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Abstract
Autonomous search using teams of multiple agents need tractable coordination strategies
between the search agents. The strategy must lower the time to identify interesting areas in
the search environment, lower the costs/energy usage by the search agents during movement
and sensing, and be resilient to the noise present in the sensed data due to the use of low-cost
and low-weight sensors. We propose a data-driven, multi-agent search algorithm to achieve
these goals using the framework of thresholding multi-armed bandits. For our algorithm, we
also provide finite upper bounds on the time taken to complete the search, on the time taken
to label all interesting cells, and on the economic costs incurred during the search.
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Abstract: Autonomous search using teams of multiple agents need tractable coordination
strategies between the search agents. The strategy must lower the time to identify interesting
areas in the search environment, lower the costs/energy usage by the search agents during
movement and sensing, and be resilient to the noise present in the sensed data due to the use
of low-cost and low-weight sensors. We propose a data-driven, multi-agent search algorithm to
achieve these goals using the framework of thresholding multi-armed bandits. For our algorithm,
we also provide finite upper bounds on the time taken to complete the search, on the time taken
to label all interesting cells, and on the economic costs incurred during the search.
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1. INTRODUCTION

Autonomous multi-agent search for objects/phenomena of
interest over large areas are crucial in several applications,
including environmental monitoring, agriculture, search-
and-rescue, and wildlife monitoring. Given a grid environ-
ment to search, we study the problem of identifying all
interesting cells (cells that contain an object/phenomenon
of interest) using multiple search agents, each equipped
with a noisy sensor. We require the search agents to sat-
isfy multiple requirements. First, the search agents must
coordinate and quickly identify interesting cells, which
is essential in time-sensitive applications like search-and-
rescue. Additionally, they must minimize economic costs
associated with the search, which could include the energy
used by the search agents due to movement and sensing.
Finally, they must make decisions on locations to sense
based on noisy observations obtained online from low-
cost and low-weight sensors typical of such search sys-
tems. In this paper, we propose a data-driven, multi-agent
search algorithm that addresses these requirements using
the framework of thresholding bandits.

A solution to the search problem is the label-then-move
search (see (Rolf et al., 2021) for a variant of this search).
In this search strategy, we partition the search space into
disjoint sets of grid cells that are assigned to the search
agents. Each search agent starts at some cell within its
assigned set of cells, collects enough data at a grid cell until
it is confident enough to label the grid cell as interesting
or uninteresting, and then moves on to another grid
cell within its assigned set. The label-then-move search
strategy ignores the data collected online to decide on
the next location to sense. Consequently, it can spend a
significant amount of time in labeling uninteresting cells
and may not be well suited for time-sensitive applications.
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Fig. 1. Data-driven multi-agent search under noisy ob-
servations. The proposed approach switches between
a bandit-based search and a label-then-move search
with a user-specified probability. The bandit-based
search optimizes a surrogate function constructed us-
ing noisy observations for making decisions on loca-
tions to sense. The label-then-move search makes the
agents follow a fixed, pre-determined pattern indepen-
dent of the data collected online.

Recently, multi-armed bandit (MAB) have also been pro-
posed for the multi-agent search problem. Recall that
MAB is a special class of reinforcement learning algo-
rithms where the current actions do not impact future re-
ward (Lattimore and Szepesvári, 2020). MAB-based algo-
rithms typically enjoy non-asymptotic guarantees of per-
formance with minimal assumptions, unlike general rein-
forcement learning algorithms (Lattimore and Szepesvári,



2020). (Rolf et al., 2021; Du et al., 2021) propose MAB-
based search strategies that identify the maximal or top-k
interesting cells in a grid, and require prior knowledge of
the number of interesting cells. Instead, our work focuses
on identifying all interesting grid cells without the prior
knowledge of the total number of interesting cells.

In this paper, we combine the label-then-move search and
thresholding MAB-based search strategies, as illustrated
in Figure 1. Similarly to (Locatelli et al., 2016; Mason
et al., 2020), we decide on the next locations to sense by
maximizing a surrogate function that is constructed using
the data collected online. While a vanilla application of
the thresholding bandit-based approach is near-optimal in
terms of search completion time (Locatelli et al., 2016),
it may have high economic costs. A key feature of our
approach is the ability to trade-off the desire for efficient
search with the need to lower the economic costs associated
with the search.

Several other strategies have also been proposed for multi-
agent search (Drew, 2021; Queralta et al., 2020). Popu-
lar approaches include algorithms based on submodular
maximization (Krause and Guestrin, 2007), algorithms
combining Voronoi-based search (Bullo et al., 2009) with
function approximation (Schwager et al., 2015; Luo et al.,
2019), active sensing/perception algorithms (Bajcsy et al.,
2018), graph-based search algorithms (Kapoutsis et al.,
2017; Best et al., 2018), and algorithms based on statistical
learning (Marchant and Ramos, 2012; Ghods et al., 2021;
Banerjee et al., 2022). However, these works may require
perfect sensing, may not have finite-time guarantees on the
search performance, and/or may have high economic costs
of search associated with movement and sensing.

The main contributions of this paper are: 1) to propose
a multi-agent search algorithm that accommodates noisy
observation data using a combination of thresholding
MAB and label-then-move search, and 2) to characterize
the performance of the algorithm by determining finite
upper bounds on the time taken to complete the search,
time taken to label all interesting cells, and the economic
costs incurred during the search by our algorithm. We
propose two metrics, priority labeling time and economic
cost, to study the performance of the proposed algorithm.
Additionally, with respect to the existing literature in
MAB, we integrate coordination requirements and the
physical limitations of switching actions directly into the
algorithm. Finally, we demonstrate the efficacy of our
approach in numerical simulations.

2. PROBLEM FORMULATION

Let G denote the set of grid cells defining the search envi-
ronment. Let the autonomous search team have d agents,
each equipped with a noisy sensor. In the autonomous
multi-agent search problem, we must identify the sequence
of grid cells to visit and sense based on the noisy sensor
data collected online, and return a set of interesting grid
cells. We refer to a cell as interesting if it contains an ob-
ject/phenomenon of interest. In this section, we formalize
the autonomous multi-agent search problem as a variant
of the thresholding MAB, characterize suitable metrics to
analyze the performance of a search algorithm, and state
the problems addressed in this paper.

MAB formulation of the multi-agent search problem: We
cast the search problem as a |G|-armed bandit problem

where the arms are grid cells with G ≜ {1, 2, 3 . . . , |G|},
and |G| denotes the cardinality of the set G. Let S∁ = G\S
be the complement of any set S ⊆ G.
At each time step, the search team of d agents selects a
set of d distinct grid cells to visit simultaneously. Each
visit to a grid cell returns a binary indication of whether
the cell is interesting. However, the observation data may
be corrupted by noise, arising from sensing limitations
and perception errors. Formally, a visit to grid cell i ∈
G results in a draw of a sample from a corresponding
Bernoulli random variable νi with mean µi. The mean
µi is influenced by the underlying spatial distribution of
the interesting cells, and the characteristics of the noisy
sensors and the perception algorithms used by the agents.
We assume that the Bernoulli random variables for any
two cells in G are mutually independent.

Remark 1. We do not assume prior knowledge of µi for
any grid cell i ∈ G or the total number of interesting cells.

Desired outcome of the search: For a user-specified
threshold θ ∈ (0, 1), upon the completion of the search,
we seek to identify the set of grid cells,

Sθ = {i ∈ G|µi ≥ θ} ⊂ G. (1)

The set Sθ is the set of grid cells that may be sensed as
interesting with a probability of at least θ.

We make the following assumption to obtain finite-sample
guarantees despite the noisy sensors on the search agents.

Assumption 1. (Labeling error tolerance).
The labeling error for grid cells i ∈ G with µi ∈ (θ−ϵ, θ+ϵ)
may be ignored for some (small) tolerance ϵ > 0.

Assumption 1 is motivated by the observation that de-
ciding if |µi − θ| > ϵ for any grid cell i ∈ G using a
finite number of samples becomes harder as µi approaches
θ (Jun et al., 2016a; Lattimore and Szepesvári, 2020).
Under Assumption 1, any set K ⊆ G that satisfies

Sθ+ϵ ⊆ K ⊆ Sθ−ϵ, (2)

is an acceptable approximation of Sθ.
We use the notion of a search policy to characterize a
multi-agent search.

Definition 1. (Search policy). Let H(τ) = {Hi(τ)}i∈G ,
where Hi(τ) is the history of observations at grid cell i ∈ G
collected by all agents until time τ . Let πτ : H(τ) → Gd
be a function that maps H(τ) to d distinct grid cells in
G. We define a search policy πt as a sequence of functions
πt = {πτ}0≤τ≤t. We will drop the subscript on πt when
time is not relevant.

Performance metrics: Let the multi-agent search using
the search policy π terminate at time step Tπ ∈ N, and
return a sequence of sets {K(t)}Tπ

t=0 with K(t) ⊆ G, ∀t. A
successful search policy π has a low labeling error upon
termination, i.e., it satisfies

P [(Sθ+ϵ \ K(Tπ)) ∪ (K(Tπ) \ Sθ−ϵ) = ∅] ≥ 1− δ, (3)

for some user-specified labeling error probability δ ∈ (0, 1).
Here, (3) enforces (2) by requiring that K(Tπ) includes
(almost) every one of the interesting cells and excludes



(almost) every one of the uninteresting cells upon termi-
nation, with probability 1− δ.

Additionally, the search must have:

(1) low priority labeling time L(π),

L(π) = inf{t ≤ Tπ : P[Sθ+ϵ \ K(t) ̸= ∅] ≤ δ]}, (4)

i.e., the search identify (almost) every one of the
interesting cells quickly. By definition, L(π) ≤ Tπ.

(2) low economic cost upon termination, i.e., the search
has low costs associated with movement and sensing,

E(π) =

Tπ∑
t=1

 ℓ(at,at−1)︸ ︷︷ ︸
movement cost

+ βd︸︷︷︸
sensing cost

 (5)

where at is the set of d grid cells being sampled at
time t according to search policy πt−1, ℓ : Gd ×
Gd → R is a metric on Gd, and β > 0 is a known
constant sensing cost for each agent. Consequently,
βd is the sensing cost for the team at each time step.

We pursue probabilistic performance metrics in (3) and
(4) due to the uncertainty in sensing and perception.

We now state the two problems tackled by this paper:

Problem 1. Design a multi-agent search algorithm on G
that simultaneously satisfies the criteria (3), (4), and (5).

Problem 2. Determine upper bounds on the time to termi-
nate the search (3), the priority labeling time (4), and the
economic cost (5) for the proposed solution to Problem 1.

3. PROPOSED SOLUTION

Algorithm 1 describes the proposed solution for Problem 1.
It augments label-then-move search with a thresholding
bandit-based search (inspired from (Locatelli et al., 2016))
to satisfy the criteria in (3), (4), and (5). In Algorithm 1,
the keep set K(t) ⊆ G and the reject set R(t) ⊆ G are the
sets of grid cells labeled as interesting and uninteresting
respectively, at the time instant t.

Algorithm 1 runs in a loop until all grid cells in G are
assigned to K(t) or R(t) (or both). Each loop starts with a
toss of a biased coin with the bias set to the aggressiveness
parameter, α ∈ (0, 1).

When the current toss of the biased coin returns heads, we
use upper confidence bounds typical of bandit-based algo-
rithms (Locatelli et al., 2016; Mason et al., 2020; Lattimore
and Szepesvári, 2020) to sample the unlabeled cells “most
likely” to be interesting. Specifically, we choose d distinct
cells that achieve the highest values of acquisition function
J : G × N→ R ∪ {∞} at time t,

Jπ(i, t) = µ̂i,π(t) + Ui,π(t, δ), (6a)

µ̂i,π(t) =

∑
h∈Hi(t)

h

|Hi(t)|
, (6b)

Ui,π(t, δ) = 2

√
2 log(log2(2|Hi(t)|)) + log (12|G|/δ)

2|Hi(t)|
,

(6c)

with µ̂i,π(t) = Ui,π(t, δ) =∞, whenever Hi(t) = ∅.
Otherwise, we minimize the movement cost ℓ in (5) to
decide on the next location to sample. Since ℓ is a metric,

Algorithm 1 Multi-agent search under noisy observation

Input: Set of grid cells G, number of agents d ∈ N,
threshold θ ∈ (0, 1), tolerance ϵ > 0, labeling error
probability δ ∈ (0, 1), aggressiveness param. α ∈ (0, 1)

Output: {K(t)}t≥1, a sequence of (keep) sets of grid cells
1: Initialize time counter t← 1
2: while R(t) ∪ K(t) ̸= G do
3: if current toss of α-biased coin returns heads then
4: Define at by selecting d distinct grid cells that

score the highest values in Jπ (6)
5: else
6: Define at by assigning each agent to a distinct

unlabeled cell that minimizes ℓ in (5)
7: end if
8: Deploy the agents to grid cells at and update the

history H(t) based on collected noisy sensors
9: Update sets of labeled grid cells,

K(t)← {i ∈ G|µ̂i,π(t)− Ui,π(t, δ) ≥ θ − ϵ}, (7a)

R(t)← {i ∈ G|µ̂i,π(t) + Ui,π(t, δ) ≤ θ + ϵ}. (7b)

10: Increment time counter t← t+ 1
11: end while
12: return {K(t)}t≥1

a search agent continues to sample its current cell in the
next iteration, if the current cell is unlabeled.

Finally, we complete the loop by updating the sets K(t+1)
and R(t+ 1) using (7) based on the data collected in the
iteration t. Since Ui,π(t, δ) is a non-increasing function of
|Hi(t)|, the sets K(t) and R(t) are monotonic in t. The
definitions used in (7) are motivated by the desire to obtain
anytime guarantees for Algorithm 1.

Proposition 1. (Anytime algorithm). The following
holds for Algorithm 1 at any time t ≥ 1 with probability
of at least 1− δ: K(t) ⊆ Sθ−ϵ and R(t) ⊆ S∁θ+ϵ.

We provide the proof of Proposition 1 in Appendix A.
By Proposition 1, Algorithm 1 yields a correct-by-
construction (albeit incomplete) labeling of the grid cells,
even when it is terminated prematurely.

We conclude this section by noting that Algorithm 1
simplifies to a label-then-move search when α = 0, and
a thresholding bandit-based search when α = 1.

4. PERFORMANCE ANALYSIS

We now focus on Problem 2, and study the performance
of Algorithm 1. We show that Algorithm 1 has finite
time termination guarantees, and admits high likelihood
upper bounds to the incurred economic costs and priority
labeling time. These bounds are a natural consequence of
the bandit framework which yield non-asymptotic perfor-
mance guarantees under minimal modeling assumptions.

We will use the following problem-specific parameters for
each cell i ∈ G,

∆i = |µi − θ|+ ϵ, and Ωi = min
j∈Sθ+ϵ

|µj − µi|. (8)

Informally, ∆i signifies the separation of the mean µi

from the threshold, while Ωi signifies the separation of the
mean µi from the set Sθ+ϵ. We will state our results using
parameters ϕi and γi for each cell i ∈ G,



ϕi =
1

∆2
i

log

(
|G|
δ

log

(
|G|
∆4

i δ

))
, (9a)

γi =
1

Ω2
i

log

(
|G|
δ

log

(
|G|
Ω4

i δ

))
. (9b)

Similar to the bandit literature (Lattimore and Szepesvári,
2020), we will show that ∆i and Ωi together characterize
the difficulty of the search problem in Theorem 1.

Remark 2. For any two scalar functions f, g : R → R, we
write f = O(g) if there exists a constant C > 0 and a
scalar x0 ∈ R such that f(x) ≤ Cg(x) for every x ≥ x0.

Theorem 1. (Upper bounds for Algorithm 1). Each
one of the following statements hold for Algorithm 1 with
probability 1− δ:

(1) Algorithm 1 terminates at Tπ and satisfies the low
labeling error criterion (3) with

Tπ ≤ maxi∈D∆ O (ϕi) +
1

d

∑
i∈D∁

∆

O (ϕi) , (10)

where D∆ is the union of a grid cell with the smallest
∆i with a set of d − 1 grid cells with the largest ∆i

among all cells i ∈ G.
(2) The priority labeling time (4) for Algorithm 1 is

bounded from above as follows,

L(π) ≤maxi∈DΩ O (ϕi) +
1

d

∑
i∈Sθ+ϵ\DΩ

O (ϕi)

+
1

d

∑
i∈S∁

θ+ϵ
\DΩ

min

{
O (γi) +

4(1− α)|G|2

αδ
,O (ϕi)

}
,

(11)

where DΩ is a set of d grid cells characterized by ∆i,
Ωi, and α.

(3) The economic cost (5) incurred by Algorithm 1 is
bounded from above (with M = max

a,a′∈Gd
ℓ(a,a′)),

E(π) ≤ O(|G| − 1) + dmaxi∈D∆
O ((Mα+ β)ϕi)

+
∑

i∈D∁
∆

O ((Mα+ β)ϕi) . (12)

See Appendix B for a sketch of the proof of Theorem 1. In
Theorem 1, big-O notation hides constants factors which
are independent of system parameters.

From (10), Algorithm 1 may take more time to terminate
when ∆i is small for at least one grid cell, i.e., µi is close
to θ for some i ∈ G. Additionally, the upper bound on
the termination time Tπ does not have a purely inverse-
linear relationship the number of agents d, i.e., Tπ is
not upper bounded by an expression containing only
1
d

∑
i∈G O (ϕi). Instead, the upper bound in (10) has an

additional term maxi∈D∆
O (ϕi) independent of d, which

corresponds to the diminishing benefit of significantly
increasing the number of agents.

We now analyze the role played by the aggressiveness
parameter α in the performance of Algorithm 1. We
observe that the upper bound on Tπ is independent of α,
consistent with the intuition that Algorithm 1 with α > 0
and label-then-move search (Algorithm 1 with α = 0)
takes the same number of iterations for a search problem
with identical ∆i. This is because all grid cells must be
labeled at the end, and both approaches rely on similar
concentration inequalities to label a cell.

Recall that Algorithm 1 simplifies to label-then-move
search for α = 0, where the deployments of the agents are
decided solely based on the associated movement costs.
Consequently, as seen from the upper bounds, such an
approach incurs a low economic cost E(π), but may incur
a high priority labeling time L(π). On the other hand,
setting α = 1 simplifies Algorithm 1 to a pure bandit-
based search that samples grid cells based on the maxima
of the acquisition function Jπ (6). Consequently, as also
seen from the upper bounds, such an approach will result
in low priority labeling time L(π), but high economic cost
E(π). Thus, by varying α ∈ (0, 1), the method can achieve
the desired trade-off between the priority labeling time and
the economic costs of search.

5. EXPERIMENTS

We use a numerical simulation to compare Algorithm 1
to three baselines, AdaSearch (Rolf et al., 2021), a pure
bandit-based search (Algorithm 1 with α = 1), and label-
then-move search (Algorithm 1 with α = 0).

We setup the multi-agent search problem as follows: Con-
sider a search environment of 10× 10 grid cells with mean
µi = 0.85 for interesting cells i ∈ G and µj = 0.15 for
uninteresting cells j ∈ G. We set the team size d = 5
with randomly chosen starting locations. We also set 10
randomly chosen grid cells as interesting. We set the tol-
erance ϵ = 10−3, labeling error probability δ = 10−3, and
the threshold parameter θ = 0.5. We set sensing costs
β = 0.01, and define ℓ as the sum of the Manhattan
distance between the agents’ current and next locations.

We adapt AdaSearch (Rolf et al., 2021) to solve the multi-
agent search problem. Recall that AdaSearch adjusts the
number of samples collected at each cell based on any valid
data-driven confidence bounds. In our implementation of
AdaSearch, we utilized the confidence bounds defined in
(6). We also assumed that the agents follow identical
raster paths and recompute the sample visitation counts
upon completing a loop around the environment. Unlike
Algorithm 1, AdaSearch additionally requires the total
number of interesting cells to label the cells.

We analyze how the different search strategies label in-
teresting cells to the keep set K(t) as time progresses
in the algorithm. Figure 2 shows the performance of the
algorithms on 100 randomly generated search problems.
Based on our experiments, we recommend the choice of
α = 0.2 for the given choice of ℓ and β.

Priority labeling time (Fig. 2, top): As expected, the
proposed solution (Algorithm 1 with α = 0.2) and a pure
bandit-based search (Algorithm 1 with α = 1) detects
Sθ+ϵ with a smaller number of samples as compared to
AdaSearch and label-then-move search (Algorithm 1 with
α = 0). The latter search strategies require a large amount
of samples, possibly due to the pre-determined search
pattern used by the agents.

Economic cost (Fig. 2, bottom): The proposed solu-
tion and label-then-move search incur lower economic
costs when compared to AdaSearch and pure bandit-based
search. From (5), the economic cost is a linear combination
of sampling cost and movement cost. Since β is small, the



Fig. 2. Priority labeling time for various search strategies
with number of samples collected by the team over G
(top), and incurred economic cost (bottom). The pro-
posed solution (Algorithm 1 with α = 0.2) achieves a
good compromise as compared to other strategies —
label-then-move search (Algorithm 1 with α = 0), a
pure bandit-based search (Algorithm 1 with α = 1),
and AdaSearch (Rolf et al., 2021).

Fig. 3. The median number of samples needed per agent
to characterize the keep set K(Tπ) (magenta line
with crosses) in 100 randomly chosen search problems
using the proposed solution (Algorithm 1 with α =
0.2) decreases with increasing team size d. The blue
line shows the trend needed to achieve an inversely
proportional relationship between the samples needed
per agent and the team size.

incurred costs are primarily driven by the movement costs,
and the proposed solution and label-then-move search
make the agents move relatively less when compared to
other approaches. We expect the performance of the search
strategies to be similar to Fig. 2, top, in applications where
sensing is expensive and movement is cheap (higher β).

Impact of the team size d on the search (Fig. 3): As
expected, the number of samples needed per agent to
characterize the keep set K(Tπ) decreases with increasing
team size d. However, the reduction in the samples needed
per agent does not exhibit an inversely proportional rela-
tionship with the team size, as indicated by Theorem 1.

We conclude with a note that Algorithm 1 has minimal
computational overhead. A non-optimized Python code
took ≈ 0.3 milliseconds per iteration on a standard laptop.

6. CONCLUSION & FUTURE WORK

We propose a data-driven, multi-agent search algorithm
that accommodates noisy observations when searching
for all interesting grid cells. We combined recent results
from thresholding MABs with a standard label-then-move
search to lower the time to identify interesting areas in
the search environment and lower the costs incurred by
the search agents during movement and sensing, while
accommodating noisy observations.

The multi-agent search strategy proposed in this work
has two drawbacks. First, it does not enforce the physical
limitations on the mobile sensors are enforced as hard con-
straints during exploration. Second, it does not consider
the effect of temporal changes in the search environment.
Our future work will extend the proposed solution to
address these drawbacks.
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Appendix A. PROOF FOR PROPOSITION 1

Let the undesirable events be EK(t) = {K(t) \ Sθ−ϵ ̸= ∅}
and ER(t) =

{
R(t) \ S∁θ+ϵ ̸= ∅

}
. To prove Proposition 1,

we want to show P
[(⋃

t≥1EK(t)
)⋃(⋃

t≥1ER(t)
)]
≤

δ. By Boole’s inequality, it is suffices to show that

P
[⋃

t≥1EK(t)
]
≤ δ/2 and P

[⋃
t≥1ER(t)

]
≤ δ/2.

Recall that, by the choice of Ui,π(t, δ) in (6c),

P

⋂
t≥1

{|µi − µ̂i| ≤ Ui,π(t, δ)}

 ≥ 1− δ

2|G|
, (A.1)

for any grid cell i ∈ G and search policy π (see Lemma 1

in (Jun et al., 2016b) with ω =
√
δ/(12|G|)).

For any t ≥ 1, K(t) \ Sθ−ϵ ̸= ∅ if and only if µ̂i,π(t) −
Ui,π (t, δ) ≥ θ − ϵ > µi for some i ∈ G. Consequently,
K(t) \ Sθ−ϵ ̸= ∅ ⇒ |µ̂i,π(t) − µi| ≥ Ui,π (t, δ) for some
i ∈ G. By (A.1) and Boole’s inequality,

P

⋃
t≥1

EK(t)

 ≤ P

⋃
i∈G

⋃
t≥1

{|µ̂i,π(t)− µi| ≥ Ui,π (t, δ)}


≤

∑
i∈G

δ

2|G|
≤ δ

2
.

The proof for P
[⋃

t≥1ER(t)
]
≤ δ/2 follows similarly. ■

Appendix B. PROOF SKETCH FOR THEOREM 1

Bounding Tπ (10): Recall that the number of sufficient
number of samples required for successful classification,
with high confidence, of a grid cell i ∈ G can be tightly
upper-bounded by O(ϕi) (see (6) in (Jun et al., 2016a)

with ω =
√
δ/(2|G|)). If we allowed multiple search agents

to visit a grid cell simultaneously, then 1
d

∑
i∈G O(ϕi)

upper bounds Tπ, due to the independence assumption
between the cells. However, the agents are required to
stay in distinct cells at all times. Consequently, some of
the search agents are rendered ineffective when less than

d cells are left to be labelled. (10) upper bounds Tπ by
accounting for the worst-case inefficiency — the last d cells
is a set of “easy-to-classify” d− 1 cells and a “hardest-to-
classify” cell.

Bounding L(π) (11): We split the time taken to classify
all interesting cells by Algorithm 1 into three parts:

(i) Classifying interesting cells : The number of samples
sufficient for classification of interesting cell i isO(ϕi),

(ii) Sampling uninteresting cells when biased coin toss
yields heads : Here, Algorithm 1 samples grid cells
while maximizing J , see (6). The number of sufficient
samples of the uninteresting cell j after which, it will
be sampled by only after classifying all interesting
cells upper-bounded by O(γj). Additionally, we add

a margin of 4(1−α)|G|2
αδ to account for the worst-case

low-probability event of revisiting cell j due to the
switching to label-then-move.

(iii) Sampling uninteresting cells when biased coin toss
yields tails : Here, Algorithm 1 samples grid cells
based only on the distance metric ℓ. In the worst case,
we may sample an uninteresting cell long enough to
classify it, which is O(ϕi).

Combining these parts, we have

L(π) ≤
∑

O(ϕi)︸ ︷︷ ︸
interesting cells (i)

+
∑

min

{
O(ϕi),O(γi) +

4(1− α)|G|2

αδ

}
︸ ︷︷ ︸

uninteresting cells (ii) and (iii)

.

for a team with d = 1. Similar to Tπ, we obtain (11)
by accounting for oversampling due to inefficiency arising
from the presence of d > 1 agents.

Bounding E(π) (12): The economic cost (5) consists of the
movement cost and the sampling cost. At every time step
t, Algorithm 1 performs an α biased coin-toss. For coin
tosses corresponding to heads, Algorithm 1 moves to the
grid cells which maximizes the activation function (6). In
this case, Algorithm 1 incurs a movement cost of at most
M ≜ maxa,a′ ℓ(a,a′). For coin tosses corresponding to
tails, Algorithm 1 searches for the nearest unlabelled cell in
the neighbourhood. The total cost incurred by Algorithm 1
during the entire run is no larger than the cost incurred
to visit all of the cells in some pre-defined sequence, which
we know is O(|G| − 1).

Σ
1≤τ≤t

E [ℓ(aτ ,aτ−1)] ≤ (1− α)O(|G| − 1) + αMt (B.1)

The sampling cost accrued at iteration t of Algorithm 1 is
βtd. We complete the proof by adding these bounds, and
applying the bound in (10) on t. ■
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