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Abstract
We consider the problem of joint parameter estimation and smoothing in structured linear
systems using the expectation maximization (EM) framework. Specifically, we explore how
partially known sparsity structures in the estimation model can be leveraged to improve
the computation speed and performance of the considered EM approaches. We use these
ideas to generalize a recently proposed GraphEM algorithm to a linear time-varying setting,
where the sparsity structures may vary in time. We obtain a biconvex form of the majorizing
function in the M -step, which is minimized subject to an ‘1-regularization using a Douglas-
Rachford proximal splitting algorithm. Numerical results using a satellite positioning example
shows significant improvements in the estimation errors and an F1-score that quantifies model
sparsity.
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Abstract: We consider the problem of joint parameter estimation and smoothing in structured
linear systems using the expectation maximization (EM) framework. Specifically, we explore
how partially known sparsity structures in the estimation model can be leveraged to improve
the computation speed and performance of the considered EM approaches. We use these ideas to
generalize a recently proposed GraphEM algorithm to a linear time-varying setting, where the
sparsity structures may vary in time. We obtain a biconvex form of the majorizing function in the
M -step, which is minimized subject to an `1-regularization using a Douglas-Rachford proximal
splitting algorithm. Numerical results using a satellite positioning example shows significant
improvements in the estimation errors and an F1-score that quantifies model sparsity.
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1. INTRODUCTION

System identification is a cornerstone of modern control
theory, in which the parameters of a system are to be
determined from observed measurement data, without
knowledge of the state trajectory (Ljung, 1998). Numerous
approaches can be taken depending on the problem setting
and prior knowledge of the system dynamics. For linear
time-invariant (LTI) systems subject to additive noise, 1

xk+1 = Axk + qk, qk ∼ N (0,Q), (1a)

yk = Cxk + rk, rk ∼ N (0,R), (1b)

subspace methods (Katayama, 2005) such as variations
of the state-space subspace system identification (4SID)
algorithm (Viberg, 1995) remain popular to this day,
with recent trends toward finite sample analysis (Sarkar
et al., 2021; Tsiamis and Pappas, 2019) motivated by data-
driven control methods. Other classical approaches such as
prediction-error methods (PEM) and maximum-likelihood
(ML) approaches (Ljung, 1998), come with the added
benefit that prior knowledge in terms of model sparsity
is relatively easy to encode in the resulting optimization
problems. In the context of LTI system identification,
the ML-methods are often combined with expectation
maximization (EM) (Dempster et al., 1977) to generate
iterative algorithms that utilize closed-form smoothing
results to formulate computationally tractable algorithms,
see e.g., (Neal and Hinton, 1998; Gibson and Ninness,
2005; Särkkä, 2013; Holmes, 2013; Chouzenoux and Elvira,
2020). These algorithms consist of constructing a majoriz-
ing function of the negative measurement log-likelihood
(E-step), which is minimized over the unknown parame-
ters (M -step). The later step is similar to the regression
in the 4SID-algorithm (c.f., (Katayama, 2005, Chapter
6.6) and (Gibson and Ninness, 2005, Lemma 3.3)), but
formulated in terms of a smoothing posterior.

1 The definitions and assumptions are made precise in Section 2.

In the LTI setting, EM methods tend to utilize the closed-
form solutions to the resulting optimization problems in
the model parameters Ξ , {A,C,Q,R}. When consid-
ering unknown sparsity in Ξ, it has been suggested to
add an `1-regularization term in the M -step (Chouzenoux
and Elvira, 2020), referred to as the GraphEM algorithm,
forgoing the closed-form solutions in favor of convex op-
timization that promotes sparsity. When instead consid-
ering known sparsity in Ξ, 2 closed-form solutions for the
M -step appear under assumptions explored in (Holmes,
2013). A more intuitive treatment of the same problem
with an affine parametrization of Ξ is proposed in (Wills
et al., 2018). In both works, the M -step is implemented
by solving non-regularized convex optimization programs.

This paper reuses the core ideas and basis expressions
in (Wills et al., 2018) and extends them to the time-
varying setting, thereby encompassing a wide variety of
linear-time varying (LTV) systems. In contrast to the work
in (Holmes, 2013), we consider the parameters of {Q,R}
to be linear in the inverses of these covariance matrices
(to be defined in Assumption 1). Combined, this allows
us to encode partially known, but possibly time-varying,
sparsity structures in Ξ. As such, we extend the GraphEM
algorithm to an LTV setting, where the transition model of
the Markov chain {xk : k ∈ N} in (1) can be time varying.

The contributions of this paper are twofold. We present:

• A modified GraphEM with a weighted `1 regulariza-
tion to promote the assumed sparsity structures in Ξ,
referred to as a Weighted GraphEM (or WGEM).

• A factorization of the majorizing objective function
in the EM, which can be employed both in the LTI
and LTV settings, where repeated minimization of
the objective scales with the number of parameters
representing Ξ, instead of the state dimension. This is
referred to as the Generalized GraphEM (or GGEM).

2 This notion of sparsity differs from (Neal and Hinton, 1998).



1.1 Notation

For x ∈ Rn, xi = [x]i is the ith element of x, and D(x) =
n. Matrices are indicated in bold asX, and the element on
row i and column j ofX is [X]ij . Column unit vectors with
the ith element set to 1 are denoted by ei ∈ Rm. The outer
product of a ∈ Rn with itself is (a)(a)> = (a)(?)>. We let
M ∈ Sn++ (Sn+) denotes positive (semi) definite symmetric
matrices, and⊗ is the Kronecker product, whereM = A⊗
B is block structured with entries [A]ijB. Furthermore, ◦
denotes a Hadamard product, where [M ]ij = [A ◦B]ij =
[A]ij [Bij ]. We define a vector operation vec : Rn×m →
Rnm×1 using lexicographical indexing, as in (Petersen
et al., 2008), with an inverse mat : Rnm×1 → Rn×m.
The notation x ∼ N (m,P ) indicates that x is Gaussian
distributed with mean mx and covariance P xx, and the
associated density function is N (x|m,P ). Similarly, U(I)
indicates a uniform distribution over an interval I. With
p(x0:k|y0:k), we mean the posterior density function of
the state trajectory x0:k from time step 0 to time step
k given the measurement sequence y0:k := {y0, . . . ,yk},
where p(xk|y0:k) is the marginal (filtering) posterior and
p(xk|y0:K) is a smoothing posterior (with k ≤ K). For
a function y = αF (x) + β with α > 0, β ∈ R being
constants independent of x, we let y ' F (x). Similarly, if
y ≤ αF (x)+β, then y . F (x). We let the super-indices (·)?
and (·)◦ denote optimal and feasible solutions, respectively.

2. PRELIMINARIES

In the following, we consider LTV systems in the form

xk+1 = Ak(θ)xk + qk, qk ∼ N (0,Qk(θ)), (2a)

yk = Ck(θ)xk + rk, rk ∼ N (0,Rk(θ)), (2b)

with xk ∈ RD(x), yk ∈ RD(y), noise qk ∈ RD(x), rk ∈
RD(y) where the pair (qk, rk) are uncorrelated, and

Qk(θ) ∈ SD(x)
++ ,Rk(θ) ∈ SD(y)

++ ∀k ∈ [0,K] ⊂ N. Here,

θ ∈ RD(θ) is a parameter vector. We assume the following:

Assumption 1. (Linear Parameter Dependence). The maps
{Ak(θ),Q−1

k (θ),Ck(θ),R−1
k (θ)} are linear in θ, and if a

parameter appears in one of the objects, it does not appear
in another. If the parameters θM are associated with a
matrix Mk, then we can write θ = (θ>A,θ

>
Q,θ

>
C ,θ

>
R)>.

In the context of the LTV state-space model in (2), the
Kalman filter (KF) is the minimum mean-square error
(MMSE) estimator. In this setting, given a Gaussian
prior over the states, N (x0|m0,P0), the marginal filtering
posterior is Gaussian p(xk|y0:k,θ) = N (xk|mk,Pk) and
computed exactly by a recursion from the prior (Särkkä,
2013). If the entire measurement sequence is known, the
smoothing posterior p(xk|y0:K ,θ) = N (xk|ms

k,P
s
k ) can

be computed recursively from the filtering posterior using
the Rauch-Tung-Striebel (RTS) smoother. This is done in
a backward pass, starting from ms

K = mK and P s
K = PK ,

m′k+1 = Ak(θ)mk, (3a)

P ′k+1 = Ak(θ)PkAk(θ)> +Qk(θ), (3b)

Gs
k = PkAk(θ)>(P ′k+1)−1, (3c)

ms
k = mk +Gs

k(ms
k+1 −m′k+1), (3d)

P s
k = Pk +Gs

k(Pk+1 − P ′k+1)(Gs
k)>. (3e)

The closed-form smoothing solution can be leveraged in
parameter estimation schemes, such as the EM method.

2.1 Expectation Maximization

We briefly describe the EM, referring to (Särkkä, 2013,
Section 12.2.3) for additional details. The idea of EM is
to take an arbitrary density q(x0:K), upper bound the
negative log-likelihood of the measurements y0:K given θ,

L(θ) , − log p(y0:K |θ)

≤ −
∫
q(x0:K) log

p(y0:K ,x0:K |θ)

q(x0:K)
dx0:K ,

(4)

and subsequently minimize the left-hand side (LHS) in (4)
by minimizing the upper bound on the right-hand side
(RHS) in (4). The appeal of EM is that the LHS in (4)
may be a complicated function in θ, while the RHS in (4)
under certain choices of q can be expressed as a convex
function in θ. Specifically, if q(x0:K) , p(x0:K |y0:K ,θ

(i)),

L(θ).
∫
p(x0:K |y0:K ,θ

(i)) log p(y0:K ,x0:K |θ)dx0:K

,Q(θ,θ(i)),

where

Q(θ,θ(i)) '
K−1∑
k=0

log det(Qk(θ)) +

K∑
k=0

log det(Rk(θ))+

K∑
k=0

Tr
{
Rk(θ)−1E[(yk −Ck(θ)xk)(?)>|y0:K ]

}
+

K−1∑
k=0

Tr
{
Qk(θ)−1E[(xk+1−Ak(θ)xk)(?)>|y0:K ]

}
. (5)

Due to the similarities in the functional relationships
involving {C(θ),R(θ)} and {A(θ),Q(θ)}, we focus on
the latter with the understanding that all subsequent
derivations apply to both. In the LTI setting, we obtain

Q(θ;θ(i)) ' − log(det(Q−1)) (6)

+ Tr
{
Q−1(Σ− ΓA> −AΓ> +AΦA>)

}
,

where

Σ =
1

K

K−1∑
k=0

P s
k+1 +ms

k+1(ms
k+1)>, (7a)

Γ =
1

K

K−1∑
k=0

P s
k+1(Gs

k)> +ms
k+1(ms

k)>, (7b)

Φ =
1

K

K−1∑
k=0

P s
k +ms

k(ms
k)>. (7c)

with the local minimizers of (6) given by

θ?A = vec(ΓΦ−1), (8a)

θ?Q = vec(Σ− ΓA> −AΓ> +AΦA>). (8b)

The EM algorithm consists of first computing a smoothing
posterior given θ(i) (the E-step), and subsequently up-
dating θ(i) → θ(i+1) by minimizing (6) (the M -step), as
summarized in Algorithm 1. In this basic formulation, the
EM: (i) does not straightforwardly generalize to the LTV
setting; (ii) does not easily incorporate prior knowledge of
sparsity; and (iii) does not enforce sparsity in θ. The last
point was addressed in the recently proposed GraphEM.



Algorithm 1 EM With Unknown Sparsity

1: Receive: y0:K ,m0,P0,θ
(0)

2: for i = 0, 1, . . . , N − 1 or until converged do
// E-step

3: Evaluate {ms
0:K ,P

s
0:K ,G

s
0:K |θ(i)} by (3)

// M-step
4: Solve θ(i+1) = argminθQ(θ;θ(i)) using (8)
5: end for
6: Output: ms

0:K ,P
s
0:K ,θ

(N)

3. LINEAR TIME-INVARIANT SETTING

The GraphEM in (Chouzenoux and Elvira, 2020) is also
developed in an LTI setting, computing the maximum a
posteriori (MAP) estimate of A subject to an `1 regu-
larization. As in the original algorithm, we here use the
linear parameterization A = mat(θA) ∈ RD(x)×D(x), let
Ā = mat(θ̄A) ∈ RD(x)×D(x) for convenience, and consider

min
θA

f(θA) + g(θA), (9)

where f(θA) = Q(θ;θ(i))|θQ=θ◦
Q

, and g(θA) = λ‖θA‖1. A

proximal operator is defined in the Frobenius norm, as

proxαf (θ̄A) = argmin
θA

αf(θA) +
1

2
‖A− Ā‖2F (10a)

= (I ⊗Q+ αΦ⊗ I)−1vec(αΓ +QĀ). (10b)

The second equality in (10) follows from first-order opti-
mality conditions, resulting in a Lyapunov equation whose
solution is given in (10b), see, e.g., (Petersen et al., 2008).
This form differs slightly to the original GraphEM, but
its numerical conditioning may differ depending on the
application. As in (Chouzenoux and Elvira, 2020), the
proximal operator for the `1-regularizer is defined as

proxαg(θ̄A) = argmin
θA

αλ‖θA‖1 +
1

2
‖θA − θ̄A‖22 (11a)

= sign([θ̄A]i) max(0, |[θ̄A]i| − αλ). (11b)

In GraphEM, (9) is solved using a Douglas-Ratchford
(DR) algorithm (Combettes and Pesquet, 2007) in lieu
of iterative thresholding methods, such as the iterative
shrinkage-thresholding algorithm (ISTA) in (Daubechies
et al., 2004) or its accelerated equivalent in (Beck and
Teboulle, 2009). The DR subroutine is given in Algo-
rithm 2. For details on proximal splitting and convergence
proofs, refer to (Parikh et al., 2014) and (Giselsson, 2015).

In contrast to the EM, the computational complexity
in the GraphEM is dominated by solving the Lyapunov
equation in (10) at O(D(x)6). However, if the process
noise is isotropic, i.e., Q = σ2I, the inversion in (10)
simplifies and has complexity O(D(x)3). In our notation,
the resulting proximal operator can be written

proxαf (θ̄A) = vec
{( α

σ2
Γ + Ā

)(
I +

α

σ2
Φ
)−1}

. (12)

In both (10) and (12), consecutive evaluations of this prox-
imal operator in the DR can be done by forward/backward
substitution since (I ⊗ Q + αΦ ⊗ I) admits a Cholesky
factorization. The iteration complexity of the DR-routine
in Algorithm 2 is O(D(x)4), or O(D(x)2) if the process
noise is isotropic. The GraphEM in (Chouzenoux and
Elvira, 2020) is implemented as in Algorithm 1, iterating
over A and replacing the minimization on line 4 with the

Algorithm 2 DR-subroutine used in the GraphEM.

1: Receive: z(0)

2: Factorize L>L = I ⊗Q+ αΦ⊗ I if possible
3: for i = 0, 1, 2, . . . , N − 1 or until converged do
4: y(i) = proxαf (z(i)) with substitution using L

5: x(i) = proxαg(2y
(i) − z(i))

6: z(i+1) = z(i) + y(i) − x(i)

7: end for
8: Output: θA = y(i)

DR in Algorithm 2, where nominally α = 1. In the imple-
mentation for this paper, the Cholesky factors associated
with proxαf are precomputed at the start of each M -step.

Remark 1. The reason for not identifying the noise co-
variance matrices to an `1 constraint with a proximal
operator defined in the Frobenius norm is that a Riccati-
like matrix equation emerges. Solutions exist and can be
computed as in (Higham and Kim, 2000) but are generally
not unique. As such, the GraphEM requires Q to be dense
and estimated as in (8) with a large iteration complexity
of the DR. Alternatively, the model class can be restricted
to isotropic process noise Q = σ2I, resulting in an M -step

σ2 =
1

D(x)
Tr(Σ− ΓA> −AΓ> +AΦA>). (13)

In the original GraphEM, the system matrix is assumed to
be sparse, but the general sparsity patterns are completely
unknown. However, we can make this prior more precise
by a weighted `1-regularization. Consider a matrix Λ ∈
RD(x)×D(x) with positive elements where a large value
indicates that the corresponding element in A is more
likely to be zero in the solution, and consider a regularizer

ḡ(θA) = ‖θA‖1,vec(Λ) =

D(θA)∑
i=1

[vec(Λ)]i|[θA]i|, (14)

with an associated proximal operator

proxαḡ(θ̄A) = argmin
θA

αḡ(θA) +
1

2
‖θA − θ̄A‖22 (15a)

= sign([θ̄A]i) max(0, |[θ̄A]i| − α[vec(Λ)]i). (15b)

This facilitates more informative priors over A in the
GraphEM, referred to as the Weighted GraphEM (WGEM).

4. LINEAR TIME-VARYING SETTING

The core ideas translate to a more general LTV setting.
Instead of having the (weighted) `1-norm regularize A, we
span Ak at a specific time step k using a basis defined in
Assumption 2, and have the `1-norm regularize Ak such
that redundant basis matrices are removed. To restrict the
model class, we make the following assumptions:

Assumption 2. The system matrix Ak is spanned by a

time-varying basis {A(i)
k ∈ RD(x)×D(x)\{0}}D(θA)

i=0 ,

Ak(θ) = A
(0)
k +

D(θA)∑
i=1

A
(i)
k [θA]i. (16)

Assumption 3. The noise covariance Qk is spanned by

time-varying basis {Q−1,(i)
k ∈ RD(x)×D(x)}DθQi=0 ,

Q−1
k (θ) = Q

−1,(0)
k +

D(θQ)∑
i=1

Q
−1,(i)
k [θQ]i. (17)



Assumptions 2 and 3 enable a time-varying θ, as it can
be encoded through the time-varying matrix basis. In
Section 4.1 we show that the solution to the M -step can
be computed analytically if an additional assumption is
made on the inverse noise basis in (17), see Assumption 4.

Assumption 4. Q−1
k (θ) is block diagonal, where:

(i) each element Q
−1,(i)
k of the basis is constituted by

mQik > 0 non-zero blocks Q
−1,(i)
jk ∈ S

nQ
ijk
×nQ

ijk

++ ;

(ii) on each time step, the elements of the basis are non-

overlapping, with Q
−1,(i)
k ◦Q−1,(j)

k = 0 ∀i 6= j;

(iii) [θQ]i > 0∀i⇔ Q−1
k (θ) � 0.

4.1 Factoring the Q-function

We start by considering the component of the Q-function
in (6) related to {Ak(θ),Qk(θ)}, restated for convenience:

Q(θ;θ(i)) ' −
K−1∑
k=0

log(det(Q−1
k (θ)))+ (18)

K−1∑
k=0

Tr
{
Qk(θ)−1E[(xk+1 −A(θ)xk)(?)>|y0:K ]

}
.

Proposition 1. By Assumptions 1–4, (18) can be written

Q(θ;θ(i)) ' Q̄(θ;θ(i)) ,
D(θQ)∑
i=1

{
−M (i) log([θQ]i)

[θQ]i

(
(θA)>H(i)θA + (f (i))>θA + c(i)

)}
, (19)

with objects H(i) ∈ SD(θA)×D(θA)
+ , f (i) ∈ RD(θA),

c(i) ∈ R, M (i) ∈ Z≥0 defined for all i ∈ 0, ..., D(θQ).

This follows algebraically, and the optimization problems

θ?A = argminθAQ(θ;θ(i))|θQ=θ◦
Q
, (20a)

θ?Q = argminθQQ(θ;θ(i))|θA=θ◦
A
, (20b)

are (individually) convex, with minimizers given by

θ?A = −(2H)−1f , (21a)

[θ?Q]i =
M (i)

(θ◦A)>H(i)θ◦A + (f (i))>θ◦A + c(i)
, (21b)

H = H(0) +

D(θQ)∑
i=1

[θ◦Q]iH
(i), (21c)

f = f (0) +

D(θQ)∑
i=1

[θ◦Q]if
(i). (21d)

Here, the biconvex form in (19) is easily evaluated in
the case where the basis spanning {Ak(θA),Qk(θQ)}
are time-varying, while the objects {H(i),f (i), c(i)} are
independent of time (due to assumptions 1–4) thereby
facilitating extensions of the GraphEM to an LTV setting.

Instead of evaluating (21b) directly, we can once again add
an `1-regularization over θA, and consider the problem

min
θA

f̄(θA) + g(θA), (22)

with f̄(θA) = Q̄(θ;θ(i))|θQ=θ◦
Q

in (19) and g(θA) =

λ‖θA‖1. We define a proximal operator in the two-norm,

proxαf̄ (θ̄A)=argmin
θA

{
αf̄(θA)+

1

2
‖θA−θ̄A‖22

}
(23a)

= −(αH + I)−1(θ̄A − (α/2)f), (23b)

with {H,f} given in (21c) and (21d), respectively. We
use proxαg from (11b) and solve (22) using the DR in

Algorithm 2, but now run with respect to {f̄, g} using the
proximal operator in (23). This replaces the M -step in
the conventional EM defined in Algorithm 1 with an M -
step utilizing the DR-subroutine and the decomposition
in Proposition 1, referred to as the Generalized GraphEM
(GGEM). To make the implementation efficient, we com-
pute the Cholesky factors of (αH + I) at the start of
each M -step, and evaluate (23) in the DR algorithm by
substitution. Any update of θQ is done using (21b), and
updates in both θA and θQ are done in the fashion of a
single-step block coordinate descent.

5. NUMERICAL EXAMPLES

Many systems can be modeled with partially known spar-
sity in the prediction and measurement models. One such
example comes from satellite positioning, where a re-
ceiver’s kinematic states, z> = (p>,v>) ∈ R6, are to be
inferred from on a set of distance measurements corrupted
by various biases (Berntorp et al., 2020). Here, p is the
receiver’s position, v = ṗ is the receiver’s velocity, and the
three dimensions are assumed to be differentially indepen-
dent. To show how the proposed methods can be used,
we consider a model similar to (Greiff et al., 2021) and
introduce parameter adaptation in the prediction model.
To this end, we start by finding a suitable basis for the
prediction model, satisfying Assumptions 2–4. We let

ACV
k ,

[
1 hk
0 1

]
∈ R2×2, MCV

k ,
12

h3
k

[
1 −hk

2

−hk

2
h2
k

3

]
∈ S2×2

++ ,

(24)

where hk > 0 [s] is a sampling period, such that
p(zk+1|zk) ∼ N ((I3⊗ACV

k )zk, (I3⊗ (MCV
k )−1)) is a con-

stant velocity (CV) model with unit variance. As in Greiff
et al. (2021), we take the biases associated with Ns = 10
satellites to evolve by a constant position model. A suitable

basis for the inverse process-noise is then Q
−1,(0)
k = 0 and

Q
−1,(1)
k = diag(MCV

k ,0,0,0), (25a)

Q
−1,(2)
k = diag(0,MCV

k ,0,0), (25b)

Q
−1,(3)
k = diag(0,0,MCV

k ,0), (25c)

Q
−1,(4)
k = diag(0,0,0, h−1

k I3Ns
), (25d)

resulting in D(θQ) = 4, corresponding to the inverse
variance of the random walks driving the constant velocity
and position models. For illustration purposes, assume
that ACV

k is unknown to the estimator, but that the
positions and biases are differentially independent. We get
D(θA) = 12 parameters and 13 basis matrices for A which
can be characterized by e1 = (1, 0)> and e2 = (0, 1)>, as

A
(0)
k = diag(0,0,0, I), A

(i+4)
k = diag(0,Ni,0,0), (26a)

A
(i)
k = diag(Ni,0,0,0),A

(i+8)
k = diag(0,0,Ni,0), (26b)

for i ∈ {1, 2, 3, 4} with

N1 = e1e
>
1 , N2 = e1e

>
2 , N3 = e2e

>
1 , N4 = e2e

>
2 .



The measurements are sampled with the true parameters

θtrue = ((13 ⊗ vec(ACV
k ))>︸ ︷︷ ︸

θtrue
A

, σ−2
X , σ−2

Y , σ−2
Z , σ−2

B︸ ︷︷ ︸
θtrue
Q

)>, (27)

but the smoother is initialized according to

θ
(0)
A − θ

true
A ∼ N (0, 0.12I), (28a)

[θ
(0)
Q ]i/[θ

true
Q ]i ∼ U([0.1, 9]), ∀i = 1, . . . , D(θQ). (28b)

The measurement model is defined as in (Greiff et al.,
2021), but in an undifferenced setting with inflated noise,

yk =

h(pk)
h(pk)
010×1

010×1

+

010×6 010 −I10 I10

010×6 0.2I10 I10 I10

010×6 010 I10 010

010×6 010 010 I10

xk + rk,

(29)

where [h(xk)]i = ‖pk − pik‖2 is the Euclidean distance
between the receiver position pk ∈ R3 and the ith satellite,
located at a position pik ∈ R3. Here, deterministic models
of a subset of the biases are introduced as measurements
of the corresponding biases. The measurement noise and
unbiased estimate prior are characterized by

Rk = diag(0.5I10, 0.05I10, 0.05I10, 0.05I10) ∀k, (30a)

P0 = diag(5, 1, 5, 1, 5, 1, 1I10, 0.1I20). (30b)

Remark 2. In this setting, the M -step in: the regular EM
requires the inversion of Φ ∈ R36×36; while the GraphEM
requires the inversion of (I ⊗Q+ Φ>⊗ I) ∈ R1296×1296 if
the model class is to encompass the true noise covariance,
and a matrix in R36×36 if the noise is isotropic; and the
GGEM requires the inversion of a matrix in R12×12.

For the comparison, we use Taylor expansions of the mea-
surement model to compute the smoothing posterior by
the extended RTS smoother (Särkkä, 2013). We consider:

(A) Smoothing with the true model (True);
(B) An EM with dense noise cov. (EM-A);
(C) An EM with isotropic noise cov. (EM-B);
(D) A GraphEM with dense noise cov. (GraphEM-A);
(E) A GraphEM with isotropic noise (GraphEM-B);
(F) A WGEM with dense noise cov. and sparsity pattern

in Λ same as the model of the GGEM (WGEM-A);
(G) A WGEM with isotropic noise and sparsity pattern

in Λ same as the model of the GGEM (WGEM-B);
(H) A GGEM algorithm with the basis in (25) and (26).

Here, (A) serves as a baseline for thew comparison; (B)-
(C) are direct implementations of the EM in Särkkä
(2013); (D)-(E) are two variants of the method proposed in
(Chouzenoux and Elvira, 2020); (F)-(G) is the GraphEM
with weighted regularization proposed in Sec. 3; and (H)
is the generalized GraphEM method proposed in Sec. 4.

The methods are compared using metrics similar to those
considered in (Chouzenoux and Elvira, 2020):

• Time-averaged position root-mean square error
(RMSE) in centimeters, which should be no less than
the smoothing posterior evaluated in the true model
parameters (approximating the Cramér-Rao bound).
• The F1-score of the estimates {A(θ(N)),Q(θ(N))},

where an element is determined to be zero (negative)
or non-zero (positive) with a threshold of 10−10, the
same metric as in (Chouzenoux and Elvira, 2020).
• The number of zero elements (NZ) in the maps
{A(θ(N)),Q(θ(N))} combined.

Table 1. Estimation and computational perfor-
mance, arrows show direction of improvement.

Algorithm RMSE (↓) F1 A (↑) F1 Q (↑) Tot. NZ.

True 1.288 – – 2511.0
EM-A 23.074 0.109 0.118 1259.2
EM-B 16.296 0.106 0.923 1888.0

GraphEM-A 27.718 0.189 0.111 1752.0
GraphEM-B 42.411 0.111 0.923 2458.1
WGEM-A 1.825 1.000 0.122 1903.0
WGEM-B 3.383 0.938 0.923 2513.6

GGEM 1.999 0.984 1.000 2509.7

Tot. CT EM iters CT/M -step DR iters

True 0.2 – – –
EM-A 19.4 95.6 0.014 –
EM-B 18.4 89.5 0.014 –

GraphEM-A 207.4 100.0 1.88 0 860.3
GraphEM-B 8.0 30.8 0.065 603.4
WGEM-A 2458.8 46.0 53.256 24511.0
WGEM-B 26.4 47.7 0.349 3671.7

GGEM 5.9 27.5 0.022 124.0

The estimation performance is summarized in Table 1,
along with (i) the total computational time including all
E- and M -steps (CT) in seconds; (ii) the average number
of EM iterations; (iii) the average computational time per
M -step; and (iv) average number of DR-iterations per
M -step (if applicable). The statistics are averaged over
50 Monte-Carlo runs, where the initial parameter errors
in (28) are realized differently, and we only perform a
single run with the GraphEM-A and WGEM-A due to
their excessively long computation times (see Remark 2).
The stopping criteria in the DR in Algorithm 2 is defined
‖vec(y(i)−x(i))‖1 ≤ 10−5, and the EM iterations are run
until the decrease in the M -step objective is less than 10−2

or for a maximum number of N ≤ 100 iterations.

From the results in Table 1, it appears that there is
some benefit to allowing a dense noise covariance matrix,
especially when adding the (weighted) `1 regularizers. It
is also noteworthy that the sparsity induced by the `1
constraint in the GraphEM is not always beneficial, and
that the number of non-zero elements inA greatly depends
on λ. Setting λ = 1 in the GraphEM provides a level
of sparsity in A roughly corresponding to that of the
true model. The standard deviation of the number of zero
elements (NZ) inA andQ was≈ 40 for the GraphEM. It is
also noteworthy that the convergence of the dense variants
of EM-A and GraphEM-A required an excessive number of
iterations to converge, almost always hitting the iteration
upper bound before the numerical convergence criteria.
Some realizations would require >1000 EM iterations to
achieve performance comparable to the other EM variants.

In WGEM, a much more restrictive prior can be enforced
over A, with the weights in Λ corresponding to the
elements that are assumed to be zero-valued set a factor
of 103 higher. This results in parameter estimates that are
very similar to the model parameters. This is best seen
in the F1-score associated with A which approaches 1. As
we get closer to the true model, without over-fitting the
likelihood, we get far superior results in terms of RMSE.

The GGEM uses the correct model class for the process
noise covariance. This enables a more accurate estimation



model to be inferred, and we get a F1-score of 1 with
respect to Q. We also see one of the highest F1-scores with
respect to the system matrix A. As the GGEM accurately
estimates the model, we also expect its RMSE to be low.
Only the WGEM-A outperforms the GGEM, and here we
again emphasize that only one simulation was done with
the WGEM-A while several were averaged for the GGEM.

In terms of computational properties, the use of a dense
process noise in the context of a relatively large estimation
model (recall, D(x) = 36 with 10 satellites) results
in a significant computational burden when evaluating
the proximal operators in (10), effectively rendering the
GraphEM-A and WGEM-A practically infeasible, despite
the latter having one of the lowest RMSEs. Convergence
is generally faster with the GGEM, both with respect to
the number of EM-iterations used and the number of DR-
iterations per M -step. One reason for this could be that
we can introduce scaling in the DR (by α) when using the
proximal operator in (23). We set α−1 = ‖H‖2, adapting
this as H in (21c) changes over the GGEM iterations. For
the GraphEM and WGEM using (10) and (12), it is more
difficult to define an appropriate scaling parameter.

In summary, with respect to estimation performance, and
in the context of the sparse estimation model, there ap-
pears to be significant benefits in including richer priors
over the estimation model using the WGEM, or perform-
ing the optimization over a smaller, well chosen set of
parameters in the GGEM. The update in the GGEM is
comparable in speed to the update in the regular EM,
and significantly faster than the construction of the Q-
function in the M -step. With the exception of the methods
assuming dense process noise, the total computational
time is largely dominated by the evaluation of the smooth-
ing posterior. In this setting, the GGEM requires fewer
smoothing passes than any other considered method to
achieve the convergence criteria.

6. CONCLUSION

In this paper, we propose an extension to the GraphEM
algorithm in two ways. First, we introduce a weighted `1
regularizer to encode partially known sparsity patterns in
the estimation model. Next, we introduce the GGEM to
reduce the number of parameter optimized in the M -step
given this partially known sparsity structure, which comes
with the added benefit of generalizing to an LTV setting.

We demonstrate that the choice of EM and regularizer
has a significant impact on performance, especially for
large and sparse estimation models. The numerical results
indicate that the WGEM and GGEM should be preferred
over both the original GraphEM and EM if we seek a
sparse estimation model when we have prior knowledge
of this sparsity structure, and that the GGEM should be
preferred in terms of the computational properties when
D(θ) is relatively small. Importantly, after computing the
factorization in Proposition 1, and factoring (αH + I),
consecutive evaluations of the proximal operator (23) in
the DR of the GGEM scale with O(D(θA)2), resulting in
a fast and efficient M -step, which can be used in both LTI
and LTV settings under the assumptions in Sec. 4.

Future work will apply the GGEM in global navigation
satellite system post-processing, where it will be used to

handle variable sample rates and the time-varying mea-
surement equations arising from the satellite movement.
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