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Abstract
We consider a decision making system for automated driving that has the objective of deter-
mining what maneuvers are feasible for the current vehicle, route, and traffic conditions. For
the maneuvers determined to be feasible, a motion planner can then generate the trajectories
that achieve the corresponding goals, without the risk of wasting computations in searching
for a trajectory of an impossible maneuver. We solve the decision making problem by con-
structing backward reachable sets for goals and collision areas, based on maneuvers that are
generated by dynamical models with decision parameters. Online, we only need to check the
existence of parameter values that provide membership of the state-parameter vector in a goal
reachable set, and non-membership in all collision reachable sets, which entails simple and
fast computations. We evaluate the method in scenarios involving lane change and braking
maneuvers.
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Abstract: We consider a decision making system for automated driving that has the objective
of determining what maneuvers are feasible for the current vehicle, route, and traffic conditions.
For the maneuvers determined to be feasible, a motion planner can then generate the trajectories
that achieve the corresponding goals, without the risk of wasting computations in searching for
a trajectory of an impossible maneuver. We solve the decision making problem by constructing
backward reachable sets for goals and collision areas, based on maneuvers that are generated
by dynamical models with decision parameters. Online, we only need to check the existence of
parameter values that provide membership of the state-parameter vector in a goal reachable set,
and non-membership in all collision reachable sets, which entails simple and fast computations.
We evaluate the method in scenarios involving lane change and braking maneuvers.
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1. INTRODUCTION

Automated driving requires rapidly determining the next
vehicle action among those allowed by the road rules, while
recognizing that some of these choices may be rendered
unachievable by the current traffic. The ego vehicle may
be operating in a travel direction with two lanes, close
to a number of other vehicles, approaching a stop line.
While several maneuvers may be allowed, e.g., follow the
lane, change lane, or decelerate to a stop, some may be
infeasible due to other vehicles or traffic rules.

Automated driving systems are often divided in multiple
layers with different reaction times, decision horizons,
and computation budgets. In the prototypical architecture
shown in Fig. 1, the vehicle control at the lower level tracks
trajectories generated by the motion planner in the middle
layer. Due to route lengths and quickly varying traffic
conditions, such trajectories span only a short segment
of the travel. Thus, the decision making in the top layer
provides to the motion planner one or more maneuvers,
sometimes also called driving modes, and their associated
goals, i.e., the possible next waypoints. Hence, the decision
making must provide maneuvers with achievable goals, so
that the motion planner the motion planner does not waste
computation budget trying to achieve impossible goals.

Several methods for decision making have been proposed
based on rules, optimization, or machine learning, see,
e.g., (Buehler et al., 2009; Gu et al., 2016; Galceran et al.,
2017; Esterle et al., 2018; You et al., 2018; Hubmann et al.,
2018; Schwarting et al., 2018), and the references therein.
In our previous works (Ahn et al., 2020b,a) we proposed
decision making by set reachability, where a maneuver was

deemed achievable if (i) a goal region in the vehicle state
space can be reached within a given finite horizon; and (ii)
the vehicle is safe from collision with other vehicles and
from violating traffic rules. We determined whether the
maneuver can be achieved in the current traffic conditions
by leveraging capture sets and backward reachable sets.

While successfully validated, the method in (Ahn et al.,
2020b) separately tests candidate trajectories for safety,
by performing collision checking on the points of the
trajectories, and for liveness, by evaluating membership of
the state in the reachable set of the next goal or in a safety
invariant. Hence, (Ahn et al., 2020b) requires checking set
membership conditions for all the points of the candidate
trajectories, which may be computationally expensive, and
candidate trajectories for the different scenarios.

In this paper we consider trajectories obtained by pa-
rameterized maneuvers that are produced by dynamical
systems with decision parameters kept constant during the
maneuver. Decision making checks if there exists param-
eter values that ensure reaching the goal within a given
finite horizon, while avoiding collisions with other vehicles.
By leveraging reachable sets in the state-parameter space,
maneuver feasibility is checked based only on the initial
conditions and parameter values, i.e., without checking
any other point along the maneuver. Furthermore, col-
lision avoidance and goal reachability computations are
integrated, which simplifies implementation.

Set-based methods have been investigated for several op-
erations in automated driving, such as motion planning,
safety verification, and robust control, see, e.g., (Althoff
and Dolan, 2014; Gao et al., 2014; Berntorp et al., 2019;



Fig. 1. Multi-layers automated driving system: current
(green) and next (red) maneuver/mode in decision
making, goal (red) and trajectory (blue) in motion
planning, and control signals (blue) in vehicle control.

Koschi and Althoff, 2020), and references therein. A re-
lated use of reachable sets appeared in (Li et al., 2020),
which enforced collision avoidance by modifying a given
command signal, yet did not consider goal reachability due
to focusing only on safety.

In what follows, in Section 2 we introduce the maneuver,
goal, and obstacle models, in Section 3 we describe the
reachable set construction and the conditions for maneuver
feasibility, and in Section 4 we discuss implementation
aspects and a simple robustness metric. Section 5 reports
simulation scenarios and Section 6 the conclusions.

Notation: Z and Z+ are the sets of integers, and positive
integers, we denote intervals as Z[a,b) = {z ∈ Z : a ≤
z < b}, and similarly for real numbers R. We denote
the Minkowski set sum by ⊕, and the logical “or” by
∨. For vectors x, y, [x]i denotes the ith component,
(x, y) = [x′ y′]′ the stacking, and inequalities are intended
componentwise. For a discrete-time signal x ∈ Rn, xt is
the value at sampling instant, xk|t denotes the predicted
value k steps ahead of t, based on data at t, and x0|t = xt.

2. MANEUVERS AND THEIR MODELS

The Decision Maker (DM) determines the maneuvers that
the automated driving system executes, e.g., between
lane changing, stopping, lane keeping, etc. Rather than
uniquely determining the maneuver, we assess what ma-
neuvers are feasible for the current ego vehicle and traffic
conditions. Then, the motion planner computes motion
plans for all or a subset of those, to possibly choose the
most suitable trajectory.

2.1 Ego Vehicle Maneuvers, Goals, and Obstacles

A maneuver is defined by a motion model of the ego vehicle
with a vector of parameters for accomplishing it, and a

goal set, which is the condition that the ego vehicle must
achieve for completion. The set of maneuvers is

M = {M (i)}mi=1 = {(Σ(i)(r(i)),Γ(i))} (1)

where m is the number of maneuvers, M (i) is the ith

maneuver, Σ(i)(r(i)) is the motion model, with parameter
vector r(i), and Γ(i) is the goal for the ith maneuver.

The goal Γ(i) is defined by the couple

Γ(i) = (P̃(i)
g ,Σ(i)

g ) (2)

where P̃g is the goal region, the region of space where

the goal is achieved, and Σ
(i)
g is the motion model. Other

vehicles or other actors present on the road, which we name
obstacles, are defined by the couple

O(h) = (P̃(h)
o ,Σ(h)

o ), (3)

where h ∈ Z[1,no], no is the number of obstacles, P̃(h)
o is

the exclusion zone of the obstacle, that is, the region where

collision between ego vehicle and obstacle occurs, and Σ
(h)
o

is the motion model for the obstacle exclusion region.

2.2 Ego Vehicle Maneuver Motion Models

Depending on the maneuver, different motion models may
be used. All such motion models are relatively simple,
capturing the relevant vehicle behaviors, while allowing
to determine maneuver feasibility with simple and fast
computations. Because of this, and since we consider
normal, i.e., comfortable and non-aggressive, driving, the
DM uses linear models. Motion planner and controller
normally use more accurate models to determine and track
the ego vehicle motion.

Longitudinal Motion Model For the longitudinal motion,
DM uses a velocity controlled linear model

ṗx = vx (4a)

v̇x = − 1

τv
vx +

1

τv
rv (4b)

where px, vx are the longitudinal position and velocity, rv
is the velocity command, and τv > 0 is a time constant
that may change depending on the aggressiveness of the
maneuver. A constant value of the velocity command, i.e.,
the reference velocity, rv may be used as parameter in
model (4).

Lateral Motion Model For lateral motion, closed-loop
kinematic or dynamic lateral motion models may be used.
However, we may also represent lane changes as trajec-
tories of 2nd/3rd order systems (Di Cairano et al., 2012).
Thus, we model the lateral motion with respect to the
road centerlane as trajectories of a transfer function from
commanded to actual lateral position

Gy(s) =
1(

s2

ω2
y

+ 2
ζy
ωy
s+ 1

)
· (sτy + 1)

, (5)

where ωy, ζy are the second order system natural frequency
and damping, and τy is a time constant.

The values of ωy, ζy, τy determine the lateral trajectories
and can be selected based on time specifications, and may
change for different maneuvers. System (5) is realized in
state space form,

ẋy = [ ṗy v̇y ȧy ]
′

= Ayxy +Byry. (6)



The reference lateral position, ry, is used as parameter
in (5), (6).

Braking Motion Model For significant braking, especially
for stopping, we consider the model

ṗx = vx (7a)

v̇x = −ra (7b)

where ra > 0 is the commanded braking deceleration,
constant in the maneuver, and the parameter in model (7).
The actuation dynamics can be easily included in (7).

2.3 Goal and Obstacle Motion Models

Goal Motion Model. The goal region is

P̃g = {p : Hg[px−gx py−gy]′ ≤ Kg},
that is P̃g = [gx gy]′ ⊕ P̄g, i.e., a polyhedron centered at
(gx, gy), the goal center longitudinal and lateral positions
with respect to the (curvilinear) lane coordinates. The
goal motion model Σg allows for representing moving goals
(gx, gy). Here, Σg uses longitudinal velocity and constant
lateral position with respect to the centerlane,

ġx = vg (8a)

v̇g = 0 (8b)

ġy = 0, (8c)

where vg is the goal longitudinal velocity.

Obstacle Motion Model. The obstacle exclusion region is
modeled by the polyhedron

P̃o = {p : Ho[px−ox py−oy]′ ≤ Kg},
that is P̃o = [ox oy]′ ⊕ P̄o, i.e., a polyhedron centered at
(ox, oy), the obstacle center longitudinal and lateral po-
sitions with respect to the (curvilinear) lane coordinates.
The obstacle exclusion region accounts for the dimensions
of the obstacle and the ego vehicle, i.e., a collision is
avoided when the “point-mass” ego position is outside of
the obstacle exclusion zone.

The obstacle position on the road, (ox, oy), is predicted
according to the obstacle motion model Σo, which here is

ȯx = vo (9a)

v̇o = 0 (9b)

ȯy = 0, (9c)

i.e., a constant lateral position with respect to the center-
line and constant longitudinal velocity vo. A lateral motion
of the obstacle may also be included.

2.4 Problem Definition

First, we state an assumption related to the information
available to the decision making system.

Assumption 1. The ego vehicle has enough information
from sensors to initialize the maneuver models (4), (6),
(7), and the obstacle model (9). 2

Assumption 1 is reasonable for models (4), (6), (7), (9),
as it requires having information about quantities that are
commonly measured by standard on-board and automated
driving systems sensors. Assumption 1 provides an addi-
tional motivation for selecting simple motion models.

We now formalize the problem tackled in this paper.

Problem 1. Let a sampling period Ts and a maneuver
horizon N ∈ Z+ be given. At any discrete time t, given
a set of obstacles {O(h)(t)}no

h=1, a subset of maneuvers

M(t) ⊆M, where for each M (i) ∈M(t) the motion model
Σ(i) is constructed from a combination of (4), (6), (7) with
parameter vector r(i) ∈ R(i),R(i) being the admissible set,
determine for which maneuvers M (i) ∈ M(t) there exist
r(i) ∈ R(i) such that the goal Γ(i) is reached within N
steps, while the ego vehicle does not enter any obstacle

exclusion zone, i.e., pk|t ∈ P̃
(i)
g for some k ∈ Z[0,N ], and

pk|t /∈ P̃
(h)
o , for all h ∈ Z[1,no], k ∈ Z[0,N ]. 2

As introduced in Section 2.2, the components of the
parameter vector are constant references/commands.

3. SET-BASED DECISION MAKING WITH
PARAMETERIZED MANEUVERS

Next, we propose an algorithm that solves Problem 1, i.e.,
determines the feasibility of the maneuvers.

3.1 Definitions and Preliminary Results

We recall some basic definitions and results.

Definition 1. For a set S and system xt+1 = f(xt), the (1-
step) backward reachable set is Pref (S) = {x : f(x) ∈ S}.
The k-steps backward reachable set is recursively defined
as Prekf (S) = Pref (Prek−1

f (S)). 2

When S in Definition 1 is a polyhedron and f is linear,
the backward reachable sets enjoy some useful properties.

Result 1. Let f(xt) = Axt,and S = {x : H0x ≤ K0}, then
Pref (S) = {x : H1x ≤ K1}, i.e., also a polyhedron, where
H1 = H0A, K1 = K0. 2

Thus, the computation of backward reachable sets for
polyhedral sets and (discrete-time) linear systems involves
only algebraic operations, optionally with linear programs
to eliminate redundant hyperplanes.

3.2 Design: Construction of Achieving and Colliding sets

We use the backward reachable sets in Definition 1 for
determining the values of the parameter vectors for which
the maneuver: (i) achieves the goal, and (ii) does not
collide with the obstacles. While the two requirements are
of opposite nature (reaching-in versus staying-out), we use
similar constructions, as described next.

First, we formulate the ego vehicle motion models of (4),
(6), (7) and the goal and obstacle models (8), (9) in
discrete-time with sampling period Ts. Then, at time t,
for each maneuver i we construct the relative motion of
ego-vehicle with respect to the goal/obstacles,

∆x
(i),h
k+1|t = ∆A(i),h∆x

(i),h
k|t + ∆B(i),hw

(i),h
0|t (10a)

w
(i),h
0|t = Ψ(i),hxht + r

(i)
t (10b)

where h ∈ Z[0,n0], so that (10) models the relative motion
with respect to the goal for h = 0, and with respect to
obstacle h, for h ∈ Z[1,n0]. In (10), ∆x(i),h is the state of the

relative motion model and w(i),h is the relative parameter



vector, which is constructed from the parameter vector r(i)

and the state x(i),h of the ego vehicle and goal (h = 0) or
obstacle (h ∈ Z[1,n0]) at the beginning of the maneuver

by (10b), where Ψ(i),h is a known matrix for the change
of coordinates. From (10b), w(i),h is constant throughout

a maneuver, i.e., w
(i),h
0|t is applied at all steps k ∈ Z[0,N ].

Next, similar to a reference governor (Garone et al., 2017),
we augment the state with the relative parameter vector
subject to constant dynamics,

ξk+1|t = Φ(i),hξ
(i),h
k|t =

[
∆A(i),h ∆B(i),h

0 1

] [
∆x

(i),h
k|t

w
(i),h
k|t

]
,

(11)
and construct the goal and obstacle sets for the augmented
state in relative coordinates by:

i) lifting the polyhedra centered at the goal and obstacle

coordinates, P̄(i)
g , P̄ho to the dimension of ∆x(i),h ;

ii) intersecting the lifted sets with ∆x
(i),h
min ≤ ∆x(i),h ≤

∆x
(i),h

max , i.e., a bounding box of the relative states for
maneuver i with respect to the goal/obstacle h, to

obtain P̂(i),0
g , P̂(i),h

o that are compact;

iii) constructing P(i),0
g = P̂(i),0

g ×W(i),0, P(i),h
o = P̂(i),h

o ×
W(i),h, where W(i),h are the admissible sets for
the relative parameter vector, constructed from R(i)

based on (10b), which results in sets for ξ in (10).

Thus, ∆x(i),0 ∈ P(i),0
g means that the ego is at the goal,

and ∆x(i),h ∈ P(i),h
o , h ∈ Z+ means it is in the exclusion

regions of obstacle h, i.e., in a collision.

From (10), we compute the colliding sets as the k-steps
backward reachable sets

C(i),h
k = PrekΦ(i),h(P(i),h

o ), k ∈ Z[0,N ], h ∈ Z[1,no]. (12)

C(i),h
k is the set of augmented states ξ(i),h = (∆x(i),h, w(i),h)

such that if maneuver i is executed with parameter vector

w(i),h from initial state ∆x
(i),h
0 = ∆x(i),h of the relative

motion model (10), ∆x
(i),h
k|t ∈ P

(i),h
o , i.e., the system is in

collision after k steps. Thus, for maneuver i, the param-
eter vectors for ∆x(i),h guaranteeing that collisions with
obstacle h will not to occur for N steps, are

F (i),h
o (∆x(i),h, xh) ={
r(i) ∈ R(i) : (∆x(i),h,Ψ(i),hxh+r(i)) /∈

N⋃
k=0

C(i),h
k

}
. (13)

Similarly, we compute the achieving sets as the k-steps
backward reachable sets

A(i),0
k = PrekΦ(i),0(P(i),0

g ), k ∈ Z[0,N ]. (14)

A(i),0
k is the set of augmented states ξ(i),0 = (∆x(i),0, w(i),0)

such that if maneuver i is executed with parameter vector

w(i),0 from initial state ∆x
(i),0
0 = ∆x(i),0 of the relative

motion model (10), ∆x
(i),0
k ∈ P(i),h

o , i.e., the system is
in the goal set after k steps. Thus, for maneuver i, the
parameter vectors for ∆x(i),h guaranteeing that the goal
set is reached within N steps are

F (i),0
g (∆x(i),0, x0) ={
r(i) ∈ R(i) : (∆x(i),0,Ψ(i),0x0+r(i))∈

N⋃
k=0

A(i),h
k

}
. (15)

Next we summarizes our solution to Problem 1.

Proposition 1. At time t, let F (i),0
g (∆x(i),0), F (i),h

o (∆x(i),h)
be the set of feasible parameter ranges for maneuver
M (i) ∈ M(t) ⊆ M, obstacle set {O(h)(t)}no

h=1 and r ∈
R(i), from (15), (13). Given ∆x

(i),h
t , constructed from the

state of the ego vehicle, obstacle, and goals, if

F (i),0
g (∆x

(i),0
t ) ∩

(
no⋂
h=1

F (i),h
o (∆x

(i),h
t )

)
6= ∅, (16)

maneuver M (i) is admissible according to Problem 1. 2

Condition (16) is expressed only on the initial state and
parameter vector, as opposed to (Ahn et al., 2020b).

Parameterizing the maneuvers with a fixed parameter
vector, e.g., a constant setpoint/command, simplifies the
computations of the sets, and allows fast checking of (16)
despite this being a non-convex set, as discussed next.

4. IMPLEMENTATION CONSIDERATIONS

Next we look at some of the implementation details that
results in fast computation for condition (16).

The maneuver feasibility condition (16) involves a non-
convex set. However, since we have parameterized the ma-
neuvers, the computations are simplified by methods sim-
ilar to those for reference governors (Garone et al., 2017).
According to Result 1, for every k ∈ Z[0,N ], the achiev-

ing sets are the polyhedra A(i),0
k = {(∆x(i),0, w(i),0) :

H
(i),0
k [∆x(i),0′ w(i),0′]′ ≤ K(i),0

k } and the colliding sets are

C(i),h
k = {(∆x(i),h, w(i),h) : Hk[∆x(i),h′ w(i),h′]′ ≤ K(i),h

k )},
for h ∈ Z[1,no]. Since the initial state in (16) is given, we
take sections of the polyhedra at the known state value,
resulting in

a
(i),h
k w(i),h ≤ b(i),hk , h ∈ Z[0,n0],

where h = 0 for the achieving sets of the goal, and h > 0
for the colliding sets of obstacle h. Since the parameter
vector w(i),h is low dimensional, gridding the values and
testing them one by one is sufficient.

Often, a maneuver depends only on one component of
the parameter vector, e.g., the reference deceleration in
braking for (7), the reference velocity in lane keeping and
lane changing for (4), (6) when the target lateral position
is fixed at the centerlane of the target lane. When r(i) is a
scalar, and so is w(i),h, we compute

w
(i),h
k = max

j:[a
(i),h

k
]j>0

[b
(i),h
k ]j

[a
(i),h
k ]j

w
(i),h
k = min

j:[a
(i),h

k
]j<0

[b
(i),h
k ]j

[a
(i),h
k ]j

where j is the index for the rows of the vectors a
(i),h
k ,

b
(i),h
k . Then, we can discretize the 1-dimensional range of

R(i), obtaining {r(i)(`)}n`

`=1, and evaluate the maneuver

feasibility by checking that at least one value of r(i) is:



(i) included in the section of at least one goal achieving
set, Ak, at the current state ∆x(i),0,

∃k ∈Z[0,N ] : Ψ(i),0x0
0|t+r

(i)(`) ∈ [w
(i),0
k , w

(i),0
k ] (17a)

(ii) excluded from the sections of all the colliding sets, Ck,
at the current state ∆x(i),0 for all the obstacles

Ψ(i),0x0
0|t+r

(i)(`) ∈
(

(−∞, w(i),h
k ) ∨ (w

(i),h
k ,+∞)

)
,

∀k∈Z[0,N ], ∀h ∈ Z[1,n0], (17b)

Remark 1. In (17) we did not include the case [a
(i),h
k ]j = 0.

If for some j, [a
(i),h
k ]j = 0, then if [b

(i),h
k ]i < 0, the

corresponding set is empty, while if [b
(i),h
k ]i ≥ 0 the

inequality is trivially satisfied. 2

In practice, if the objective is only to verify the feasibility
of condition (16) according to Problem 1, one can stop
as soon as a value r(i)(`) that satisfies (17) is found.
Characterizing all feasible values of r(i)(`) may be useful
for generating a trajectory reference for the motion planner
that allows for a initializing the search, hence reducing the
motion planner computations.

After the set of feasible parameter vectors R(i)
f ⊆ R(i)

that satisfies (16) has been determined, the most desirable
parameter vector can be selected as

r(i)∗ = arg min
r∈R(i)

f

J (i)(r, θ(i)) (18)

where θ(i) is a vector containing information on the desired
behavior, such as desired velocity, deceleration, etc, and
J (i) is a maneuver-dependent cost function encoding the
desirability of the maneuver. Once again, (18) may be
solved on the discrete set Rf by a direct search.

An important metric to choose a reference trajectory
may be its robustness,and one way to evaluate it, is to
assess how large perturbations on the parameter vector
still results in a successful maneuver completion. Thus, we

define the robustness radius of r(i) ∈ R(i)
f as

δr(i) = max{δ ∈ R+ : r(i) + ς ∈ R(i)
f , ∀ς, |ς| ≤ δ}. (19)

For discretized Rf , the conditions (19) are checked only

for points included in {r(i)(`)}n`

`=1, i.e., assuming an eq-

uispaced discretization, for ς such that r(i) + ς ∈ R(i).
The non equispaced discretization case entails the same
operations but a slightly more involved definition. The
robustness radius can be included as part of the objective
in the cost function J (i) in (18).

5. SIMULATIONS

We evaluate the decision making approach in scenarios
on a straight road with 2 lanes in the ego vehicle travel
direction. First, we consider a lane change scenario. We
allow 3 lane change maneuvers, where the lateral position
is the output of 3rd order systems as in (5) with ry set
to the centerlane of the next lane, each with different
settling time and overshoot, and dubbed cautious, normal,
aggressive in order of decreasing settling time, i.e., slower
lateral movement. The goal is to complete a lane change
from about 10m to about 120m ahead of the vehicle, within
a finite horizon of N = 20 steps, with Ts = 0.25s, i.e., 5s,

(a)

(b)

Fig. 2. Lane change secenario with 3 feasible maneuvers.
(a) allowed values of commanded velocity rv for each
maneuver. (b) execution of the normal maneuver at
maximum feasible rv. Ego (blue) and other (red,
purple) vehicles: current (solid), past (border only),
and at maneuver start (shaded) positions. Region
of lane change completion (green). Snapshots after
t = 0.5, 1.25, 2.25, 4s from maneuver start.

commanding velocities rv ∈ [13, 23]m/s, where the range
is discretized in 100 points with a resolution 0.1m/s.

Fig. 2 reports the results for a case with two other vehicles,
one in the lane to the right of the ego vehicle, moving
at the same speed of 17m/s and with same longitudinal
position, and the other in the same lane of the ego vehicle,
9m ahead, and moving at 15m/s. Fig. 2(a) shows that
a lane change is feasible with 2 of the 3 maneuvers for
different commanded velocities. The aggressive maneuver
is not feasible, as it moves too rapidly towards the opposite
lane, before clearing ahead of the vehicle in such lane.
The cautious maneuver can only change lane behind the
vehicle in the right lane, i.e., by slowing down, while the
normal maneuver can change lane both ahead, by speeding
up, and behind, by slowing down, the vehicle in the right
lane, showing also the non-convexity of the admissible set
of target velocities. Fig. 2(b) shows the execution of the
normal maneuver for its maximum allowed target velocity
rv = 20m/s, which completes the lane change ahead of
the vehicle in the right lane, while avoiding collisions and
completing the lane change in the designated area.

In Fig. 3 we show another scenario where the ego vehicle
is driving at 12m/s, and has to reach a stop in a target
area that starts 80m ahead, while another vehicle is slowly
(1.5m/s) departing from it, i.e., stopping at an intersection
while a preceding vehicle starts crossing. The DM uses
a single maneuver with the braking motion model (7)
where the reference deceleration command ra ∈ [1, 5]m/s2

is the parameter, discretized with resolution of 0.01m/s2.



(a)

(b)

Fig. 3. Stopping scenario with 1 maneuver. (a) feasible
values of commanded acceleration ra. (b) execution of
the maneuver with minimum ra. Ego (blue) and other
(red) vehicles: current (solid), past (border only), and
at maneuver start (shaded) positions. Stop region
(green). Snapshots after t = 0.5, 1.5, 2.5, 3.5s from
maneuver start.

Fig. 3(a) shows that the maneuver is feasible, and Fig. 3(b)
shows the reference motion for the least deceleration ra =
3.2m/s2, for which the vehicle stops following closely the
departing vehicle. The total time for the discretization at
0.1m/s, i.e., 100 points per maneuver, used in Fig. 2 is less
than 7.5ms, i.e., 2.5ms per maneuver, for checking all the
points in a non-optimized Matlab 2021b implementation,
on a 2020 MacBook Pro, with Intel i5 processor and
16GB of RAM, which is in general 10-40 times slower
than an equivalent C implementation, e.g., from non-
optimized code generation. The computational burden
remains almost constant up to 1000 discretization points,
since the evaluation of (17) is inexpensive after the upper
and lower bounds have been determined, which is done
only once for a given initial state.

6. CONCLUSIONS

We have presented a decision making method that deter-
mines feasibility of maneuvers to provide the next action
and corresponding goal to a motion planner for automated
driving by using reachable set over parameterized maneu-
vers. The obtained method is simple to implement, fast
to compute, and provides guarantees on goal achievability
while avoiding collisions, i.e., liveness and safety.
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