Automatic Control,
43(3), 397–401.

Rawlings, J., Mayne, D., and Diehl, M. (2020). Model pre-
dictive control: theory, computation and design. Nob Hill
Publishing, LLC, Santa Barbara, 2nd edition edition.

Riva, G., Formentin, S., Corno, M., and Savaresi, S.M.
(2022). Simulator-in-the-loop state estimation for ve-
hicle dynamics control: theory and experiments. arXiv
preprint arXiv:2204.06259.

Simon, D. (2006). Optimal State Estimation: Kalman, H-
infinity, and Nonlinear Approaches. John Wiley & Sons.

Surana, A. (2016). Koopman operator based observer
synthesis for control-affine nonlinear systems. In 2016
IEEE 55th Conference on Decision and Control (CDC),
6492–6499. IEEE.

Surana, A. and Banaszuk, A. (2016a). Linear observer
synthesis for nonlinear systems using Koopman operator
framework. IFAC-PapersOnLine, 49(18), 716–723.

Surana, A. and Banaszuk, A. (2016b). Linear observer
synthesis for nonlinear systems using koopman operator
framework. IFAC-PapersOnLine, 49, 716–723. doi:
10.1016/j.ifacol.2016.10.250.

Tao, F., Zhang, H., Liu, A., and Nee, A.Y. (2018). Digital
twin in industry: State-of-the-art. IEEE Transactions
on industrial informatics, 15(4), 2405–2415.

Xu, W., Cui, J., Li, L., Yao, B., Tian, S., and Zhou, Z.
(2021). Digital twin-based industrial cloud robotics:
Framework, control approach and implementation.
Journal of Manufacturing Systems, 58, 196–209.

Zhan, S., Wichern, G., Laughman, C., Chong, A., and
Chakrabarty, A. (2022). Calibrating building simulation
models using multi-source datasets and meta-learned
Bayesian optimization. Energy and Buildings, 270,
112278.

Zhao, E., Yu, J., Liu, J., and Ma, Y. (2022). Neuroadaptive
dynamic surface control for induction motors stochastic
system based on reduced-order observer. ISA transac-
tions, 128, 318–328.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-088.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


