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Abstract— In this paper, we propose a motion planner for
quadrotors in windy environments. We extend a well-known
convex polynomial optimization (CPO) method to incorporate
known stochastic input uncertainties. In particular, we focus
on a quadrotor unmanned aerial vehicle (UAV), and propose
a new objective for direct minimization of the squared L2-
norm of the UAV thrust, ‖f‖2L2

. We show that the first two
moments of ‖f‖2L2

are convex in the optimization variables of
the CPO problem, and can be minimized directly. Furthermore,
we demonstrate that a constrained CPO approach can be
used in this setting, contrary to the more popular uncon-
strained approaches. We provide examples demonstrating: (i)
that inclusion of wind can yield significant improvements in the
considered cost; (ii) that re-planning of complex paths at can
be done at rates exceeding 100 Hz; and (iii) that the proposed
method facilitates online re-planning leveraging wind in free-
space defined as the union of convex sets.

I. INTRODUCTION

With their high thrust-to-weight ratio, modern quadrotors
are capable of extreme feats of agility, with applications
ranging from indoor UAV racing [1] to outdoor resource
monitoring [2]. In both scenarios, online re-planning of
the motion plan is necessary at high rates, in which case
the property of differential flatness [3] is often used in
combination with simple parametrizations of the motion plan
to formulate tractable optimization problems [4]. Recently, it
has become popular to consider trajectories formed in Beziér
curves [5], [6], due to the ease with which the trajectories can
be confined to convex sets constituting free-space. Similarly,
a related polynomial parametrization of the UAV motion
is frequently used to define the planning problem [4], [7],
[8], and to compute motion primitives [9]. We refer broadly
to such polynomial-based approaches as convex polynomial
optimization (CPO) planning methods.

While CPO approaches permit fast and flexible re-
planning, they come with two significant drawbacks. First,
CPO methods rely heavily on the differential flatness equa-
tions for trajectory tracking, which limit their flexibility. For
instance, the approaches in [4], [7], [8] cannot easily in-
corporate estimated exogenous disturbances such as wind or
drag when computing the motion plan. Second, the objective
in the CPO relates to the total variation of the derivatives
of the flat output trajectories. This can accommodate the
kinetic and potential energy of the UAV, but signals such
as the UAV thrust are generally not incorporated directly in
the cost function of the CPO methods.

We address these drawbacks in existing methods using the
observation that linear combinations of the flat output deriva-
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Fig. 1. A UAV motion plan generated with the proposed CPO method.

tives under the squared L2-norm can be included directly
in the CPO objective function. Leveraging this insight, we
demonstrate that signals such as the thrust in the non-linear
UAV dynamics, f , can be minimized over the polynomial
coefficients when known forces are acting on the UAV.
Additionally, we show that the moments of this modified cost
are convex in the original CPO optimization variables when
the disturbance is modeled as stochastic. Consequently, we
obtain a novel version of the CPO that incorporates input
disturbances, with direct application to planning in wind
vector fields. With the proposed modification to the CPO
cost, the online re-planning [4], [7], [9] which are typically
used for agile indoor flight can be employed for outdoor
flight and leverage wind information in the path planning.

A. Contributions
The contributions of this paper are threefold:
• We show that a linear combination of polynomial

derivatives under the squared L2-norm is convex and
can be minimized together with the usual CPO cost.

• We use this to plan the motion of a UAV perturbed by
a viscous friction term in the wind speed, minimizing
‖f‖2L2

with the wind described as a polynomial in time.
• We show that, for stochastic wind (specifically Gaussian

distributed wind speeds), the first two moments of
‖f‖2L2

are convex in the CPO decision variables.
We demonstrate the approach to motion planning in several
simulation examples (see Fig. 1), highlighting the impact of
using wind information in the planner (even if it is uncertain).

B. Outline
We give the preliminaries in Sec. II, followed by a brief

review of the CPO method in Sec III. A set of modeling
assumptions related to the wind disturbance are introduced
in Sec. IV, followed by the definition of a new objective
function with deterministic wind speeds in Sec. IV-B, and
stochastic wind speeds in Sec. IV-C. Supporting numerical
results for UAV path planning are given in Sec. V.
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Fig. 2. Example of a convex polynomial optimization solution with m = 50 splines of degree n = 6, enforcing continuity in the first four derivatives.

II. PRELIMINARIES

Vectors are written x ∈ Rn with [x]i denoting the ith

element of x, and ei denotes a unit vector where [ei]i = 1.
Matrices are indicated in bold font as X , and the element
on row i and column j of X is written [X]i,j . Here,
x ∼ N (µ,Σ) indicates that x is Gaussian distributed with
mean µ and covariance Σ, and x ∼ U(I) indicates that x
is uniformly distributed over an interval I . Additionally, we
let ‖x‖2 = (x>x)1/2, denote ‖x‖A = (x>Ax)1/2, and
write the matrix 1-norm as ‖A‖1 = maxj

∑
i |[A]i,j |. The

reciprocal condition number, defined as

κ(A) ,
1

‖A‖1‖A−1‖1
∈ [0, 1]. (1)

For a univariate random variable X with density function
pX(x), we let EpX(x)[x] =

∫∞
−∞ xpX(x)dx denote its mean

(often written E[x] for brevity), and V[x] =
∫∞
−∞(x −

E[x])2pX(x)dx denote its variance. Here, we recollect a
result for the computation of moments of quadratic forms.

Lemma 1 If x ∼ N (µ,Σ) and A = A>, the first moments
of Q(x) = (x− µ)>A(x− µ) + b>(x− µ) + c are

E[Q(x)] = Tr(AΣ) + c, (2a)

V[Q(x)] = Tr(AΣAΣ) + b>Σb. (2b)

A function f : A 7→ B is said to belong to f ∈ Ck(A,B) if
it is k-times continuously differentiable on A. Let S : R3 7→
R3×3 such that S(a)b = a× b is the cross product.

A. Polynomials and L2-norms

Let P : [0, T ] 7→ Rd be a curve comprised of m segments
{Pi : Ωi 7→ Rd}mi=1, where Ωi = [0, Ti], Ti > 0, d > 0, and

P(t) = Pi(t− τi), τi =

i−1∑
j=1

Tj , T =

m∑
i=1

Ti, (3)

with T0 = 0 (see Fig. 2). Furthermore, let each segment be
defined by sets of polynomial splines Pj

i : Ωi 7→ R such that

Pi(t) = (P1
i (t), . . . ,Pd

i (t)) ∈ Rd. (4)

As we concerned with polynomials, these are defined as tu-
ples (Pj

i ,p
j
i ), where pji ∈ Rn+1 denotes a set of coefficients

such that if t = (1, t, . . . , tn) ∈ Rn+1, then Pj
i (t) = pji · t.

Let ‖P‖L2(Ω) denote the standard L2-norm,

‖P‖L2(Ω) =
(∫

Ω

P(t) · P(t)dt
)1/2

. (5)

When obvious, we omit the domain, permitting a shorthand

‖P‖2L2
=

m∑
i=1

‖Pi‖2L2
=

m∑
i=1

d∑
j=1

‖Pj
i ‖2L2

. (6)

In the following, the sub-index i ∈ [1,m] refers to a spline
index, and the super-index j ∈ [1, d] refers to a dimension.

B. UAV Dynamics and Differential Flatness

The UAV is configured on (r,R) ∈ R3 × SO(3) with
SO(3) = {R ∈ R3×3 : R>R = I,det(R) = 1}. Here,
{G} is a global frame with basis {ei}3i=1, and {B} denotes
the body frame of the UAV with a basis {eBi }3i=1, where
[e1, e2, e3] = R>[eB1 , e

B
2 , e
B
3 ], as depicted in Fig. 3. From

the Euler-Lagrange equations [10, Chapter 2.3.5], we have

ṙ = v (7a)
mv̇ = fRe3 −mge3 (7b)

Ṙ = RS(ω) (7c)
Jω̇ = S(Jω)ω + τ , (7d)

where r ∈ R3 [m] defines the position of the UAV in the
global frame {G}; v ∈ R3 [m/s] defines the velocity of the
UAV in {G}; R ∈ SO(3) defines the attitude of the UAV;
ω ∈ R3 [rad/s] denotes the usual attitude rates defined in
{B}; f > 0 [N] defines the thrust generated by the rotors;
τ [N·m] denotes the torques defined in {B}. The model is
parameterized by a positive definite symmetric inertia 0 ≺
J ∈ R3×3 [kg·m2], a positive mass m > 0 [kg], and a
constant positive gravitation acceleration g > 0 [m/s2]. An
interesting property of the UAV dynamics is that the system
is differentially flat [7], [11].
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Fig. 3. The UAV geometry and frames (same color coding as in Fig 1).



Definition 1 (Differential Flatness [3]) A system ẋ =
f(x,u) with x ∈ Rn, u ∈ Rm, and where f is a smooth
vector field, is differentially flat if there exist outputs γ ∈ Rm,

γ = h(x,u, d
dtu, . . . ,

dr

dtru), (8)

and associated functions x = φ(γ, d
dtγ, . . . ,

dq

dtq γ) and
u = β(γ, d

dtγ, . . . ,
dq

dtq γ) where {h,φ,β} are smooth.

The system (7) is differentially flat in the position, r,
and a one-dimensional parametrization of the rotation, R
(often the so-called yaw angle). For a detailed derivation of
these maps, refer to [12], [13]. The implications of the UAV
being differentially flat are that feasible motion plans can be
defined in smooth functions of time, such as polynomials [4].
In the following, we focus on the positional subspace of the
flat outputs, and plan motions in the form P ∈ C4(Ω,R3)
using the polynomial representation in Sec II-A.

III. CONVEX POLYNOMIAL OPTIMIZATION

It is well known that the integral ‖Pj
i ‖2L2

can be written
as a quadratic form in the polynomial coefficients (see
Appendix B).1 This is leveraged in the CPO methods, which
define a cost in the L2-norms of the polynomial derivatives

Jj
i (pji ) =

n∑
k=0

ck‖(dk/dtk)Pj
i (t)‖2L2

= ‖pji‖2Qj
i (Ti)

, (9)

where c = (c0, . . . , cn) ∈ Rn+1
>0 is a vector that defines a

relative weighting of variations in the derivatives of Pj
i (t).

This cost can be minimized efficiently, and it is simple to
impose useful constraints on the polynomials. For instance,

Aj
i (t)p

j
i = bji (t) =


d0

dt0P
j
i (t)

...
dn

dtnP
j
i (t)

 ∈ Rn+1, (10)

can be implemented to encode end-point constraints, which
are typically defined in terms of {Aj

i (0), bji (0)}i,j and
{Aj

i (Ti), b
j
i (Ti)}i,j (see Appendix B). Similarly, continuity

across end-points can be expressed with equality constraints

Aj
i (Ti)p

j
i −Aj

i+1(0)pji+1 = 0, (11)

for every j ∈ [1, d], i ∈ [1,m−1]. Of course, only a subset of
these constraints need be applied, and care must to be taken
in ensuring that the resulting set of constraints are feasible.
By the property in (6), we can write the CPO cost compactly

J(p) =

n∑
k=0

ck‖ dk

dtk
P(t)‖2L2

=

n∑
i=1

m∑
j=1

Jj
i (pji ) = ‖p‖2Q,

(12)
and define the associated quadratic program

min
p
J(p) subject to Ap = b. (13)

1This is seen by computing the Hessian of Jj
i (pj

i ) in (9) with respect
to the polynomial coefficients pj

i , yielding 2Qj
i (Ti) � 0 if c0 6= 0. The

exact way to compute this matrix is given in Algorihm 1 in the appendix.

IV. PLANNING WITH WIND

To introduce wind in the path planning, we make a set
of assumptions on the UAV–wind interaction, here modeled
exogenous forces acting on the translational dynamics (7b).
To this end, we consider the drag equation, expressing the
force experienced by an object moving through a fully
enclosing fluid [14, Chap. 4.5]. The force on the object is

fd(u) =
1

2
ρcdAu

2 ∈ R, (14)

where u [m/s] is the velocity of the object relative to the
fluid, ρ [kg/m3] is the fluid mass density, A [m2] is the
reference area of the object, and cd [·] is a drag coefficient.
Taking a first order Taylor expansion at a nominal u◦ yields
fd(u) = 1

2ρcdAu
2
◦ + ρcdAu◦(u − u◦) + o(‖u − u◦‖2). As

such, we model the force on the UAV as a piece wise linear
function in the relative velocities of the wind and the UAV.

Assumption 1 Over the interval
∑i−1

j=0 Tj ≤ t <
∑i

j=0 Tj ,
the UAV–wind force interaction can be modeled approxi-
mately as a linear term in the relative velocity of the UAV,
fw(t) = li−Ki(v(t)−vw(t)), where vw ∈ R3 is the wind
speed li = (l1i , l

2
i , l

3
i ) ∈ R3, and Ki ∈ R3×3.

The parameters {(li,Ki)}mi=1 can be found by a direct
linearization of the drag equation (14), or learned from data.

Assumption 2 The UAV-wind interaction is isotropic, in the
sense that K = diag(k1

i , k
2
i , k

3
i ) with kji > 0 ∀i ∈ [1,m].

Such a UAV–wind interaction is compatible with the CPO
methods, and we can proceed by modeling the wind speed
vw as a set of polynomials {(Wj

i ,w
j
i )}i=m,j=3

i=1,j=1 defined
over the same domains {Ωi}mi=1 as {(Pj

i ,p
j
i )}i=m,j=3

i=1,j=1 . We
assume following of the polynomial coefficients definingW .

Assumption 3 Assume one of the following wind models:

3A (Deterministic) The coefficients wj
i of eachWj

i : Ωi 7→
R are known and deterministic ∀i ∈ [1,m], j ∈ [1, d].

3B (Stochastic) The coefficients wj
i of each polynomial

Wj
i : Ωi 7→ R are stochastic and Gaussian distributed

with wj
i ∼ N (µ̄j

i , Σ̄
j
i ) for all i ∈ [1,m], j ∈ [1, d].

The resulting wind model is interesting, as it is directly
compatible with a high-dimensional Gaussian process model
over the coefficients of W . We would likely not leverage
the full flexibility of such an approach, but rather a linear or
quadratic approximation of the wind speed in time. Next we
consider the implications of Assumptions 1–3 in CPO.

A. Implications of the Wind Modeling

Under Assumption 1, the translational dynamics of the
UAV perturbed by forces caused by the wind takes the form

mv̇(t) = f(t)R(t)e3 −mge3 + fw(t), (15)

and asR vanishes under the norm (and dropping the indices),

‖f‖22 = ‖mv̇+mge3−fw‖22 = ‖mv̇+mge3−l+K(v−vw)‖22



If we consider the motion of the UAV as parameterized by the
polynomials P(t), we can express a polynomial U(t) ∈ R3

with splines (U j
i ,u

j
i ), such that ‖f‖2L2

= ‖U‖2L2
, where

Ui(t) = m d2

dt2Pi(t) +mge3 − li +Ki(
d
dtPi(t)−Wi(t)).

(16)
As such, we can define a cost in the polynomial coefficients

C(p) = ‖f‖2L2
=

m∑
i=1

‖Ui‖2L2
=

m∑
i=1

3∑
j=1

‖U j
i ‖2L2

. (17)

where the last equality holds given Assumption 2 (while re-
alistic and simplifying implementations, it is not necessary).

B. Planning with a Deterministic Wind Model

As U i
j(t) is a linear combination of the derivatives of Pj

i (t)

and Wj
i (t), there exists a map relating their coefficients,

uj
i = M j

i p
j
i +mj

i , (18)

where, in the context of the differential relationship in (16),

mj
i = −kjiwj

i +mge1 − lji , (19a)

[M j
i ]r,c =


kji r, if r + 1 = c

mr(r + 1), if r + 2 = c

0 otherwise

(19b)

which can be formed under Assumption 3A. To proceed, let
Q̄j

i (Ti) denote the matrix in (9), evaluated with c0 = 1 and
ci = 0 for all i 6= 0. Dropping the argument and utilizing (9),

‖U j
i ‖2L2

= ‖uj
i‖2Q̄j

i

= ‖M j
i p

j
i +mj

i‖2Q̄j
i

(20)

= ‖pji‖2(Mj
i )>Q̄j

iM
j
i

+ (mj
i )
>Q̄j

iM
j
i p

j
i + ‖mj

i‖2Q̄j
i

which is notably convex in pji , as (M j
i )>Q̄j

i (Ti)M
j
i � 0.

This is useful, as the cost C(p) directly relates to signals
in (7), but here we can make a more general statement.

Remark 1 A linear combination of derivatives of P under
the squared L2-norm is convex in the coefficients p.

This insight permits a modification of the CPO, as follows

min
p
J(p) + αC(p) subject to Ap = b. (21)

for some relative weighting factor α > 0. This equality-
constrained quadratic program can be solved efficiently by
inverting the associated the KKT conditions [15].2

C. Planning with a Stochastic Wind Model

While (21) can be solved under Assumption 3A, this
assumption can be challenged. The exogenous forces, fw,
caused by the UAV-wind interaction in (15) will never be
known with certainty. Even if the model can be consid-
ered accurate, the wind speed will have to be estimated
or assumed. In both cases, it is interesting to see how

2To facilitate implementations, we give a convenient decomposition of
the cost as C(p) = p>Hp + f>p + c by Algorithm 3 in Appendix B.

stochastic wind speeds affect the cost used in the CPO
planning. To study this, we instead consider Assumption
3B and take the wind speed to be Gaussian distributed in
its polynomial coefficients, that is, wj

i ∼ N (µ̄j
i , Σ̄

j
i ). The

reason for considering such a wind model is that a likely
candidate for wind estimation is a spatio-temporal Gaussian
process over the polynomial coefficients wj

i . Here, we note
that uncertainty of this kind only enters the constant term
mj

i ∼ N (µj
i ,Σ

j
i ) in the map (18), where then

µj
i = −kjµ̄j

i +mge1 − lji , Σj
i = (kji )2Σ̄j

i . (22)

By completion of squares and leveraging Lemma 1, the first
two moments of ‖U j

i ‖2L2
can be expressed analytically as

Ep(wj
i )[‖U

j
i ‖2L2

] = Tr(Q̄Σj
i ) + 2(µj

i +M j
i p

j
i )
>Q̄j

iµ
j
i

− µj
i Q̄

j
iµ

j
i + (M j

i p
j
i )
>Q̄j

iM
j
i p

j
i , (23a)

Vp(wj
i )[‖U

j
i ‖2L2

] = Tr(Q̄j
iΣ

j
i Q̄

j
iΣ

j
i ) (23b)

+ 4(µj
i +M j

i p
j
i )
>Q̄j

iΣ
j
i Q̄

j
i (µ

j
i +M j

i p
j
i ),

Notably, both of these expressions are convex in the polyno-
mial parameters: (23a) for the same reason the (20) is convex,
and (23b) due to Q̄j

iΣ
j
i Q̄

j
i � 0, even if Σj

i is degenerate.
Consequently, in addition to directly minimizing the expected
UAV thrust subject to wind, we may directly minimize the
variance of the cost over the polynomial coefficients,

min
p
J(p) + αEp(w)[C(p)] + βVp(w)[C(p)]. (24)

It is important to note that the random variable ‖U j
i ‖2L2

is not Gaussian and generally has a non-zero kurtosis, but
if we have a large number of splines and many different
realizations of wj

i , the cost distribution will approach a
Gaussian by the central limit theorem. While the expressions
in (23) are exact, they do not comprise sufficient statistics
to represent the cost distribution, but still prove useful in
reasoning about and minimizing uncertainty in the cost.

V. NUMERICAL RESULTS

In this section, we provide several numerical results to
illustrate the effects of modifying the CPO cost. First, we
verify the theoretical developments in a simplified planning
example, highlighting that the wind can only be leveraged
if the trajectory is sufficiently unconstrained. We then show
the impact of increasing α in the modified cost function, and
finally demonstrate the approach in a re-planning scenario.

A. Consequences of Incorporating Wind in the Planning

To illustrate the importance of incorporating the wind
information in the motion plan, even if it is only known
approximately, we consider a simplified example with:
(i) The CPO in (13) with no modeled wind (α = β = 0);

(ii) The CPO in (24) with stochastic wind (α = β = 1).
The two problems are solved with (m, d, n) = (10, 3, 6),
ensuring that P ∈ C4([0, T ],R3) by enforcing (11), and
applying end-point constraints at P(0) ∼ N (0, 4I) and
P(T ) ∼ N (0, 4I) using (10). To study the impact of deriva-
tive constraints on the resulting thrust, we let d

dtP5(T5) ∼
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N (0, 4I) and d2

dt2P5(T5) ∼ N (0, 4I). The domains are
sampled as Ti ∼ U([1, 2]), the remaining parameters are
given in Appendix A. For simplicity, the means µ̄j

i are found
by solving a CPO similar to Figure 2, and Σ̄j

i = γ1e1e
>
1 +

γ2e2e
>
2 + γ3e3e

>
3 + 0.01I , where γi ∼ U([0.1, 0.2]). In the

Monte–Carlo runs, only the realization of the wind differs.
The solution associated with one realization of the wind

model is depicted in Figure 4, along with the distribution
of C(p) from 106 Monte–Carlo runs, also plotting the asso-
ciated first two moments of the cost computed analytically
by (23). This example demonstrates that modeling of the
wind and a mixed minimization of the original CPO cost
and the thrust cost affects the motion plan significantly.
Furthermore, minimizing over the thrust cost only has a sig-
nificant impact if there is some freedom in the velocities and
accelerations of the trajectory. Around t ≈ 8, the forces of
the two motion plans are near-identical due to the constrains
imposed on dk

dtk
P5(T5). Despite this, we note that the CPO

in (ii) yields a statistically significant improvement over the
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Fig. 5. Top three plots: The polynomial trajectory P ∈ C4(Ω,R3)
computed using a CPO for increasingly large α (from black to blue).
Bottom: Expected thrust cost Ep(w)[C(p)] as a function of α used in
defining the cost in (24).

CPO in (i) when considering ‖f‖2L2
. Finally we note that the

impact of the wind can easily be studied through (23) without
resorting to Monte–Carlo runs, as the analytical moment
computations are consistent with the empirical statistics. As
such, the formulas provided in (23) can be used both for
diagnostics purposes and for trajectory generation.

B. A Realistic Cyclic Planning Example

Next, we provide a realistic planning example where the
UAV is to fly through a sequence of convex polyhedral sets
in space, effectively acting as mixed equality and inequality
constraints on the polynomial coefficients. The definition of
these constraints is omitted, but they are given in the form

Cj
iPi(0) ≤ cji , Dj

iPi(0) ≤ dji , ∀i = 1, . . . ,m. (25)

Planning is done in the three-dimensional positional subspace
of the flat outputs of the UAV. Continuity is enforced in
the first four derivatives, and also between the endpoint of
the terminal spline and the first spline resulting in a cyclic
trajectory. In total, m = 6 splines of dimension d = 3 and
degree n = 6 are used in the optimization, resulting in a
problem with 126 decision variables and 106 constraints, of
which 32 are inequality constraints. The resulting path plan
with the CPO including wind is depicted Fig. 1 (with α =
24), and the CPO solutions with an increasing weighting



Upper corridor

Center corridor Lower corridor

Fig. 6. Illustration of re-planning with wind using the proposed modified CPO. Top left: Three obstacles (black) and 9 regions constituting C defining
free-space (blue), and each associated with a specific wind speed, here depicted in the mean (red) about the centroids. Bottom left: Depiction of the
non-empty lower-dimensional sets Kab (red) with the route between centroids of the sets C illustrating non-empty intersections as lines between these
centroids (green). The figure also illustrates the start and terminal regions of the trajectory as two red boxes, each entirely contained in one of the sets Cl.
Right: Best solutions evaluated by the CPOs without accounting for wind (gray) and with wind information (blue) when re-planning over 10 [s].

of the thrust cost is depicted in Fig. 5. The computational
times3 for solving this problem is less than 10 [ms]. These
computational times are exceptionally small, permitting re-
planning of the entire trajectory in Fig. 1 at rates exceeding
100 [Hz]. Furthermore, the trajectory becomes more volatile
as α increases, but the expected cost in ‖f‖2L2

decreases with
α as the UAV increasingly leverages wind information.

C. Re-planning with Wind in Free-Space

There are myriad ways in which the proposed modified
cost function can be used in practice. One such example
is to grow a lower-dimensional rapidly exploring random
tree (RRT) in free-space [16], and apply the CPO as a
final step to generate a smooth and dynamically feasible
trajectory, as discussed in [4]. The proposed modification
to the CPO is entirely compatible with this idea, but here
we instead demonstrate how it can be leveraged in graph-
based planning, leveraging the speed of the optimization to
perform re-planning in free-space defined by a set of convex
polyhedral sets analogous to [5]. To start, we consider a
convex polyhedral set defined similar to (25). Let

Cl = {x ∈ R3|Ax ≤ b,Aeqx = beq}, (26)

denote free-space, and consider a set of L regions C =
{Cl}Ll=1. Assume the existence of a function that takes two
such regions, and represents their intersection Kab = Ca∩Cb
in the same form. In graph-based planning, it is common
to construct a distance matrix, defining the cost-to-go from
one node to the next. Here, we instead consider a matrix of
polyhedral sets K, in which [K]a,b = Kab, and evaluate the
cost of going from Ca to Cb by solving a CPO that enforces

3Using Matlab’s quadprog on an 11th Gen Intel i7 @ 2.80GHz.

constraints in the form of (25). For instance, if we would
like to steer a UAV from Ca to Cd, then a possible solution
is found by solving a CPO constrained by Kab,Kbc,Kcd if
these are all non-empty. The number of routes to be checked
depends on L and the connectivity of K.

To demonstrate this, consider the environment in Fig. 6
where three-dimensional space is decomposed into a set of
L = 11 convex polyhedral sets (blue) with a resulting sparse
K (red). In this example, there are only five routes to check
(green), which given the computational speeds reported in
the previous example can be done at approximately 20 [Hz].
Each region in space is associated with a wind speed, with
the mean wind velocity illustrated in Fig. 6. The wind speed
is here taken to be time-invariant with only the constant
term of each wind polynomial [wj

i ]1 6= 0. The wind is
sampled from a Gaussian distribution at 10 [Hz] to simulate
measurements on the wind speed taken by a sensor.

When solving the CPO without wind, the same solution
is found on all time steps. In contrast, the CPO incorpo-
rating wind information adapts the path with respect to the
measured wind and its effect on the rotor thrusts. In some
realizations (36%), the middle and lower paths are optimal,
in which case the CPO including wind correctly selects these
paths. In all realizations, the expected thrust cost, C(p), is
lower when including the wind. This demonstrates the utility
of considering the effect of the wind of the UAV in planning.

Interestingly, the planner selects a point with high eleva-
tion in the initial set (box at large x) and lower elevation in
the terminal set (box at small x). This is due to the gravita-
tional field which is modeled in the thrust cost. Knowledge
of this can be used to minimize the thrust used during the
maneuver. This behavior is not seen in conventional CPOs,
as the snap cost in (12) is agnostic to gravitational effects.



VI. CONCLUSIONS

In this paper, we propose an additional term in the cost
function of the conventional CPO planners which permits
a direct minimization of the squared L2-norm of the UAV
thrust, while incorporating deterministic or stochastic in-
formation on wind speeds. Examples were given with a
constrained CPO approach, but one can formulate similar
unconstrained versions with the same objective following [4].
This permits a flexible and fast path planning suitable for
online re-planning, which is a necessity when considering
wind information. While the ideas were developed specifi-
cally for UAVs subject to wind disturbances, we emphasize
that Remark 1 holds for any signal that can be expressed as
a linear combination of the derivatives of the flat outputs,
and that such costs be expressed for any differentially flat
system that currently employs CPO motion planning [8].

Future work will demonstrate the approach in practice
using the Crazyflie 2.1 platform, performing re-planning of
the UAV motions with partial estimates of the wind field.
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APPENDIX

A. Nominal Simulation Parameters

In the simulations, we let m = 0.1, g = 9.81, k1
i = k2

i =
k3
i = 0.2, and lji = 0 ∀ i = 1, . . . ,m, j = 1, . . . , 3.

B. Matrix Expressions and Algorithms
The three key algorithms required to formulate the snap

costs, the constraints, and the wind costs for individual spline
segments are provided in Algorithms 1–3.

Algorithm 1 get_Q(·), factorization of L2
2-cost over [0, T ].

Receive: c, n
1: Set Q = 0 ∈ Rn+1×n+1

2: for k = 0, . . . , n do
3: Set Qk = 0 ∈ Rn+1×n+1

4: for i = 0, . . . , n do
5: for j = 0, . . . , n do
6: if i ≥ k and j ≥ k then
7: [Qk]i+1,j+1 = T i+j−2k+1

(i+j−2k+1)
8: for l = 0, . . . , k − 1 do
9: [Qk]i+1,j+1=[Qk]i+1,j+1(i−l)(j−l)

10: end for
11: end if
12: end for
13: end for
14: Q = Q+ ckQk

15: end for
16: Output Q

Algorithm 2 get_A(·), constraints on polynomial at time t.
Receive: t, n

1: Set A = 0 ∈ Rn+1×n+1

2: for i = 0, . . . , n do
3: for j = 0, . . . , n do
4: if j ≥ i− 1 then
5: [A]i+1,j+1 = tj−i

6: for l = 0, . . . , i− 1 do
7: [A]i+1,j+1 = [A]i+1,j+1(j − l)
8: end for
9: end if

10: end for
11: end for
12: Output A

Algorithm 3 get_QP(·), QP-factorization of cost with wind.
Receive: n,w, k,m, g, l

1: Set M = 0 ∈ Rn+1×n+1

2: Set m = −kw ∈ Rn+1×1

3: Set [m]1 = [m]1 +mg − l
4: for i = 1, . . . n do
5: [M ]i,i+1 = ik
6: if i+ 2 < n+ 1 then
7: [M ]i,i+2 = mi(i+ 1)
8: end if
9: end for

10: Compute Q̄ = get_Q(n, T, e1)
11: Set H = M>Q̄M , f = 2M>Q̄m, c = m>Q̄m
12: Output H,f , c

https://arxiv.org/abs/2205.04422
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