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A Lagrangian Inspired Polynomial Kernel for Robot Dynamics Identification

Giulio Giacomuzzo1, Alberto Dalla Libera1, Ruggero Carli1, Diego Romeres2

Abstract— In this paper, we propose a novel kernel for the
identification of the inverse dynamics of robotic manipulators
based on Gaussian Process Regression. The proposed kernel,
called Lagrangian Inspired Polynomial (LIP) kernel is based on
two main ideas. First, instead of directly modeling the joint
torques, we model as GPs the kinetic and potential energy of
the system. To this aim, we prove a polynomial characterization
of the kinetic and potential energy and we define a polynomial
kernel that encodes this property. Second, we derive the GP
prior on the joint torques by leveraging on the knowledge of
Lagrange’s equations and by applying the properties of GPs
under linear operators. We validated our method on a Franka
Emika Panda robot, a 7 DOF cobot. The collected results
show that the proposed method outperforms state-of-the-art
black-box estimators based on Gaussian Processes in terms of
prediction accuracy and generalization.

I. INTRODUCTION

In many robotics applications, control performance
strongly benefits from the presence of accurate models.
Inverse dynamics models expresse joint torques as a function
of joint positions, velocities and accelerations, and they are
crucial in several control problems, such as high-precision
trajectory tracking [1], [2] and contact detection [3]–[5].

Learning the inverse dynamics in a black-box fashion
represents an appealing solution. Differently from traditional
model-based approaches [6]–[9], black-box solution learn in-
verse dynamics models directly from collected data, without
the need of prior knowledge of the physical system.

Several black-box methods have been proposed, for in-
stance relying on deep neural networks (NN) [10]- [11], [12]
- and Gaussian Process Regression (GPR) [13], see [14]–
[17]. Despite their ability to approximate even complex non-
linear dynamics, black-box methods typically exhibit low
data efficiency and poor generalization properties: obtained
estimators perform well only within a neighborhood of the
training trajectories, and require a large amount of samples
to generalize.

Several works tried to improve generalization by embed-
ding insights from physics as a prior in black-box models
[18]–[21], so that physical properties are embedded in the
model. In this context, GPR is an attractive regression
framework since prior on the physical properties can be
encoded through a proper definition of the kernel function.
In this manuscript, we propose an inverse dynamics GP
estimator based on a novel kernel defined starting from the
laws of Lagrangian mechanics, with the aim of improving
generalization and data efficiency.

1Department of Information Engineering, Università di Padova, Italy
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Typically, when GPR is applied to the inverse dynamics
identification, each joint torque is modeled with a distinct
independent Gaussian Process (GP). This choice simplifies
the regression problem but ignores the correlations between
the different joint torques, which instead are present as
explained by the Lagrange’s equations, possibly limiting
generalization and data efficiency.

In contrast, we propose a multi-output kernel function,
named Lagrangian Inspired Polynomial kernel (LIP), which
correlates the different joint torques by exploiting Lagrangian
mechanics. Our method is based on two main ideas: first,
we model as GPs the kinetic and potential energy of the
system. Driven by the fact that the kinetic and potential
energy are polynomial functions in a suitable input space,
we derive two polynomial kernels that encode this property.
Second, inspired by the fact that Lagrangian mechanics
derives the dynamics equations as a linear transformation
of the Lagrangian function, we obtain the torques GPs by
applying a set of linear operators to the GPs of the potential
and kinetic energy.

Our contribution is twofold. First, we derive the LIP
kernel, a multi-output kernel which encodes the symmetries
typical of Lagrangian systems and the polynomial nature of
the kinetic and potential energy. Second, we compare the
performance of the LIP model against baselines and state-
of-the-art algorithms on a real Franka Emika Panda. The
collected results show that the LIP estimator outperforms
state-of-the-art black-box GP estimators, obtaining better
generalization performance. This fact confirms that encoding
physical properties in black-box models is a promising
strategy to improve model accuracy and data efficiency.

The paper is structured as follows. In Section II we provide
a review of robot dynamics and GPR theory. Section III
presents our proposed kernel. First, we derive the GP prior
for torques from the GP prior for energies by utilizing the
principles of Lagrangian mechanics. Then, we present the
polynomial kernels that we exploit to model system energies.
Section IV outlines the experiments on the Panda robot,
while Section V concludes the paper.

II. BACKGROUND

In this section, we describe the inverse dynamics identifi-
cation problem, and we concisely review GPR.

A. Inverse dynamics

Consider an n-degrees of freedom (DOF) manipulator
composed of n + 1 links connected by n joints. Let qt =[
q1t , . . . , q

n
t

]T ∈ Rn and τt =
[
τ1t , . . . , τ

n
t

]T ∈ Rn be the



vectors collecting, respectively, the joint positions and gener-
alized torques at time t, where qit and τ it denote, respectively,
the joint position and the torque of joint i. Moreover, we
denote with q̇t and q̈t the joints velocity and acceleration.
In the following, we will denote explicitly the dependence
on t only when strictly necessary. The inverse dynamics
identification problem consists in identifying the map that
relates qt, q̇t, q̈t with τt, given a dataset of input output
measures D. Under rigid body assumptions, the dynamics
equations are described by the following matrix equation

B(q)q̈ + c(q, q̇) + g(q) + τ̃ = τ , (1)

where B(q) is the inertia matrix, while c(q, q̇) and g(q)
model, respectively, the fictitious forces and gravity. Finally,
τ̃ is the torque due to friction and unknown dynamical effects
[2].

B. Gaussian Process Regression for multi-output models

GPR is a principled probabilistic framework for regression
problems that allows estimating an unknown function f :
Rm → Rd given a dataset of input-output observations D =
{X,Y }, composed of the input set X = {x1 . . .xN} and
the output set Y = {y1, . . . ,yN}. We assume the following
measurement model

yi = f(xi) + ei, i = 1, . . . , N, (2)

where ei is a zero-mean Gaussian noise with variance
Σei ∈ Rd × Rd, i.e., ei ∼ N(0,Σei). We assume that
Σei is a diagonal matrix, namely, Σei = diag(σ2

e1 , . . . , σ
2
ed
),

where σ2
ei denotes the variance of the noise affecting the

i-th component of f . By letting y =
[
yT
1 , . . . ,y

T
N

]T
and

e =
[
eT1 , . . . , e

T
N

]T
we can write

y =

y1

...
yN

 =

 f(x1)
...

f(xN )

+

e1
...

eN

 = f(X) + e, (3)

where the noises e1, . . . , eN are assumed independent and
identically distributed. It turns out that the variance of e is
a block diagonal matrix with equal diagonal blocks, namely

Σe = diag(Σe1 , . . . ,ΣeN ),

with Σe1 = Σe2 = . . . = ΣeN .
The unknown function f is defined a priori as a GP, that

is, f ∼ GP (m(x), k(x,x′)), where m(·) : Rm → Rd is
the prior mean and k(·, ·) : Rm × Rm → Rd×d is the prior
covariance, also named kernel. The kernel k(·, ·) determines
the covariance between the values of the unknown function
at different input locations, that is, Cov[f(xp), f(xq)] =
k(xp,xq). For instance, in the scalar case (d = 1), a common
choice for k(·, ·) is the Square Exponential (SE) kernel,
defined as

kSE(x,x
′) = λe−∥x−x′∥2

Σ−1 , (4)

where λ and Σ are the kernel hyperparameters.
Under the Gaussian assumption, the posterior distribution

of f given D in a general input location x is still Gaussian,

with mean and variance given by the following expressions:

E[f(x)|D] = m(x) +KxX(KXX +Σe)
−1(y −mX),

(5a)

Cov[f(x)|D] = k(x,x)−KxX(KXX +Σe)
−1KXx,

(5b)

where KxX ∈ Rd×dN is given by

KxX = KT
Xx =

[
k(x,x1), . . . , k(x,xN )

]
, (6)

and KXX ∈ RdN×dN is the block matrix

KXX =

k(x1,x1) . . . k(x1,xN )
...

. . .
...

k(xN ,x1) . . . k(xN ,xN )

 . (7)

See [13] for a detailed derivation of formulas in (5). The
posterior mean (5a) is used as an estimate of f , that is, f̂ =
E[f(x)|D], while (5b) is useful to derive confidence intervals
of f̂ .

When GPR is applied to inverse dynamics identification,
the inverse dynamics map is treated as an unknown function
and modeled a priori as a GP. The GP-input at time t is
xt = (qt, q̇t, q̈t), while outputs are torques. The standard
approach consists in defining the GP prior directly on the
inverse dynamics function, by assuming its n components
to be conditionally independent given the GP input xt. As
a consequence, the overall inverse dynamics identification
problem is split into a set of n scalar and independent GPR
sub-problems,

yit = f i(xt) + eit

where the i-th torque component f i : R3n → R is estimated
independently of the others as in (5) with d = 1 and y =
yi = [yi1 . . . y

i
N ]T , being yit a measure of the i-th torque at

time t.
Observe that the conditionally independence assumption

is a strong approximation, which might limit generalization
and data efficiency. As described in the next section, we
propose a multi-output GP model that naturally correlates
the different torque dimensions, thus obtaining the following
generative model,

yt = f(xt) + et,

with f : R3n → Rn, where n is the number of DOF of the
considered mechanical system, yt ∈ Rn is the vector of
torque measurements at time t and et ∈ Rn is the noise at
time t modeled as in Sec. II-B. The estimate of f can now
be computed as described in Sec. II-B, with d = n.

III. LAGRANGIAN INSPIRED POLYNOMIAL KERNEL

In this section, we derive the Lagrangian Inspired Poly-
nomial (LIP) kernel. We model the kinetic and potential
energies as two different GPs and derive the GP prior of the
torques exploiting the laws of Lagrangian mechanics and the
properties of GPs under linear operators. First, in Section III-
A we introduce a polynomial characterization of the system



energies and we accordingly define two polynomial kernel
functions. Then, in Section III-B we derive the inverse dy-
namics GP-models from the GPs of the kinetic and potential
energies.

A. Kinetic and potential energy polynomial priors

Let T(q, q̇) and V(q) be the kinetic and potential energy
of a n-DOF system of the form (1). We model T(q, q̇)
and V(q) as two independent zero-mean GPs with kernel
functions kT(x,x′) and kV(x,x′), where x = (q, q̇, q̈), as
defined in Section II-B.

Before deriving the kernel functions kV and kT adopted
as model prior for T and V, we introduce some useful
notations. Let qi and q̇i be the vectors containing the posi-
tions and velocities of the joints up to index i, respectively.
Then, assume the considered system to be composed of Nr

revolute joints and Np prismatic joints, with Nr +Np = n.
We denote with Ir = {r1, . . . , rNr} and Ip = {p1, . . . , pNp}
the sets containing the revolute and prismatic joints indexes,
respectively. We introduce the vectors qc and qs, containing
the cosine and sine of revolute joint positions, and the vector
qp, containing the prismatic joint positions. By qbc , qbs and qbp
we denote the b-th element of qc, qs and qp, respectively.
Next, let Iir (resp. Iip) be the subset of Ir (resp. Ip) composed
by the indexes lower or equal to i and let us define the vectors
qi
c, qi

s, (resp. qi
p) as the restriction of qc, qs (resp. qp) to Iir

(resp. Iip). To conclude let qcsb be the vector concatenating
the b-th elements of qc and qs, that is, qcsb = [qbc , q

b
s]

T .
We continue our analysis by considering first the design

of kV and then the design of kT .
1) Potential energy: The following proposition establishes

that the potential energy is polynomial w.r.t. the set of
variables (qc, qs, qp), which is function of q.

Proposition 1: The potential energy V(q) is a polynomial
function in (qc, qs, qp) of degree not greater than n, such that
each element of qc, qs and qp appears with degree not greater
than 1. Moreover, for any monomial of the aforementioned
polynomial, the sum of the degrees of qbc and qbs is equal or
lower than 1, namely, it holds

deg(qbc) + deg(qbs) ≤ 1. (8)

To comply with the properties introduced by Proposition
1, we define the kV(x,x′) kernel as the product of Nr+Np

inhomogeneous polynomial kernels of degree 1 [13], namely

kV(x,x′) =
∏
b∈Ir

k
(1)
pk (qcsb , q

′
csb

)
∏
b∈Ip

k
(1)
pk (q

b
p, q

′b
p ), (9)

with the general inhomogeneous polynomial kernel of degree
p defined as k

(p)
pk (x,x

′) = (xTΣpkx
′ + σpk)

p, where Σpk

and σpk are the hyperparameters.
2) Kinetic energy: The kinetic energy is the sum of the

kinetic energies relative to each link, that is, T(q, q̇) =∑n
i=1 Ti(q, q̇), where Ti(q, q̇) is the kinetic energy of Link

i. The following proposition establishes that Ti is polynomial
w.r.t. the set of variables (qi

c, q
i
s, q

i
p, q̇

i), which are functions
of qi and q̇i.

Proposition 2: The kinetic energy of the i-th link Ti(q, q̇)
is a polynomial function in (qi

c, q
i
s, q

i
p, q̇

i) of degree not
greater than 2i + 2, such that each element of qi

c, qi
s, qi

p

and q̇i appears with degree not greater than 2. Moreover, in
each monomial, the sum of the degrees of qbc and qbs is lower
than or equal to 2, namely

deg(qbc) + deg(qbs) ≤ 2. (10)

To comply with the constraints and properties stated in
the above Proposition, we define the kT(x,x′) kernel as the
product of i inhomogeneous polynomial kernels of degree 2,
and 1 homogeneous kernel of degree 2, namely

kTi (x,x′) = k
(2)
hpk(q̇

i, q̇′i) ·∏
b∈Ii

r

k
(2)
pk (qcsb , q

′
csb

) ·
∏
b∈Ii

p

k
(2)
pk (q

b
p, q

′b
p ),

(11)

where the homogeneous polynomial kernel of degree p is
defined as the inhomegeneous one but with σpk = 0.

We finally define kinetic energy kernel as kT(x,x′) =∑n
i=1 k

T
i (x,x′).

B. From energies to torques GP models

GPR cannot be applied directly on T and V, as these
quantities are not directly measured. However, starting from
the prior on the two energies, we can derive a GP prior for
the torques leveraging on Lagrangian mechanics. Lagrangian
mechanics derives the inverse dynamics equations in (1)
(with τ̃ = 0) as the solution of a set of differential equations
of the Lagrangian function L = T(q, q̇) −V(q) [2]. The
i-th differential equation of (1) is

dL

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τ i, (12)

where qi, q̇i, and τ i are, respectively, the i-th component of
q, q̇, and τ . Exploiting the chain rule, equation (12) can be
rewritten as

n∑
j=1

(
∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j
)
− ∂L

∂qi
= τ i. (13)

It is convenient to introduce the linear operator Gi, that maps
L in the left-hand side of (13), namely τ i = GiL. In
compact form we can write τ = GL = [G1L . . . GnL]T ,
which defines the linear operator G mapping L into τ .

Since we modeled T and V as independent GPs, L is a
GP itself. The sum of two independent GPs, indeed, is a still
a GP, and its kernel is the sum of the kernels [13], namely,

L ∼ GP (0, kL(x,x′)), (14a)

kL(x,x′) = kT(x,x′) + kV(x,x′). (14b)

Moreover, note that the inverse dynamics map is the result
of the application of the linear operator G to the GP defined
in (14a) and (14b) modeling L. As the GPs are close under
linear operators [22], also the inverse dynamics is a GP in



our setup. In detail, it turns out that τ ∼ GP (0, kτ (x,x′))
with the multi-output kernel kτ ∈ Rn×n defined as

kτ (x,x′) =

G1G
′
1k

L(x,x′) . . . G1G
′
nk

L(x,x′)
...

. . .
...

GnG
′
1k

L(x,x′) . . . GnG
′
nk

L(x,x′)

 ,

(15)
where G′

i is the same linear operator as Gi but applied to the
input variable x′. We refer the interested reader to [22] for
a more detailed discussion on GPs and linear operators.

To summarize, the LIP kernel consists of the multi-output
torque prior kτ expressed in (15), where kL is defined in
(14b) and kV and kT are the polynomial kernels presented
in Section III-A.

IV. EXPERIMENTAL RESULTS

We tested proposed estimator on a Franka Emika Panda
robot, which is a 7 DOF manipulator with only revolute
joints. We compared the performance of the LIP model with
those of three different state-of-the-art GP-based estimators.
Two of them are obtained with the standard approach,
namely modeling joint torques as independent GPs. One
is based on the Square Exponential (SE) kernel in (4) ,
while the other one is based on the GIP kernel presented
in [18]. The third solution, instead, exploits the multi-output
kernel presented in [20], hereafter denoted as LSE. The LSE
estimator models directly the Lagrangian function, instead
of modeling the kinetic and potential energy separately. The
Lagrangian is modeled using a SE kernel defined on an
augmented input space obtained by substituting the positions
of the revolute joints with their sine and cosine. All the
considered estimators have been implemented in Python,
using the functionalities provided by the library PyTorch
[23]. The hyperparameters of all the GP-based estimators
have been optimized by marginal likelihood maximization
[13]. In order to compensate the friction affecting the real
system, we integrate the considered estimators with a GP
model linear in the features q̇ and sign(q̇).

On the real Panda robot, we collected joint positions,
velocities, and torques through the ROS interface provided
by the robot manufacturer. To mitigate the effect of mea-
surement noise, we filtered the collected positions, velocities,
and torques with a low pass filter with a cut-off frequency
of 4Hz. We obtained joint accelerations from joint velocities
by means of acausal differentiation.

We collected 10 training and 16 test datasets, following
different sum of sinusoids reference trajectories. In detail,
each dataset is obtained imposing to the i-th joint a trajectory
defined as

qi(t) =

Ns∑
l=1

a

ωf l
sin(ωf l t)−

b

ωf l
cos(ωf l t), (16)

with ωf = 0.02 rad/s, while a and b are sampled from
a uniform distribution ranging in [−c, c], with c chosen
in order to respect the limits on joint position, velocity
and acceleration. The test datasets has a wider range of
frequencies, Ns = 100, than the training trajectories, Ns =

SE GIP LSE LIP
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SE

 %

joint 1

SE GIP LSE LIP

joint 2
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SE

 %

joint 7

Fig. 1: Box plot of the torque nMSE obtained with the experiment on the
PANDA robot described in section IV.

50, to stress the generalization properties. All the generated
datasets are composed of 500 samples, collected at a fre-
quency of 10Hz. The GP-based estimators are learned in
each training trajectory and tested on each and every of the
16 test trajectories. Figure 1 reports the distribution of the
normalized Mean Sqaured Error (nMSE) for each joint, on
the test datasets. The nMSE is defined as

nMSE(y, ŷ) =
1

N

N∑
j=1

(yj − ŷj)
2/V ar(y),

where y is the vector of measures and ŷ contains the
corresponding estimates. The estimator with the LIP kernel
predicts the joint torques better than the other GP estimators
on each and every joint, which proves the advantages of our
approach.

V. CONCLUSIONS

In this work we presented the LIP kernel, a novel multi-
output kernel designed to model the kinetic and potential
energy of robotics systems. Leveraging on the laws of
Lagrangian mechanics and on a polynomial characteriza-
tion of potential and kinetic energy, the proposed kernel
provides black-box inverse dynamics models which respect
the symmetries imposed by the Lagrange’s equations, while
improving generalization and data efficiency. The method
has been validated on a real setup involving a Franka
Emika Panda robot. The collected results showed that it
outperforms state-of-the-art black-box estimators based on
Gaussian Processes in term of accuracy and generalization.
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learning of robotic manipulator inverse dynamics,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 3442–3448.

[13] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning. Springer, 2003, pp. 63–71.

[14] J. Schreiter, P. Englert, D. Nguyen-Tuong, and M. Toussaint, “Sparse
gaussian process regression for compliant, real-time robot control,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 2586–2591.

[15] A. Gijsberts and G. Metta, “Incremental learning of robot dynamics
using random features,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 951–956.

[16] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with
local gaussian process regression,” Advanced Robotics, vol. 23, no. 15,
pp. 2015–2034, 2009.

[17] S. Rezaei-Shoshtari, D. Meger, and I. Sharf, “Cascaded gaussian pro-
cesses for data-efficient robot dynamics learning,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 6871–6877.

[18] A. Dalla Libera and R. Carli, “A data-efficient geometrically inspired
polynomial kernel for robot inverse dynamic,” IEEE Robotics and
Automation Letters, vol. 5, no. 1, pp. 24–31, 2019.

[19] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks:
Using physics as model prior for deep learning,” in 7th International
Conference on Learning Representations (ICLR). ICLR, May 2019.
[Online]. Available: https://openreview.net/pdf?id=BklHpjCqKm

[20] C.-A. Cheng, H.-P. Huang, H.-K. Hsu, W.-Z. Lai, and C.-C. Cheng,
“Learning the inverse dynamics of robotic manipulators in structured
reproducing kernel hilbert space,” IEEE Transactions on Cybernetics,
vol. 46, no. 7, pp. 1691–1703, 2016.

[21] G. Evangelisti and S. Hirche, “Physically consistent learning of
conservative lagrangian systems with gaussian processes,” in 2022
IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022,
pp. 4078–4085.
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E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

http://www.deeplearningbook.org
https://openreview.net/pdf?id=BklHpjCqKm
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Title Page
	page 2

	
	Introduction
	Background
	Inverse dynamics
	Gaussian Process Regression for multi-output models

	Lagrangian Inspired Polynomial Kernel
	Kinetic and potential energy polynomial priors
	Potential energy
	Kinetic energy

	From energies to torques GP models

	Experimental results
	Conclusions
	References


