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Abstract—We propose a method for joint estimation of a host
vehicle state and a map of the road based on global navigation
satellite system (GNSS) and camera measurements. We model
the road using a spline representation described by a parameter
vector having a Gaussian prior representing the uncertainty of
the prior map. Both GNSS and camera measurements, such as
lane-mark measurements, have noise characteristics that vary in
time. To adapt to the changing noise levels and hence improve
positioning performance, we combine the sensor information in
an interacting multiple-model (IMM) setting to choose the best
combination of the estimators with the vehicle state and the
parameter vector of the map as the state vector. In a simulation
study, we compare vehicle models with varying complexity, and
on a real road segment we show that the proposed method can
accurately adjust to changing noise conditions and correct for
errors in the prior map.

I. INTRODUCTION

High-precision vehicle positioning is becoming increasingly
important as vehicles equipped with sophisticated advanced
driver assistance systems (ADASs) and even autonomous
driving (AD) features are becoming widespread. For such
applications, high positioning accuracy is needed for safety-
critical obstacle and lane-change maneuvering, and to provide
comfortable autonomous vehicle control. While some estab-
lished ADAS either focus on the longitudinal motion, such as
in automated emergency braking (AEB) and adaptive cruise
control (ACC), or the ego vehicle differential states, such as in
electronic stability control (ESC), knowing the vehicle position
with centimeter accuracy on a road with known geometry
becomes important, particularly for AD [1].

Road-vehicle positioning can be approached in numerous
ways depending on the available sensor suite and the com-
munication interface that is being employed. Here, we de-
velop a method for the joint vehicle-positioning and road-map
estimation problem by fusing position measurements from
a global navigation satellite system (GNSS) with a forward
looking camera, steering-wheel sensing, wheel-speed sensing,
(optionally) an inertial measurement unit (IMU), and prior
map information. In combination with a computer-vision (CV)
algorithm, the camera provides measurements of the distance
between the lane markings and the vehicle, in addition to
measurements of the road geometry [2]. However, the quality
of these measurements is time varying, for example, because
of erroneous detection in the CV algorithm or because of other
environmental effects, such as rain or light conditions that
degrade the camera reliability. GNSS measurements provide
global position information by estimating a receiver’s (e.g.,
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located in the vehicle) states from a set of code and carrier-
phase measurements, acquired from one or several constella-
tions of satellites and transmitted over one or more frequency
bands [3], [4]. While being reliable most of the time, GNSS
measurements are prone to occasional errors, which means
that both camera and GNSS feature measurements with time-
varying reliability.

The time-varying reliability of the measurements is hard
to model and predict, because they depend on numerous
effects. Hence, to account for said issues, we model the time-
varying measurement reliability as a variation on the noise
models of the related measurements. We pose the resulting
nonlinear estimation problem in an interacting multiple model
(IMM) framework, which we combine with linear-regression
Kalman filters (LRKFs) [5] to handle the nonlinearities in
the estimation model. We represent the map using a spline
representation with implicit continuity and we assign Gaussian
priors to the spline coefficients. We incorporate the spline
coefficients into the state-space formulation and jointly esti-
mate said coefficients with the vehicle state using the IMM-
LRKF, thus in effect performing simultaneous localization and
mapping with prior map information. Each LRKF executes
with its own belief of the measurement noise characteristics,
and the estimate from each LRKF is weighted according to
how likely it is to best explain the measurements given the
state estimates. By formulating the positioning and road-map
estimation problem jointly in this way, our method additionally
estimates the noise characteristics with marginal detection
time, provided the set of LRKFs in the IMM contain the “true”
noise covariance.

A. Relation to Previous Work

In [6], we developed a method for vehicle localization using
GNSS measurements, wheel-speed sensors, a steering-wheel
encoder, a prior map of the road, a camera that measured the
distance to the left and right lanes, and optionally an inertial
measurement unit. The difference of the current work to [6]
is that the current work introduces road map estimation into
the problem formulation, whereas [6] focuses only on vehicle
state estimation using a known map.

Joint vehicle state and road-map estimation has been re-
searched using various sensor constellations and different
estimation techniques. For instance, [7] fuses information
from several (local) sensors to perform joint road geometry
estimation and vehicle tracking. This work was extended in
[8], where a forward looking camera and radar, together with
an inertial measurement unit (IMU), a steering wheel sensor,
wheel speed sensors, and a new road-geometry model are



leveraged in an extended Kalman filter (EKF). A similar work
is [9], which in addition to the sensors in [8] develop a novel
road model with claimed higher prediction accuracy compared
to other established road models. However, none of these
methods employ GNSS in the estimation formulation, nor do
they focus on the road-geometry estimation problem. Hence,
they do not provide global positioning, which is important for
several AD features, such as route planning and sophisticated
motion-planning methods. Also, the cited prior work uses
curvature-based road-map representations, whereas we employ
a spline-based approach with implicit continuity enforcement.
A curvature-based road representation is convenient because
it needs few parameters and several textbook vehicle-control
algorithms employ such representation [10]. However, a spline
representation of the road is more general. With the estimated
spline-based map, we extract the estimated curvature should
such quantity be sought, for example, for control purposes.

There are other vehicle state-estimation methods that rely on
GNSS information. Three examples are: [11], which uses iner-
tial sensors, wheel-speed sensors, and the steering-wheel angle
sensor in combination with GNSS position measurements to
perform vehicle-state estimation; [12], which performs tire
radii estimation for improving vehicle odometry using GNSS
measurements; and [13], which uses GNSS measurements in
combination with camera, IMU, and range measurements in a
collaborative estimation approach. While [11], [12] use GNSS
to make related vehicle estimation problems observable, the
IMM method in this paper is specifically designed to handle
outliers.

B. Notation:

Throughout, x ∼ N (µ,Σ) indicates that the vector x ∈
Rnx is Gaussian distributed with mean µ and covariance Σ.
Matrices are written in capital bold font as X , and the element
on row i and column j of X is denoted with Xij . We let x̂j|m
denote the estimate of x at time step j given the measurement
sequence y0:m = {y0, . . .ym}. With p(xk|y0:k), we mean the
posterior density function of the state xk from time step 0
to time step k given y0:k. The concatenation of two vectors
x ∈ Rnx and y ∈ Rny is [x;y] = [x⊤,y⊤]⊤ ∈ Rnx+ny .
Furthermore, 1n×n denotes the n × n identity matrix, 1n is
a column vector of n elements equal to one, and (a)(⋆)⊤ =
(a)(a)⊤ for an expression a.

II. MODELING

Fig. 1 shows the different coordinate frames used in this
paper. The vehicle’s coordinate frame OE is located at the
vehicle center of gravity. The vehicle yaw angle ψ describes
the rotation of the vehicle frame OE relative to the world frame
OW by the standard planar rotation matrix. The road-aligned
frame OR,l is located on the left lane boundary, separated with
a distance lL from the camera frame OC , which is rigidly
connected to OE with distance lC . The road-aligned frame
OR,r is located on the right lane boundary, separated with a
distance lR from the camera frame OC .

OE

ψ
OC

lL

lC

OW

1
c

ψ − ψr

OR,l

Fig. 1. The relation between the vehicle frame OE , the camera frame OC ,
the road frame OR,l, and the world frame OW . The distance between the
vehicle’s longitudinal x-axis and the left lane boundary is lL, and the shaded
circle depicts the road curvature at the origin of OR,l (here exaggerated for
illustration purposes). The lines in red dashed indicate measurements that can
be obtained by the camera, which is located in OC , for a given lookahead.
The definition of OR,r is analogous to that of OR,l.
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Fig. 2. A schematic of the single-track model and related notation.

A. Vehicle Models

A model based on force balances is generally more accurate
than a kinematic model but the differences are small for
regular driving [14], and a dynamic model depends on more
parameters, such as the wheel radii, tire stiffness, and vehicle
mass and inertia, which typically are unknown/uncertain and
may be difficult, or at least tedious, to estimate in real time
[15]. We introduce two assumptions that allows to model the
vehicle dynamics by a single-track (i.e., bicycle) model, and
have been shown to be valid in normal driving scenarios [10].

Assumption 1 The steering angles of the front left and right
wheels are the same, here denoted by δ (see Fig. 2).

Assumption 2 The steering and acceleration commands are
small, such that the vehicle operates in the linear region of
the tire-force curve, with negligible inclination, roll, and road-
bank angles.

1) Dynamic Single-Track Model: In the following, F x, F y

are the longitudinal and lateral tire forces, respectively, α is the
wheel-slip angle, ψ is the yaw, v = [vX , vY ]⊤ is the velocity
vector, and subscripts f, r denote front and rear, respectively.
The state is x = [pX , pY , vX , vY , ψ̇]⊤ ∈ Rnx , nx = 5 where
pX , pY is the Cartesian global vehicle position, vX , vY is the
longitudinal and lateral velocity of the vehicle in OE , and ψ̇
is the yaw rate. The equations of motion are

M(v̇X − vY ψ̇) = F x
f cos(δ) + F x

r − F y
f sin(δ), (1a)

M(v̇Y + vX ψ̇) = F y
f cos(δ) + F y

r + F x
f sin(δ), (1b)

Iψ̈ = lf (F
y
f cos(δ) + F x

f sin(δ))− lrF
y
r , (1c)



where M is the vehicle mass and I is the inertia. Because
we focus on normal driving conditions, the longitudinal and
lateral tire forces can be approximated as linear functions of
the wheel slip ratio κ and the slip angle α,

F x
i ≈ Cx

i κi, F y
i ≈ Cy

i αi, i = f, r, (2)

where Cx
i , C

y
i are the longitudinal and lateral stiffness, respec-

tively. The wheel slip is defined following [16], as

κi =
vxi −Rwωi

max(vxi , Rwωi)
, (3)

where ωi is the wheel rotation rate, Rw is the effective wheel
radius, and vxi is the wheel forward velocity in the wheel
coordinate system. The slip angles are approximated as

αf ≈ δ −
vyf + lf ψ̇

vxf
, αr ≈ lrψ̇ − vyr

vxr
. (4)

To connect the global position with the velocity in OE , let[
ṗX

ṗY

]
= R(ψ)

[
vX

vY

]
, R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. (5)

The resulting model consisting of (1)–(5) is nonlinear, and
after a discretization with a sampling period Ts, the dynamic
single-track model is

xk+1 = f(xk,uk) +wx
k , (6)

with input u = (δ, ωf , ωr), and additive Gaussian zero-mean
noise wx

k ∼ N (0,Qx), accounting for model mismatch.
2) Kinematic Single-Track Model: The kinematic single-

track model is also based on the geometry in Fig. 2 but
does not need knowledge of the mass, inertia, and friction
parameters. With its three states z = [pX , pY , ψ] ∈ Rnz ,
nz = 3, the kinematic single-track model has lower com-
plexity than the five-state dynamic single-track model (6).
Here, instead of being used as inputs to the model, the wheel-
speed measurements directly provide the vehicle velocity. In
continuous time, the model is

ż =

vX cos (ψ + β)/ cos(β)
vX sin (ψ + β)/ cos(β)

vX tan (δf )/L

 , (7)

where L = lf + lr, β = arctan(lr tan(δ)/L) is the kinematic
body-slip angle, and the velocity is related to the wheel speeds
by vX = Rw

2 (ωf +ωr). After time discretization, we write (7)
concisely as

zk+1 = g(zk,uk) +wz
k , (8)

with Gaussian zero-mean process noise, wz
k ∼ N (0,Qz).

B. Road Model

One of the most common ways to represent the road is by
defining it locally by a clothoid [8] or sets of clothoids [9]
using a curvature, denoted by c. The road curvature can be
defined in various ways, but a common definition is illustrated
in Fig. 1. The road curvature is often approximated as a
linear function, which results in a clothoidal expression of

the road and is commonly used in automotive applications.
Furthermore, it approximately agrees with road-construction
principles, at least on nonurban roads [17]. Note that the
clothoidal approximation is clearly violated in some situations,
for example, when a part of the road is a straight line followed
by a clothoidal stretch. However, in many situations (e.g., for
highway or suburban driving) it is a good local approximation.

Because such curvature representations are restrictive, we
work with a spline representation of the road. To this end,
we make use of polynomial splines Pi : [0, 1] 7→ Rd in
λi ∈ [0, 1] defined by a parameter vector αi. Nominally, d = 3
with the first two elements of Pi representing the Cartesian
planar position of the center of the road, and the last dimension
defining the road width. A road in the map is comprised of
N such splines, where S : [0, N ] 7→ Rd, where

S(s; ᾱ) = Pi(λi;αi), i = ⌈s⌉, λi = s− i+ 1. (9)

and ᾱ := {α1, ...,αN} parameterizes the road in the map.
Here, the ith spline of the road is a Bézier curve of degree m̄,

Pi(λi;αi) =

m̄∑
j=0

(
m̄
j

)
(1− λi)

m̄−j(λi)
j , (10)

parameterized in m̄ + 1 points, with αi = {si,j ∈ Rd}m̄j=0.
The derivative of (10) is yet another Bézier curve, satisfying

d
dλPi(0;αi) = m̄(si,1 − si,0),
d
dλPi(1;αi) = m̄(si,m̄ − si,m̄−1).

Consequently, there exist geometric relationships between
parameters of consecutive splines that allow the enforcement
of continuity of the road. This is summarized in Proposition 1.

Proposition 1 Consider two consecutive polynomials (10). A
sufficient condition for dn

dλnPi(1;αi)=
dn

dλnPi+1(0;αi+1) is

si,m̄ = si+1,0 = si,m̄−k + si+1,k, ∀k = 1, ..., n. (11)

Proposition 1 provides a way to find a parametrization of the
Bézier curves that implicitly enforces continuity at the end-
points of the polynomial segments. If we seek a parametriza-
tion that is continuous of order n, we can simply take splines
of degree m̄ = 2n+ 1 with 2(n+ 1) control points, and let

si,k = si,0 + vi,k, ∀k = 1, .., n, (12a)
si,k = si,m̄ − vi,k, ∀k = n+ 1, .., 2n+ 1, (12b)

for any set of vectors {vi,k}nk=1. The sufficient conditions for
continuity according to Proposition 1 are thus satisfied if{

si,m̄ = si+1,0

vi,k = −vi+1,m̄−k

∀k = 1, .., n, i = 1, ..., N. (13)

This geometric relationship is illustrated in Fig. 3, showing
the center of a lane in Cartesian coordinates (the first two
dimensions of S). If this curve is defined in terms of the
end-points, si,0, and directions, vi,0, then continuity can be
enforced implicitly. Here, n = 1 is sufficient to guarantee
continuous lane boundaries, and we therefore define a new
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Fig. 3. The center positions of the road (first two dimensions of S). In this
example, there are N = 2 polynomial segments of degree m̄ = 3, and
continuity is enforced in the positions and velocities (n = 1). No matter how
the parameters γ̄ = [s1,0;v1,0; s2,0;v2,0; s3,0;v3,0] are realized, when
mapped to the control points through (13), the path and its derivative are
continuous in the path variable s by Proposition 1.

parameter vector γ̄ = [γ1; ...;γN+1] where γi = [s1,0;vi,0].
When evaluating the road boundaries, γ̄ is first mapped to
the parameter vector ᾱ using (13) before evaluating (9). Next,
we introduce uncertainty in the map by assigning a Gaussian
prior on each γi, as γi ∼ N (µγ

i ,Σ
γ
i ), but the time evolution

of these parameters is hard to model from physical reasoning.
Assuming slow changes in the map, we let

γ̄k+1 = γ̄k +wγ
k , wγ

k ∼ N (0,Qγ). (14)

The process noise in the map is small, with Qγ ≈ 0. Thus,
there is effectively no prediction performed for the map state
γ̄ and all changes are attributed to the measurement update.

Remark 1 For a more compact notation, in the following we
use x̄ to mean either x̄ = [x; γ̄] or x̄ = [z; γ̄]. Similarly
f̄(x̄;u) denotes the functional relationships in (6) or (8)
combined with (14), often omitting u for brevity. Also, we
let the full process noise be denoted by w̄ ∼ N (0, Q̄).

C. Measurement Model

We consider the GNSS position measurements yp
k generated

by an estimator using code and carrier-phase measurements,
for example, by the methods in [18]–[20]. We assume the po-
sition measurements to be unbiased and Gaussian distributed.
Because the estimation quality will continuously change with
environmental conditions and receiver movements, both the
mean µp

k and covariance Rp
k are considered to be time varying,

resulting in yp
k ∼ N (µp

k,R
p
k). For simplicity but without loss

of generality, we let yp ∈ R2.
When using the dynamic single-track model, we can utilize

an IMU measuring the vehicle body frame longitudinal, aXk =
v̇Xk − vYk ψ̇k, and lateral, aYk = v̇Yk + vXk ψ̇, acceleration and
the yaw rate ψ̇k. The estimator uses the acceleration, aXk , aYk ,
and yaw-rate ψ̇k as measurements, forming the measurement
vector ya

k = [aXk , a
Y
k , ψ̇k]

⊤. Automotive-grade inertial sensors
usually have a slowly time-varying bias, which should be
modeled for any implementation supposed to run longer than
a few minutes [15], [21], [22]. For now, we assume that the
bias has been predetermined offline but refer to some of our
previous work [15], [21] for IMU bias estimation in similar
applications. Also, note that the kinematic single-track model
(8) does not utilize an IMU.

The camera in combination with a CV algorithm provides
measurements of the road geometry and the relative vehicle
position. We assume intermediary processing such that we
obtain the distance from OC and the left/right lane boundaries,
lL, lR and a polynomial approximation of the lane markings,
fL, fR, in front of the vehicle for a look-ahead defined by the
CV algorithm, see Fig. 1. To use the polynomial approxima-
tion for inference, the measurement equation needs particular
values at each time step. Hence, we sample the polynomials
from the CV algorithm uniformly over their domain defined
in s. This results in the measurement equation

hc = [lL; lR; fL(s
1
L); · · · ; fL(s

ns

L ); fR(s
1
R); · · · ; fR(s

ns

R )].
(15)

The camera measurements yc
k are assumed Gaussian dis-

tributed according to yc
k ∼ N (µc

k,R
c
k), where, similarly to

the GNSS measurements, both the mean and covariance are
time varying. The complete measurement model is

yk = h(x̄k,uk) + ek ∈ Rny , (16)

where yk = [yp
k;y

a
k ;y

c
k] ∈ R7+2ns for the dynamic single-

track model (6) and yk = [yp
k;y

c
k] ∈ R2+2ns for the kine-

matic single-track model (8), and ek is zero-mean Gaussian
distributed with a block-diagonal covariance matrix.

Remark 2 As the GNSS provides global position measure-
ments of the vehicle and the camera provides map mea-
surements relative to the vehicle, the models (6) or (8) in
combination with (16) renders x̄k locally observable.

III. BAYESIAN SENSOR FUSION OF GNSS AND CAMERA

Irrespective of using the dynamic or kinematic single-
track model, the resulting estimation model contains multiple
nonlinearities, both as a result of the vehicle model but also
as a result of the map model. Hence, an analytic solution
to the estimation problem does not exist. In fact, not even
the Jacobians of the measurement equation are known in
closed form, but have to be numerically approximated if used.1

As such, employing an extended Kalman filter (EKF) may
work, but will be computationally burdensome and potentially
inaccurate. We therefore consider derivative-free estimation
methods. Due to the rich set of measurements, the estimation
problem is assumed to be unimodal and a particle filter (PF)
is therefore deemed unnecessary for the task at hand. A
convenient middle-ground between complexity and accuracy
is to use linear-regression Kalman filters (LRKFs), which we
employ in this work embedded in an IMM framework.

A. Linear-Regression Kalman Filter

For each LRKF, we approximate the posterior density by
its first two moments, leading to

p(x̄k|y0:k) ≈ N
(
ˆ̄xk|k,Pk|k

)
. (17)

1For instance, given (pX , pY , ψ) and γ̄, the distance lL in (15) is found
by applying a univariate Newton method to compute a path length s⋆L
corresponding to the origin of OR,l in the global frame, before evaluating
lL. As such, lL is a function of x̄, but this function is not differentiable.



Given the assumed Gaussian filtering posterior (17) at time
step k, the distribution of the state prediction at time step
k + 1 is approximated by a Gaussian,

p(x̄k+1|x̄k,y0:k) ≈ N
(
x̄k+1| ˆ̄xk+1|k,Pk+1|k

)
, (18)

by direct evaluation of the associated moment integrals

ˆ̄xk+1|k =

∫
f̄(x̄k)p(x̄k|y0:k) dx̄k, (19a)

Pk+1|k =

∫ (
f̄(x̄k)− ˆ̄xk+1|k

)
(⋆)

⊤
p(x̄k|y0:k) dx̄k + Q̄k,

(19b)

simplified by the additive w̄k. By insertion of the approx-
imation in (17), this becomes equivalent to evaluating two
Gaussian integrals. For a general f̄ , no closed-form solu-
tions exist, but numerical integration methods also known
as cubature rules can be employed [23]. To facilitate this,
we transform the coordinates ξk = L−1

k|k(x̄k − ˆ̄xk|k), using
the Cholesky factorization of the covariance matrix Pk|k =
Lk|kL

⊤
k|k. The LRKFs approximate the transformed integrals

by evaluating the nonlinearity f̄ in a set of integration points
P = {ωi, ξi}|P|

i=1, where |P| is the total number of points used.
Hence, for each such point ξi and the estimate ˆ̄xk|k,

ˆ̄xi
k+1|k = f̄

(
ˆ̄xk|k +Lk|k ξ

i
)
, (20)

and approximate the moment integrals in (19) as

ˆ̄xk+1|k ≈
|P|∑
i=1

ωi ˆ̄xi
k+1|k, (21a)

Pk+1|k ≈
|P|∑
i=1

ωi(ˆ̄xi
k+1|k − ˆ̄xk+1|k)(⋆)

⊤. (21b)

For the measurement update, the joint density is approxi-
mated using the same integration techniques, resulting in

p
(
[x̄k+1;yk+1]|x̄k,y0:k

)
≈ N

([
ˆ̄xk+1|k
ŷk+1|k

]
,

[
Pk+1|k P x̄y

k+1|k
P yx̄

k+1|k P yy
k+1|k

])
(22)

with moment integrals (dropping the subindex for brevity),

ŷ =

∫
h(x̄)N (x̄| ˆ̄x,P )dx̄, (23a)

P x̄y =

∫
(ˆ̄x− x̄)(ŷ − h(x̄))⊤N (x̄| ˆ̄x,P )dx̄, (23b)

P yy =

∫
(ŷ − h(x̄))(⋆)⊤N (x̄| ˆ̄x,P )dx̄+R. (23c)

Eq. (23) implies integrating over γ̄, including all subintervals
of S, and is computationally prohibitive for realistic imple-
mentations. To circumvent this, we introduce Assumption 3.

Assumption 3 The spline coefficients for any two subintervals
γi and γj are independent for i ̸= j.

Given Assumption 3, the integration can be done with respect
to each individual polynomial in the spline. When performing

the moment evaluations, it is possible that the parameters of
two adjacent splines are needed. At any rate, this leads to a
significantly smaller estimation problem than considering the
whole spline simultaneously. Conditioning of the joint density
in (22) on the new measurement yk+1 amounts to the usual
Kalman filter update

Kk+1 = P x̄y
k+1|k(P

yy
k+1|k)

−1, (24a)

ˆ̄xk+1|k+1 = ˆ̄xk+1|k +Kk+1|k(yk+1 − ŷk+1|k), (24b)

Pk+1|k+1 = Pk+1|k −Kk+1|kP
yx̄
k+1|k, (24c)

where the update is done with respect to the vehicle state
and the currently relevant map parameters. For the numerical
examples, we use an LRKF with the point set defined by the
spherical cubature rule, resulting in the cubature KF (CKF)
[24]. Other integration rules, such as the unscented transform,
can be used without modifications to the underlying method.

Remark 3 Assumption 3 is introduced to make the estimation
problem computationally tractable, as maintaining a full map
representation of a potentially vast area at each time step is
infeasible both from a memory standpoint and a computation
standpoint. However, the approximation errors introduced by
Assumption 3 can be controlled by choosing the length of each
spline segment.

B. Interacting Multiple-Model LRKF

LRKFs usually assume a known process noise and measure-
ment covariance matrix. However, the reliability of both the
GNSS measurements and camera-based measurements varies
in time. To account for this, we implement the LRKF in
an IMM framework [22], [25], in which we have a set of
m models that differ only only in their measurement noise
characteristics. At each time step k, the IMM assigns a weight
qk to each model reflecting its probability of explaining the
measurements. In this framework,

x̄k+1 = f̄(x̄k;uk) +wk, wk ∼ N (0,Qk), (25a)

yk = h(x̄k,uk) + ek(θk), ek ∼ N (0,Rθk
k ), (25b)

where the mode parameter θk ∈ [1,m] ⊂ N evolves accord-
ing to a finite-state Markov chain with transition probability
matrix Π ∈ [0, 1]m×m. For every possible θk, we assign a
unique measurement noise covariance matrix from {Rθk ∈
Rne×ne |Rθk = (Rθk)⊤,Rθk ≻ 0}mθk=1.

At each time step, the IMM uses the transition matrix Π to
perform a mixing of the m model estimates and weights,

q̄ik =

m∑
j=1

Πijq
j
k−1, (26a)

ˆ̄xi
k−1|k−1 =

m∑
j=1

Πij

qjk−1

q̄ik
ˆ̄xj
k−1|k−1, (26b)

P i
k−1|k−1 =

m∑
j=1

Πij

qjk−1

q̄ik

(
P j

k−1|k−1+

(ˆ̄xj
k−1|k−1 − ˆ̄xi

k−1|k−1)(⋆)
⊤
)
. (26c)



Next, we execute a filter bank of m LRKFs to find the estimate
of x̄k, where the jth LRKF executes using Rj . The state
posterior is expressed using the law of total probability as a
Gaussian mixture of m components,

p(x̄k|y0:k) =

m∑
j=1

p(x̄j
k|y0:k) =

m∑
j=1

p(yk|x̄j
k)p(x̄k|y0:k−1)

p(yk|y0:k−1)

≈
m∑
j=1

qjkN (x̄j
k| ˆ̄x

j
k|k−1,P

j
k|k−1), (27)

where

qjk ∝ p(yk|x̄j
k) = N

(
yk|ŷj

k|k−1,P
yy,j
k|k−1

)
q̄jk, ∀j ∈ [1,m],

(28)
and p(yk|y0:k−1) is a normalization constant. The mean
ŷj
k|k−1 and covariance prediction P yy,j

k|k−1 are determined by
the corresponding LRKF. The state estimate is

ˆ̄xk|k =

m∑
j=1

qjk ˆ̄x
j
k|k, (29a)

Pk|k =

m∑
j=1

qjk

(
P j

k|k + (ˆ̄xj
k|k − ˆ̄xk|k)(⋆)

⊤
)
. (29b)

Algorithm 1 summarizes the proposed method for adaptive
sensor fusion of GNSS and camera measurements.

Algorithm 1 Pseudo-code of the proposed IMM algorithm

Initialize:{ξi, ωi}|P|
i=1, { ˆ̄xj

−1|−1,P
j
−1|−1,R

j ,qj−1}mj=1, Π
1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . ,m} do
3: Mix estimates according to (26).
4: end for
5: for j ∈ {1, . . . ,m} do
6: for i ∈ {1, . . . , |P|} do
7: Determine ˆ̄xi

k|k−1 according to (20).
8: end for
9: Determine ˆ̄xj

k|k−1, P j
k|k−1 according to (21a).

10: for i ∈ {1, . . . , |P|} do
11: Determine ŷi

k|k−1 akin to (20)
12: end for
13: Determine ŷj

k|k−1, P yy,j
k|k−1, P x̄y,j

k|k−1 akin to (21a).
14: Determine ˆ̄xj

k|k, P j
k|k using (24).

15: Determine qjk according to (28).
16: end for
17: Determine ˆ̄xk|k, Pk|k according to (29).
18: end for

IV. SIMULATION STUDY

We validate the proposed method in a Monte-Carlo sim-
ulation study. We consider a car modeled by the dynamic
single-track model (6) in closed loop with a reference tracking
controller driving on a one-lane road. The route is extracted
using the open-source routing machine (OSRM) tool [26]. The

map is represented by a sequence of points. To generate our
spline-based map, we perform a rudimentary regression for γ̄.

The IMU measurement noise is comparable to the noise
for a low-cost IMU, and the GNSS position measurements
nominally provide Gaussian zero-mean measurements with
standard deviation 0.2m in both X and Y direction. Fur-
thermore, the camera measurements provide lane measure-
ments that nominally are Gaussian distributed according to
yc
k ∼ N (hc(x̄k),Rc), where Rc is a diagonal matrix with

elements [0.0212; 0.118]. The transition probability matrix Π
is set to have diagonal elements 0.9 with identical offdiagonal
elements. From our experience, the design of the mixing
matrix is not critical to performance.

When executing Algorithm 1 using the kinematic single-
track model (8), only GNSS and camera measurements are
used. For each of the 100 Monte-Carlo runs, we generate the
initial state by sampling it from some initial distribution with
5m initial standard deviation on the position. All measure-
ments arrive with sampling rate 10Hz but the prediction step
is performed at 100Hz, that is, when executing Algorithm 1
at 100Hz, the measurement update step and weight update
are executed every tenth time step. To simulate outliers, we
consider six different models:

1) Rp = Rp
nom,R

c = 42Rc
nom;

2) Rp = 102Rp
nom,R

c = Rc
nom;

3) Rp = 102Rp
nom,R

c = 22Rc
nom;

4) Rgps = 102Rgps,nom,Rc = 52Rc,nom;
5) Rgps = 12Rgps,nom,Rc = 52Rc,nom;
6) Rgps = Rgps,nom,Rc = 72Rc,nom;

where Rc
nom denotes the nominal camera covariance matrix

and Rp
nom is the nominal GNSS covariance matrix. GNSS

outliers occur every tenth second starting at 5s and lasting for
three seconds, and to simulate GNSS outliers, we generate
measurements according to Rp = 102Rp

nom. Similarly, we
have camera outliers occurring every tenth second starting at
10s and lasting for three seconds, with camera measurements
generated according to Rc = 102Rc

nom. Hence, the true model
is not contained in the filter bank and consequently, the optimal
output should be a combination of the filters in the IMM.2

A. Results for One Realization

For illustration purposes, we first present results using the
dynamic single-track model from a single realization where
the map prior uncertainty has a 0.05m standard deviation
for each of the lane markings, over the entire simulation
horizon. Fig. 4 displays snapshots of excerpts of the map at
different time instants. As measurements are gathered, the map
estimate is improved. Furthermore, the uncertainty in the map
is decreased. In particular, note the decrease of the uncertainty
and associated correction of the map ahead of the vehicle due
to the forward-looking camera.

2For a perfect map, i.e., for the localization problem, we have already
verified that the method finds the correct model [6] so in this paper we focus
on other aspects.
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Fig. 4. Snapshots of the map for different time steps including the true map in blue, the prior mean map (green), and the posterior in red with the map
uncertainty illustrated as the shaded circles. Note that the uncertainty is magnified for visualization purposes.

B. Results from a Monte-Carlo Study

For the Monte-Carlo study, we have performed 100 Monte-
Carlo runs of the same scenario as in Sec. IV-A. We compare
Algorithm 1 with our previously proposed IMM-LRKF [6],
which assumes a perfect map. We have executed the methods
for two different map priors: (i), zero standard deviation on
the spline coefficients (i.e., a perfect map); (ii) a covariance
on the spline coefficients corresponding to a 0.05m standard
deviation. For (ii), at the beginning of each Monte-Carlo run,
we sample the true and prior maps for each LRKF in the IMM
according to this distribution.

Fig. 5 shows the X and Y RMSE in the vehicle frame
OE for the different models in the IMM, together with the
estimated output of Algorithm 1 (Line 17). The effects of
outliers are seen by the sudden increase in positioning error
for the different models. The position estimate of the weighted
average shows the smallest position error for most of the time
except for some transients, that is, it correctly weighs together
the different estimators in the IMM, irrespective which motion
model that is used for estimation. This is clearly seen between
5–8s when there are GNSS outliers, when the models having
small GNSS measurement covariance gives an estimation error
of more than 2m in the X-direction. The IMM-LRKF discards
those models when producing the estimates. The lateral error
fluctuates less and is generally smaller than the longitudinal
positioning error, which is expected since the camera has
higher resolution in that direction. Furthermore, the RMSEs
exhibit larger variations when using the kinematic single-
track model. This is not surprising as the synthetic data
are generated using the dynamic single-track model, and to
account for the model mismatch the process noise has to be
increased when using the kinematic single-track model.

Fig. 6 compares the results when updating the map as in
Algorithm 1 and when not performing the map update, as in
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Fig. 5. RMSE of the seven (six models plus weighted average) compared
combinations for 100 Monte-Carlo runs with 0.05m initial map covariance
using the dynamic single-track model (left) and the kinematic single-track
model (right) in the estimator. The estimator output is in black dashed. The
estimator chooses the best available filter except for during the transients.

[6]. Fig. 6 displays the resulting RMSE when the prior map
is in perfect alignment with the true map, and with the 0.05m
initial uncertainty. Clearly, incorporating the map update into
the estimation problem improves performance.
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Fig. 6. RMSE with map update (black) and without map update (blue, our
previous work [6]).

V. CONCLUSION

By using the IMM framework we can adapt to the time-
varying measurement reliability for both the GNSS and camera
measurements, and the simulation results indicate that our
method indeed chooses the model combination yielding the
smallest error. As long as the support of the noise covariances
in the models covers the true noise, the proposed method is a
viable alternative to other noise-adaptive filters such as particle
filters or filters based on variational Bayes. Unsurprisingly,
when using the dynamic single-track model, slightly more
reliable estimates are provided. However, in practice the
dynamic single-track model needs knowledge of parameters
that are uncertain and also needs to be estimated online.
Hence, using the kinematic single-track model is a sub-optimal
but attractive option due to its simplicity. The spline-based
map representation is highly flexible and more realistic than
the traditional curvature-based approaches, since it does not
restrict itself to certain types of roads. In future work, we
plan to experimentally verify the proposed method.
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