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Abstract— We propose an integral action nonlinear model
predictive controller (NMPC) for trajectory tracking of an
articulated vehicle with an uncertain hitching offset. The
controller is intended for complex parking maneuvers including
forward and backward movement with tight specifications on
the lateral positional tracking error of the trailer. In order to as-
sess performance with uncertain hitching offsets, disturbances,
and sensor noise, we conduct extensive hardware-in-the-loop
simulations using a dSPACE Scalexio unit. With high-grade
sensing, we demonstrate that the closed-loop control system
achieves a lateral tracking error of < 3 [cm] in expectation, and
an absolute terminal error of < 15 [cm] with high probability
p > 0.97. The proposed integral action is shown to be essential
in achieving this performance, and the efficacy of the proposed
NMPC is evaluated by comparison to alternative MPCs.

I. INTRODUCTION

Autonomous vehicle technologies have long attracted great
interest within the research community due to their great
potential in improving fuel efficiency, driving safety and
traffic flows [1]. In particular, autonomous control of the
semi-trailer articulated vehicles have the potential to revolu-
tionize the transportation and logistics sectors [2]. However,
safe tracking control of such vehicles becomes difficult
when considering complex parking and docking maneuvers
with realistic disturbances and modeling errors, and such
maneuvers are critical to a fully autonomous solution. Con-
sequently, we propose controllers for precise parking with
a tractor towing a single trailer with an uncertain hitching
offset (see Fig. 1), as this offset is often not known exactly.

There exists a large body of work that can be leveraged
in such a control system design [3]. Specifically, the stan-
dard n-trailer (SNT) considered in this paper (see Fig. 1)
is known to be differentially flat, even when there is a
non-zero hitching offset [3]. The considered system differs
from the general n-trailer (GNT) in [4], which does not
satisfy the same properties. The SNT model admits an exact
feedback linearization [5], [6], which results in powerful
nonlinear feedback laws that can be combined with linear
control synthesis techniques (see, e.g., [7]). However, such
designs are sensitive to modeling errors, and cannot easily
incorporate state constraints necessary to ensure safety.

Based on these practical considerations, many prior works
focus on path tracking control of articulated vehicles using
model predictive control (MPC). When restricted to forward
motion (cruise control), both linear and nonlinear MPC

1School of Aeronautic and Astronautics, Purdue University, IN, 47907,
USA. Emails: {you84,randai}@purdue.edu. 2Mitsubishi Elec-
tric Research Labs (MERL), 02139 Cambridge, MA, USA. Email to
corresponding author: greiff@merl.com. 3University of Michigan.
Ann Arbor, MI, 48109, USA. Email: ssran@umich.edu.

θ1

−θ0

φ

d1

d0

a

(x0, y0)

(x1, y1)

e1

e2

Fig. 1. Geometry of the considered S1T-system with a hitching offset, a.

(NMPC) have been proposed for path tracking control of
the S1T and G1T-systems [8]–[10]. Alternative methods of
path tracking control with forward and backward motions
have been considered for special paths (motion primitives),
such as linear segments and circular trajectories. Backward
motion implies significant challenges, as any modeling errors
are greatly amplified through a chain of unstable systems.

When considering trajectory tracking of arbitrary dynam-
ically feasible motions, both MPC and NMPC have been
shown to achieve good tracking performance [11]–[15]. The
work in [11] describes a distributed NMPC scheme to reduce
computations, and [14] proposes a gradient-based approach
tailored for real-time execution. In the present paper, we will
compare such gradient-based solvers to a proposed sequential
quadratic programming (SQP) approach, and demonstrate
real-time execution with the PRESAS solver [16].

A. Contributions

A subset of the cited works yield good performance for
tracking of arbitrary dynamically feasible paths with both
forward and backward motion, but the impact of modeling
errors such as a (i) constant steering angle bias, (ii) an incor-
rect hitching offset and (iii) actuator dynamics are generally
not considered. We propose an NMPC with integral action
(iNMPC), where an integral tracking error is introduced in
the iNMPC prediction model. Our contributions are twofold:

• An integral action NMPC utilizing SQP with PRESAS,
and a tailored cost function that is shown to be essential
for good tracking and robustness when reversing the
tractor trailer system in practice. This is necessary for
autonomous loading operations at a docking bay.

• Quantitative numerical results from hardware-in-the-
loop simulations carried out on the dSPACE Scalexio
unit [17], analyzing the controller design with realistic
modeling errors in Monte–Carlo (MC) simulations.



B. Notation

Vectors are written x ∈ Rn with xi denoting the ith

element of x, and matrices are indicated in bold font as X .
Here, x ∼ N (µ,Σ) indicates that x is Gaussian distributed
with mean µ and covariance Σ, and x ∼ U(I) indicates that
x is uniformly distributed over an interval I . We let p(y|x)
be a conditional probability density function of y given x.
Additionally, ‖x‖22 = x>x and we let ‖x‖2A = x>Ax.
Throughout the paper, the notation Σ : xk+1 = fθ(xk,uk)
refers to a discrete-time dynamical system that is to be
controlled. The system Σr denotes a reference system where
signals are super-indexed by (·)r, Σs denotes a system that
is used in the synthesis of a controller, and Ση is an integral
system. These systems generally do not have the same state-
space. We write sequences of a signal xk over an interval
k ∈ [a, b] ⊆ N>0 as xa:b = {xa, . . . ,xb} = {xk}bk=a.

II. MODELING

The considered semi-trailer system is modeled as a stan-
dard 1-trailer, with wheelbase d1 > 0 [m] and a hitching
offset a ∈ [0, d0] [m], configured on (x0, y0, θ0, θ1) ∈
R2 × (S1)2 (see Fig. 1). Here, (x0, y0) [m] is the center
position of the tractor’s rear axle in the global frame, and θ0

[rad] and θ1 [rad] are heading angles of tractor and trailer,
respectively. We also consider first order actuator dynamics
to account for the low-level controllers of the semi-trailer,

ẋ0 = v cos(θ0), (1a)
ẏ0 = v sin(θ0), (1b)

θ̇0 = v
d0

tan(φ+ φb), (1c)

θ̇1 = v
d1

sin(θ0−θ1)+ av
d0d1

tan(φ+φb) cos(θ0−θ1), (1d)

v̇ = 1
τ1

(vd − v), (1e)

φ̇ = 1
τ2

(φd − φ), (1f)

where v and vd [m/s] refer to the actual and desired longitudi-
nal velocity of the tractor, φ and φd [rad/s] refer to the actual
and desired steering angle of tractor. The actuator dynamics
are defined by time constants τi > 0 [s]. In addition, we
include a constant unknown steering angle bias of φb [rad].

In (1), the desired velocity vd and desired φd are con-
trol commands that are required by the low-level control-
by-wire system. The resulting model has a state vector
x = (x0, y0, θ0, θ1, v, φ) ∈ R4 × (S1)2, a control vec-
tor u = (vd, φd) ∈ R2, and model parameters θ =
(d0, d1, a, τ0, τ1, φb) ∈ R5

>0×R. The continuous-time system
in (1) is discretized using a standard 4th-order Runge-Kutta
method at a constant time-step of h [s], and written as

Σ : xk+1 = fθ(xk,uk), (2)

with tk = hk ≥ 0, k ∈ N≥0, often dropping θ for brevity.

Remark 1 The continuous-time system in (1) is differen-
tially flat [3], but requires one additional degree of smooth-
ness over the classical S1T system due to the first-order
actuator dynamics. As such, it may be controlled effectively
using feedback linearization and related planning techniques.

However, the flat output space becomes less useful for
planning when a > 0, and the system becomes uncontrollable
as a→ d0 for reverse motions vd < 0, v < 0.

Remark 2 While the system (1) is open-loop stable in
forward motion, vd > 0, v > 0, it is unstable in backward
motion, and any modeling error of the hitching offset acts
as a disturbance on the unstable modes of the system.

When evaluating the controllers, we do not assume perfect
knowledge of the states, but rather consider a stochastic
measurement model defined with a Gaussian likelihood

yk ∼ p(yk|xk) = N (xk,diag(σ2
x0
, σ2
y0
, σ2
θ0 , σ

2
θ1 , σ

2
v , σ

2
φ)).

Similarly, the initial conditions of the controlled system in
the ith simulation is sampled from a Gaussian distribution

x
(i)
0 ∼ p(x0) =N (xr0,diag(σ2

0,1, σ
2
0,2, σ

2
0,3, σ

2
0,4, σ

2
0,5, σ

2
0,6)),

with parameters given in Appendix . In the simulation
studies, we assume that the reference system, Σr, and the
system used for controller synthesis, Σs, are parameterized
in the same nominal model parameters. However, the system
that is controlled, Σ, is parameterized by θ(i) ∼ p(θ) which
for the ith simulation is sampled from a distribution over the
model parameters (refer to the appendix for details).

III. LINEAR MODEL PREDICTIVE CONTROL

In this section, we introduce the standard linear MPC and
the sub-optimal time-distributed MPC (TDMPC) [18] for
linear time-varying dynamical systems of the form

xk+1 = Akxk +Bkuk. (3)

These controllers will serve as benchmarks for the proposed
iNMPC in the forthcoming simulation studies.

A. The Optimal Control Problem

Let xrk and urk denote the reference state and control
signal trajectories governed by a reference system Σr, and
let ξk = yk−xrk, νk = uk−urk. These errors are considered
over a prediction horizon of length N , and for simplicity, we
let k̄ = k + N . To minimize the tracking error, the linear
MPC determines the control action by solving an associated
optimal control problem (OCP), here defined following [18],

min
ξk:k̄,νk:k̄−1

‖ξk̄‖2P +

k̄−1∑
τ=k

‖ξτ‖2Q + ‖ντ‖2R, (4a)

subject to

ξk = yk − xrk, (4b)
ξτ+1 = Aτξτ +Bτντ , τ = k, . . . , k̄ − 1, (4c)
νmin ≤ ντ ≤ νmax, τ = k, . . . , k̄ − 1, (4d)

where Q � 0, R � 0, and P � 0 are weight matrices
defining the quadratic forms in the tracking errors. Upon
solving (4) at a time k for ν?

k:k̄−1
, the system is actuated

with the first element in this sequence, letting uk = urk+ν?k.
This procedure is repeated on every time step (see Fig. 2).
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Fig. 2. Block diagram of a controlled system, Σ, driven along the
trajectory of a reference system, Σr , by an MPC controller. The blue
color indicates items that differ between a standard MPC and the proposed
iNMPC. Specifically, the difference is in the computation of the integral
term η in Ση , and the modification of Σs used in the MPC synthesis.

B. Linearizations

As the articulated vehicle system in (2) is nonlinear, we
consider a first-order expansion of the dynamics about the
reference trajectory. At the time step k, this results in

ξk+1 =

[
∂fθ(x,u)

∂x

∂fθ(x,u)

∂u

] ∣∣∣∣∣∣∣∣
(x,u)=(xr

k,u
r
k)

[
ξk
νk

]
+ o

(∥∥∥∥∥
[
ξk
νk

]∥∥∥∥∥
2)

≈ A(xrk,u
r
k)ξk +B(xrk,u

r
k)νk, (5)

where the first constant term in the Taylor series vanishes
due to the linearization being about the reference trajectory.
For simplicity, we let Ak , A(xrk,u

r
k), Bk , B(xrk,u

r
k),

and generate function handles for the Jacobians in (5) using
the CasADi software [19], which is a free and open source
framework for automatic differentiation and code generation.

C. Solving the Optimal Control Problem

To solve the OCP formulated in (4), we first write the
problem in a condensed form. Following [18, Section 3], let

min
ν̄k∈U

∥∥∥∥∥
[
ν̄k
ξk

]∥∥∥∥∥
2

Mk

, Mk =

[
Hk Gk

G>k W k

]
, (6)

where ν̄>k = (ν>k , . . . ,ν
>
k̄−1

), and U denotes a set rep-
resenting the constraints in (4d). Here, the components of
Mk are defined as in [18, Appendix A], but with time-
varyingAk:k̄−1,Bk:k̄−1. The problem in (6) can be solved to
appropriate numerical tolerances using off-the-shelf methods.
Here, formulating (6) using a linearization about the refer-
ence with respect to an RK4 discretization of the continuous
ODE in (1), and solving the OCP with Matlab’s quadprog
is referred to as a linear MPC (LMPC). We also consider
the sub-optimal time-distributed approach in [18], using
the accelerated projected gradient method (APGM) defined
in [18, Algorithm 2], run for a number of iterations on each
time-step that exceeds the theoretical limit that guarantees
stability in a linear setting [18, Corollary 4]. Solving the
standard MPC problem in this way is referred to as TDMPC.

IV. INTEGRAL ACTION NMPC WITH SQP

Considering the steering angle bias, the hitching offset and
the nonlinear kinematics of the system in (1), we introduce
the iNMPC to satisfy the requirements of high accuracy on
the terminal lateral position and heading angle of trailer for
complex parking and docking maneuvers [20], [21].

A. Lateral Integral Tracking Error

To achieve good tracking during challenging reversing
maneuvers, the trailer’s lateral positional integral tracking
error is computed in the reference frame of the trailer, and
introduced as a new state variable, η, with dynamics,

η̇ = cos(θr1)(x1 − xr1)− sin(θr1)(y1 − yr1), (7)

where θr1 is the desired heading angle of trailer, and x1 [m]
and y1 [m] denote the Cartesian position of the center of
trailer’s rear axle in the global frame (see Fig. 1),

x1 = x0 − cos(θ1)d1 + cos(θ0)a, (8)
y1 = y0 − sin(θ1)d1 + sin(θ0)a.

With η(0) = 0, the integral error can be evaluated approxi-
mately at a time t = hk in the state trajectory x0:k and the
reference trajectory xr0:k. With a slight abuse of notation,

Ση : ηk+1 =

∫ h(k+1)

0

η̇(σ)dσ ≈ ηk + hη̇k(xk,x
r
k). (9)

In practice, this error is computed recursively in the measured
signals y0:k, that is using η̇k(yk,x

r
k) as illustrated in Fig. 2.

In the model used for the synthesis of the iNMPC, the
original state vector in the controlled system (1) is comple-
mented with the integral state, resulting in a new state vector
x̄ = (x0, y0, θ0, θ1, v, φ, η) ∈ R5×(S1)2. This system is once
again discretized using an RK4 scheme as in (2), yielding

Σs : x̄k+1 = fsθ(x̄k,uk). (10)

B. Objective Function

To minimize tracking errors, a quadratic objective function
is formulated over a prediction horizon of length N ∈ N>0.
For convenience, we let k̄ = k + N . To start, a stage cost
is expressed as quadratic forms in the tracking errors over
the prediction horizon, defined by Q � 0 and R � 0, and a
terminal cost is expressed as a quadratic form in P � 0 at
the terminal time k̄. Furthermore, to generate smooth steering
commands and permit constraints on the relative heading
angles, an performance output vector is defined as z =
(x1, y1, η̇, θ0 − θ1, v̇, φ̇) = g(x̄,u), and the standard MPC
cost function in (4a) is complemented by quadratic forms in
zk defined by T � 0. We introduce a set of non-negative
slack variables sk:k̄ to implement soft constraints on x̄k:k̄

and zk:k̄, ensuring feasibility of the resulting optimization
problem. These slack variables are weighted by a parameter



ρ > 0 included in the cost, resulting in an objective function

J(x̄k:k̄,uk:k̄−1, sk:k̄) =
1

2

k̄−1∑
τ=k

‖zτ − zrτ‖2T +
1

2

k̄∑
τ=k

ρsτ+

1

2

k̄−1∑
τ=k

(‖x̄τ − x̄rτ‖2Q + ‖uτ − urτ‖2R) +
1

2
‖x̄k̄ − x̄rk̄‖2P .

(11)

C. The Optimal Control Problem

With the objective in (11) and given some θ, the discrete-
time optimal control problem for the iNMPC reads as

min
uk:k̄−1,x̄k:k̄,sk:k̄

J(x̄k:k̄,uk:k̄−1, sk:k̄), (12a)

subject to

x̄k = (y>k , ηk)>, (12b)
x̄τ+1 = fsθ(x̄τ ,uτ ), τ = k, . . . , k̄ − 1, (12c)
zτ = g(x̄τ ,uτ ), τ = k, . . . , k̄ − 1 (12d)
umin ≤ uτ ≤ umax, τ = k, . . . , k̄ − 1, (12e)
zmin−sτ ≤ zτ ≤ zmax+sτ , τ = k, . . . , k̄ − 1, (12f)
x̄min−sτ ≤ x̄τ ≤ x̄max+sτ , τ = k, . . . , k̄, (12g)
sτ ≥ 0, τ = k, . . . , k̄, (12h)

which aims to find the optimal sequence of steering actions
uk:k̄−1 that minimizes the objective function while satisfying
the system dynamics, control signal constraints and state
constraints. Here, (12e) includes inequality constraints on
the steering angle and velocity, the state constraints (12g)
and (12f) include inequality constraints on the relative head-
ing angle of trailer and tractor, steering rate and acceleration.
In addition, the slack variables sτ ≥ 0 are used in the soft
state constraints (12g) and (12f), guaranteeing feasibility of
the constrained optimal control problem (12) at every time
step. As in Section III, the output of the NMPC controller is
the first element in the sequence of control signals u?

k:k̄−1
when solving the OCP in (12) on each time step k.

D. Solving the Optimal Control Problem

We solve the nonlinear program in (12) within the sam-
pling period of h = 50 [ms] by a tailored implementation
of sequential quadratic programming (SQP) known as the
real-time iterations (RTI) scheme [22]. The RTI algorithm
performs a single SQP iteration per control time step, and
uses a continuation-based warm starting of the state and
control trajectories from one time step k to the next k+1. The
nonlinear functions and their first order derivatives are eval-
uated efficiently using C code generation in CasADi [19].
We use the QP solver PRESAS [16], which applies block-
structured factorization techniques with low-rank updates to
preconditioning of an iterative solver within a primal active-
set algorithm. In combination with the CasADi generated
C code, this results in an efficient NMPC solver that is
suitable for embedded systems. In case of time delays, e.g.,
due to the vehicle network communication and/or actuator
interface, a time delay compensation can be used [23].

TABLE I
COMPARISON OF THE TERMINAL ERRORS WITH THE TWO NMPCS IN

103 MC-RUNS WITH FORWARD MOTION ALONG A STRAIGHT PATH

Error Unit iNMPC Regular NMPC

Mean 2σ Mean 2σ

x0 − xr0 [m] 0.0001 0.021 0.0021 0.023
y0 − yr0 [m] 0.0017 0.0308 0.0308 0.0357
|η̇| [m] 0.0013 0.0170 0.0170 0.0177

TABLE II
COMPARISON OF THE TERMINAL ERRORS WITH THE TWO NMPCS IN

103 MC-RUNS WITH BACKWARD MOTION ALONG A STRAIGHT PATH

Error Unit iNMPC Regular NMPC

Mean 2σ Mean 2σ

x0 − xr0 [m] -0.0002 0.0171 -0.0003 0.0276
y0 − yr0 [m] 0.0003 0.0465 -0.1534 0.056
|η̇| [m] 0.0001 0.032 0.1534 0.055

V. NUMERICAL EXPERIMENTS

The results in this section are generated based on
hardware-in-the-loop (HIL) simulations using a dSPACE
Scalexio DS-6001 processor board [17]. The motion planner
and controller are defined with the nominal parameters, but
the parameters of the system and the initial tracking errors
are uncertain, and sampled uniquely for each simulation
(refer to the appendix). The statistics of the tracking errors
are computed from a large number of Monte-Carlo (MC)
simulations, and we are primarily interested in their value
at the end of the maneuvers. We start by analyzing the
effects of integral action in the NMPC for a simple straight
path, followed by a comparison of the linear MPCs in
Section III and the NMPCs in Section IV on a complex
parking maneuver. Finally, we study the effects of hitching
offsets on the tracking errors, as this is a critical parameter
for the success of tight maneuvering in practice.

A. Forward and Backward Motion Along a Straight Path

To validate the proposed iNMPC method and highlight the
importance of including integral action, we start by compar-
ing a regular and integral action NMPCs when controlling
the vehicle along the straight path. Inspired by [4], we define
two different controllers for forward and backward motion,
respectively. The intuition being that the forward controller
should focus more on the tracking error of the tractor’s states,
while the backward controller should focus more on the
tracking error of the trailer’s states. The controller tuning
is provided in the appendix, and the only difference between
the NMPCs is that the integral state η is not considered in
the regular NMPC. The time step of NMPC is h = 0.05 [s],
and the prediction horizon is N = 40 steps.

A MC-study is conducted with 103 realizations of
{θ(i),x

(i)
0 }103

i=1, and the results are reported in Fig. 3 and
Tables I–II. In Table I, we observe a small bias in the
lateral tracking error (shaded in gray) primarily caused by



Fig. 3. Comparison of lateral positional tracking error, η̇, with the regular
NMPC (blue) and the iNMPC (red), with statistics from 103 MC-executions.
The 2σ-interval is depicted along with the largest tracking error at every
point in time over all of the realizations (dotted), with a zoom on the terminal
errors. Top: Forward motion. Bottom: Backward motion.

the steering angle bias. This error in the regular NMPC is
tolerable, but becomes significantly smaller in the iNMPC
when including integral action. For backward motion, the
steering angle bias and modeling errors result in much larger
tracking errors (see Table II). The inclusion of the integral
tracking error greatly reduces the impact of such modeling
errors, yielding near perfect tracking in expectation during
backward motion with the iNMPC.

This is further illustrated in Fig. 3. Focusing on backward
motion, we note that the iNMPC achieves a near perfect
tracking (in expectation) after 40 [s], while the regular
NMPC clearly exhibits a stationary tracking error. Further-
more, we note that for the given nominal parameter ranges,
the 95% confidence interval of the terminal tracking error
is in the range of 3 [cm] with the iNMPC. The probability
of the regular NMPC achieving such low tracking errors is
vanishingly small. Finally, when studying the worst tracking
error reported at each time-step across all of the MC-runs,
it is evident that there are outliers for some particularly
problematic vehicle parameters that yield errors in the range
of ≈ 5 [cm] in the iNMPC and ≈ 22 [cm] in the NMPC.

To summarize, the integral action in the proposed iNMPC
greatly reduces the tracking errors in backward motion,
which is necessary for tight parking maneuvers. In particular,
the iNMPC is effective in dealing with the steering angle
bias, hitching offsets, and other considered modeling errors.
Next, we considering a more complex and realistic parking
maneuver where small tracking errors are safety-critical.

B. Autonomous Parking and Docking Maneuver

We now consider a complex parking maneuver generated
by a motion planning algorithm based on bi-directional A-
search guided tree (BIAGT) [24]. As the success of the

Fig. 4. One MC-simulation with the iNMPC (red), regular NMPC (blue),
standard linear MPC (green) and TDMPC (cyan). Top, left: Configurations
of the iNMPC response, and positional response (x0(t), y0(t)) with all
considered controllers. The wheelbases are drawn for the terminal config-
uration. Top, right: The lateral positional tracking error. Center, right: The
trailer heading angle. Bottom, left: Velocity. Bottom, right: Steering angle.

maneuver depends on the trailer’s lateral positional error and
heading error at the terminal time, these signals will be the
focus of our comparison. We now include simulations with:

(i) The standard LMPC, implemented as in Section III;
(ii) The TDMPC in [18] as described in Section III;

(iii) The standard NMPC in Section IV, omitting η in Σs;
(iv) The iNMPC in Section IV, including η in Σs,

and present results from Matlab simulations and HIL simula-
tions on Scalexio [17].1 In contrast to the previous example,
we make the simulation more realistic by including gear
shifting dynamics, forcing the vehicle to stand still 1.5
[s] while shifting between forward and reverse gears. The
velocity is constrained to v(t) ∈ [0, 3] [m/s] and v ∈ [−3, 0]
[m/s] in forward and backward motion, respectively. Further-
more, as the parking maneuver is preceded by forward path
following, we sample the initial tracking errors in accordance
with the stationary tracking error distribution reported for the
forward motion in Table I (see parameters in the appendix).

One of 103 MC-realizations is shown in Fig. 4, and the
statistics of the simulation study are summarized in Table III.
All of the considered controllers yield visibly good trajectory
tracking in this particular realization. However, a closer
inspection of the error statistics shows that the benchmark
MPC approaches (i)–(iii) result in significant offsets in the
trailer’s lateral tracking error. For the specific maneuver
considered in Fig. 4, the expected terminal lateral errors for
the regular NMPC, linear MPC and TDMPC are 0.1672
[m], 0.1298 [m] and 0.1177 [m], respectively. Intuitively,
an NMPC will do a better job at utilizing the nonlinear
prediction model, and should yield better performance if we
have the same parameterization of Σr and Σ. As there is a

1The NMPCs are implemented in Simulink, but the linear MPCs are
simulated in Matlab. As such, the noise realizations differ in the MC runs.
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Fig. 5. Lateral positional tracking error, η̇, with the iNMPC (red), regular
NMPC (blue), LMPC (green) and TDMPC (yellow), summarizing the
statistics from 103 MC-executions in terms of the mean error (full line)
and the largest absolute error over all realizations (dotted).

TABLE III
COMPARISON OF THE TERMINAL ERRORS WITH THE FOUR CANDIDATE

MPCS IN 103 MC-RUNS WITH A COMPLEX PARKING MANEUVER

Error Unit iNMPC Regular NMPC

Mean 2σ Mean 2σ

x0 − xr0 [m] 0.0896 0.1082 0.1400 0.0435
y0 − yr0 [m] 0.1843 0.2540 0.0347 0.2516
|η̇| [m] 0.0274 0.1310 0.1672 0.2263

Error Unit Linear MPC TDMPC

Mean 2σ Mean 2σ

x0 − xr0 [m] 0.1650 0.0558 0.1627 0.0563
y0 − yr0 [m] -0.1004 0.2605 -0.0895 0.2595
|η̇| [m] 0.1298 0.2852 0.1177 0.2850

modeling mismatch, for this particular maneuver, the linear
MPCs outperform the NMPC in expectation. However, the
variance of the NMPCs terminal lateral positional tracking
error is smaller than that of the linear MPCs. A such, the
worst realizations in the linear MPC yields significantly
larger errors than the NMPC.

In contrast to the benchmark controllers, the trailer’s
terminal lateral error of the iNMPC is 0.0274 [m]. Indeed,
the MC results in Table III confirm this to be the case, with
the iNMPC achieving an expected terminal lateral tracking
error of < 3 [cm] and an absolute error of <15 [cm] with
probability p = 0.976, despite the noise and disturbances
added in the simulations. When studying Fig. 5, we observe
a significant difference in the worst tracking error achieved
over the MC-executions. This is in the range of 0.5 [m] with
the LMPC and TDMPC. The iNMPC never exceeds 0.3 [m].

Finally, to demonstrate that the iNMPC implementation is
real-time feasible, the computation times for solving the OCP
in (12) on the Scalexio unit are provided in Fig. 6. These
timings never exceed the limit of 50 [ms] when running the
iNMPC at 20 [Hz] with a horizon length N = 40. Indeed,
most computation times are well below this threshold, with
an average computation time of < 4 [ms] per time-step.

Fig. 6. Computation times per control time step of the iNMPC in Scalexio.

Fig. 7. The 95% confidence interval of the tracking error with the iNMPC
as a function of the hitching offset in the controlled system, Σ, from 103 MC
simulations. The dashed lines indicate the terminal errors when the hitching
offset is known. Top: Backward motion. Bottom: Parking maneuver.

C. Robustness to Hitching Offsets

As mentioned in Remark 2 and demonstrated in Section V-
A, modeling errors in the hitching offset have significant
effects on the trailer’s heading angle and lateral position,
particularly in reverse motions. To study the robustness of
the iNMPC to such modeling errors, the nominal offset of Σr
and Σs is assumed to be 0.2286 [m], while the actual hitching
offset of the simulation model, Σ, is varied from 0.076 [m]
to 0.381 [m]. We reuse the backward motion along a straight
path and parking maneuver in Section V-B. The simulation
results are presented in Fig. 7, showing the 95% confidence
interval of the terminal lateral positional and heading errors
of the trailer as a function of the hitching offset.

For backward motions along a straight path, we find that
the trailer’s lateral error and heading error are constant as
a function of the offset modeling error (top two subplots).
Here, the iNMPC achieves perfect tracking in expectation.
However, for the parking maneuver, the trailer’s lateral error
and heading error are approximately linear in the hitching
offset (bottom two subplots). Here, we speculate that the
maneuver is too short to completely suppress the effects of
the hitching errors. As such, while the proposed iNMPC
improves performance in expectation under an uncertain
hitching offset with respect to the three benchmark MPCs
(see Fig. 4), there is trade-off between performance and the
hitching-offset uncertainty for complex parking maneuvers.



VI. CONCLUSIONS

We present an integral action NMPC to address the prob-
lem of steering angle biases and uncertain hitching offsets
in complex articulated vehicle parking, involving both gear
shifting dynamics and non-standard reference trajectories.
In particular, we leverage CasADi and PRESAS to con-
struct an SQP-based controller that directly minimizes the
lateral positional integral tracking error. This approach was
found to yield significant performance improvements over
the three considered benchmark MPCs (the standard LMPC,
the TDMPC, and the standard NMPC), especially when con-
sidering maneuvers that involve reversing. These conclusions
were drawn from several MC studies with hardware-in-the-
loop simulations, involving measurement noise, parameter
errors, and realistic parking maneuvers generated by BI-
AGT [24]. We found that the proposed iNMPC resulted in
an expected terminal lateral tracking error of <3 [cm] for this
maneuver, significantly better than the benchmark MPCs.

Future work will include running experiments to validate
the integral action NMPC using a real articulated vehicle.
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APPENDIX

The parameters in Table IV correspond to high-grade sens-
ing and articulated semi-trailer with standard US dimensions.

TABLE IV
PARAMETERS USED IN THE QUANTITATIVE SIMULATION STUDIES.

Simulation Controlled Nominal Unit Description
parameter system (Σ) (Σr,Σs)

σx0 , σy0 0.05 – m Position noise
σθ0 , σθ1 0.2 – deg Heading noise
σv 0.01 – m/s Velocity noise
σφ 0.1 – deg/s Steering rate noise

σ0,1, σ0,2 0.1 – m Position error (Sec. V-A)
σ0,3, σ0,4 0.4 – deg Heading error (Sec. V-A)
σ0,5 0.02 – m/s Velocity error (Sec. V-A)
σ0,6 0.2 – deg/s Steering error (Sec. V-A)

σ0,1, σ0,2 0.01 – m Position error (Sec. V-B)
σ0,3, σ0,4 0.05 – deg Heading error (Sec. V-B)
σ0,5 0.01 – m/s Velocity error (Sec. V-B)
σ0,6 0.025 – deg/s Steering error (Sec. V-B)

d0 5.38 5.38 m Wheel base (tractor)
d1 11.73 11.73 m Wheel base (trailer)
a U ([0.08, 0.38]) 0.229 m Hitching offset
τ0 U ([0.9,1.1]) 0.1 s Actuator time const.
τ1 U ([0.9,1.1]) 0.1 s Actuator time const.
φb 1 0 deg Steering angle bias

TABLE V
DIAGONAL ELEMENTS OF THE WEIGHT MATRICES OF THE NMPC COST.

Par. Forward Motion Backward Motion

Q [10, 10, 5, 0.1, 0.5, 0.8, 1] [0.2, 0.2, 0.1, 200, 0.5, 0.6, 1.5]
T [0.1, 0.1, 0.1, 1, 10, 1] [5, 5, 8, 20, 5, 6]
P [10, 10, 5, 0.1, 0.5, 0.8, 1] [0.2, 0.2, 0.1, 200, 0.5, 0.6, 1.5]
R [0.1, 0.1] [0.1, 0.1]
ρ 20 20

Var. Lower Bound (·)min Upper Bound (·)max

x̄ [?, ?, 0, 0,−3,−36, ?] [?, ?, 360, 360, 3, 36, ?]
u [-3,-36] [3,36]
z [?, ?, ?,−89,−5, 36,−15] [?, ?, ?, 89, 1, 36, 15]
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