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MPC with Integrated Evasive Maneuvers
for Failure-safe Automated Driving

Terrence Skibik, Abraham P. Vinod, Avishai Weiss, Stefano Di Cairano

Abstract— Automated vehicles may encounter non-nominal
situations called failure scenarios, due for instance to errors in
perception or environment prediction. In some failure scenarios,
a risk area must suddenly be avoided, possibly at the price of no
longer satisfying all the constraints enforced in nominal driving
conditions. We propose a design for a failure-safe controller that
operates the vehicle according to the specifications in nominal
conditions, while ensuring that, should a known failure occur,
an evasive maneuver can be performed that avoids the risk
area and satisfies a possibly relaxed set of driving constraints.
We design evasive maneuver controllers parametrized in their
reference, and we leverage set based methods to determine the
region where such controllers satisfy the constraints and avoid
the risk area. Membership in such a region during nominal
operation is achieved by imposing additional constraints on the
controller for nominal driving. We demonstrate the approach
in simulations in a few different scenarios.

I. INTRODUCTION

As operations of automated vehicles expand to general
conditions, they will encounter situations that are not nom-
inal [1]. Some situations, which we will call “failure sce-
narios” or simply “failures”, may be caused by mechanical
or electronic malfunctions, or, much more commonly, from
failures in understanding the environment, such as missing,
misclassifying or wrongly predicting surrounding agents.

In the failure scenarios the automated vehicle must main-
tain safety, such as avoiding a dangerous zone, i.e., an
exclusion zone, that may be impossible while retaining
the specifications for nominal driving. Figure 1 shows an
example where the ego vehicle computes a nominal plan
based on a predicted motion of the other vehicles. However,
the actual motion of one of the other vehicles aggressively
cuts in front of the ego, which would lead to a risk of
collision should the nominal plan be followed. In this case,
the ego initiates an evasive maneuver that avoids entering the
risk zone where a collision may occur, at the price of being
more aggressive than in normal driving and of violating the
nominal traffic rules by driving on the shoulder.

A single controller could be designed for performing both
nominal and evasive maneuvers. However, it is hard to ensure
that the evasive maneuver behavior is only enacted in the
presence of failures. A different approach is to design a
control system that integrates a nominal controller with one
or more failure-handling controllers, the former providing
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Fig. 1. Failure scenario requiring evasive maneuver: the ego vehicle
computes a nominal plan based on a predicted motion of the other vehicles
maintains their lanes. The actual motion of one of the other vehicles cuts in
front of the ego vehicle, in a way that could lead to a collision. An evasive
maneuver avoids entering the risk zone, where collision may occur, at the
price of an aggressive sway maneuver that drives on the shoulder.

nominal behavior that satisfies all the rules, and the latter
providing evasive maneuvers when a failure is detected. In
this approach, when a failure is detected, the autonomous
vehicle must be in a condition that allows the evasive
maneuver to avoid the risk zone, while satisfying a set
of, possibly relaxed, constraints. The detection of failure is
usually addressed by the perception system. Our focus is
on determining conditions such that the evasive maneuver
succeed, and then designing a nominal controller that guaran-
tees such conditions and makes the evasive maneuver readily
available, should a failure be detected.

Here, we address such problem by: (i) designing evasive
maneuver controllers based on appropriate models, with
maneuver parameters as decision variables; (ii) determining
the set where the evasive maneuver controller satisfies the
maneuver constraints on vehicle and the traffic rules, and
avoids the risk zone; (iii) enforcing membership in such set
as constraints on the nominal controller, that also determines
the evasive maneuver parameters.

Set-based methods have been investigated for several
operations in automated driving, such as decision making,
motion planning, safety verification, and robust control, see,
e.g., [2]–[7] and the references therein. Motion planning
with failsafe trajectory is proposed in [8] for decoupled
and integrator-like longitudinal and lateral dynamics, where
failsafe maneuvers are not subject to any additional vehicle
constraints or traffic rules. The method proposed here draws
from our recent works in abort-safe control design [9], [10]
for spacecraft rendezvous [11]. Compared to such works,
we parametrize the evasive maneuvers by their target, i.e.,
reference, which allows for a degree of freedom in the ma-
neuver, as opposed to the passive safe abort in [9], that has no



actuation after failure, and the active safe abort in [10], that
allows actuation but cannot enforce state constraints other
than exclusion zone avoidance. The chosen parameterization
enables the computation of the sets where constraints are
satisfied and where the risk zone is avoided in an augmented
state-parameter space as in reference governors [12].

The nominal controller, implemented by model predictive
control (MPC) [13], determines the maneuver reference
to satisfy membership in both sets. MPC with integrated
reference manipulation has been developed in the past to
achieve recursive feasibility, see, e.g., [14], while here MPC
determines the maneuver reference to enlarge the area where
the evasive maneuver succeeds. A related construction for
exclusion zone constraints appeared [15], that only aims at
providing a method to modifying an existing control signal to
ensure safety, instead of an integrated failure-safe controller.

In what follows, in Section II we introduce the models for
nominal and evasive maneuvers, and formalize the problem.
In Section III we describe the computation of the sets where
the evasive maneuvers succeed. In Section IV we describe
the implementation of the failure-safe vehicle controller, such
that the existence of an evasive maneuver is guaranteed.
We validate the approach in simulations in Section V, and
conclusions are drawn in Section VI.

Notation: Z, Z0+, and Z+ are the sets of integers, nonneg-
ative integer and positive integers, and we denote intervals as
Z[a,b) = {z ∈ Z : a ≤ z < b}. For a set X , its complement
is X c . For a matrix X and a vector x, [X]i, [x]i denote the
ith row and ith component, respectively. For vectors x, y, the
stacking is (x, y) = [x′ y′]′, and inequalities between them
are intended componentwise. We denote all-zero and all-one
matrices/vectors by 0, 1, when dimensions are evident from
the context. For a discrete-time signal x ∈ Rn, x(t) is the
value a sampling instant t and xk|t denotes the predicted
value of x k steps ahead of t, based on data at sample t.

II. MODELING AND PROBLEM DEFINITION

First, we describe the models and constraints for nominal
driving and evasive maneuvers, and then we formalize the
failure-safe control problem.

A. Nominal driving

Under normal conditions, the automated driving system is
expected to operate non-aggressively, in order to maximize
the comfort and trust of the passengers. Thus, a kinematic
motion model that ignores tires and traction forces is in
general sufficient for motion planning and control [16]–[18],

ṗx = v cos(ψ) (1a)
ṗy = v sin(ψ) (1b)

ψ̇ =
v

La
tan(δ) (1c)

v̇ = a (1d)

δ̇ = σ (1e)

where p = (px, py) is the position in the global frame, v
is the vehicle velocity, ψ is the heading angle in the global

frame, La is the wheelbase, a is the acceleration, δ is the
steering angle, σ is the steering angular rate.

During normal driving the vehicle must satisfy constraints
on its motion and on traffic rules. We consider constraints
on acceleration, steering, and steering rate, that impose a
comfortable driving behavior and that keep the vehicle oper-
ating in a region where the kinematic model (1) is a reliable
motion model, e.g., tire sideslip effects are negligible,

a
(m)
min ≤ a ≤ a

(m)
max, δ

(m)
min ≤ δ ≤ δ

(m)
max,

σ
(m)
min ≤ σ ≤ σ

(m)
max, (2a)

where m = 0 for nominal driving. Road rules impose
additional constraints, such as admissible position on the
road with respect to the centerlane, velocity constraints, and
safety distance from other vehicles,

v
(m)
min ≤ v ≤ v

(m)
max, D(p,O) ≥ d(m)

min,

w
(m)
min ≤M(ψr)(p− r) ≤ w(m)

max (2b)

where M(ψr)(p− r) extracts the lateral distance from road
heading ψr at a reference point r, D is a distance function, or
an under-approximation, O is the closest obstacle position,
and for nominal driving m = 0.

B. Evasive maneuvers against failures

Model (1) and vehicle and road constraints (2) where
m = 0 are used for nominal motion planning and control.
However, unforeseen events indicative of abnormal situa-
tions and hence called “failures”, may occur, that require
avoidance of possibly time-varying exclusion zones. Causes
of such failures may be limited perception, such fast or
an undetected vehicle or pedestrian appearing just ahead,
or incorrect prediction of the environment, such as for a
vehicle suddenly stopping or changing lane, a pedestrian
unexpectedly crossing the street.

When a failure occurs, the system starts operating in a
“failure mode”. For each failure mode, m ∈ Z[1,M ], the
exclusion zone A results in additional avoidance constraints

p(t) /∈ A(m)(t), (3a)

that must be satisfied only after the failure occurs. Satisfy-
ing (3) at all times, together with (2) for (1), may result in
excessively conservative driving, or even infeasibility of the
motion planning.

Instead of handling failures through nominal driving con-
ditions, we design special evasive maneuvers where the set
of constraints (2a), (2b) may be relaxed

η
(m)
min ≤ η

(0)
min, η(m)

max ≥ η(0)
max,

m = 1, 2, . . . , η ∈ {a, δ, σ, v, w, d}. (4)

Thus, in the evasive maneuvers some of the nominal comfort
ranges or road rules may be violated, which seems like a
reasonable price to pay to avoid a catastrophic outcome in a
failure scenario. Due to their different objectives, the evasive
maneuvers may also be computed based on different mo-
tion models. Indeed, evasive maneuvers must be computed



quickly, thus it may be convenient to use linear models. Here
we consider separately evasive maneuvers based on sway,
i.e., lateral motion, and braking, i.e., longitudinal motion.
For sway maneuver we use the dynamic bicycle model
with respect to the centerlane with constant longitudinal
velocity [19]

ÿe = −Cf + Cr
mvvx

ẏe +
Cf + Cr
mv

ψe +
−Cf `f + Cr`r

mvvx
ψ̇e

+
Cf
mv

δ −
(
Cf `f − Cr`r

mvvx
+ vx

)
ψ̇r

ψ̈e = −Cf `f − Cr`r
mvvx

ẏe +
Cf `f − Cr`r

Iz
ψe−

Cf `
2
f + Cr`

2
r

Izvx
ψ̇e

+
Cf `f
Iz

δ−
Cf `

2
f + Cr`

2
r

Izvx
ψ̇r

v̇x = 0

ḋ = vx, (5a)

where ye is the lateral error with respect to road centerlane,
ψe is the heading error with respect to road direction, ψ̇r =
v2
x/R

r is the desired yaw rate, Rr is the turn radius, Cf , Cν
are the total front and rear cornering stiffnesses, vx is the
longitudinal velocity, d is the distance along the road, mv

is the vehicle mass, Iz is the moment of inertia along the
vertical axes, and `f , `r are the front and rear axle distances
from the center of mass. The sway maneuver sets vx to a
known value and keeps it constant. Assuming also the road
radius Rr known in advance and constant, (5a) gives a linear
model with x(m) = [ye ẏe ψe ψ̇e de]′, with parameters vx
and ψ̇r, which can be added to the state vector to model
different (constant) conditions.

For braking maneuvers, we use a longitudinal vehicle
motion model with constant lateral position and yaw

ḋ = vx

v̇x = − Fb
mv

ẏe = 0

ψ̇ = 0 (5b)

where Fb is the braking force from the braking system. Since
the vehicle is not turning, the yaw can be ignored, and (5b)
results in a linear model with x(m) = [d vx y

e]′.

C. Control architecture and problem definition

An overview schematic of the system considered here is
shown in Figure 2. Based on the ego vehicle state and the
surrounding environment, the failure scenarios selector in the
failure supervisor determines the possible failure scenarios
that the vehicle may encounter in the current conditions.
The failure-safe controller determines a nominal maneuver
and an evasive maneuver for each of the possible Mt

failure scenarios. The failure detector determines whether
the vehicle is operating nominally or it is in one of the
failure scenarios. This is used by a command selector to
determine what command is to be executed: if no failures
are detected, the nominal maneuver is executed, resulting in

Fig. 2. Schematic of the failure-safe control architecture. The failure
supervisor includes a failure scenarios selector that determines the possible
failure scenarios and a failure detector that determines whether a failure
scenario occurred. The failure-safe controller determines a nominal maneu-
ver and evasive maneuvers for each of the possible M failure scenarios.
The command selector determines what command is sent to the ego vehicle
based on the failure detector.

comfortable drive and satisfaction of the nominal traffic rules,
otherwise the evasive maneuver is executed, which may be
more aggressive and possibly violate some of the nominal
traffic rules, but avoids the exclusion zone.

In this paper we focus on the design of the failure-
safe controller, while leaving the failure supervisor, which
is primarily related to the perception system, to different
works. Let ut = κ(0)(x

(0)
t , r

(0)
t ) be a nominal controller for

the nominal model (1), where x(0) is the nominal motion
model state and r(0) are reference values, i.e., targets, and
let the corresponding closed loop be x(0)

t+1 = f
(0)
c (x

(0)
t , r

(0)
t ).

Let ut = κ(m)(x
(m)
t , ν

(m)
t ), m ∈ Z[1,M ], be M evasive

maneuver controllers, for evasive maneuver models such
as (5) where x(m) is the evasive motion model state and ν(m)

is a maneuver parameter, and let x(m)
t+1 = f

(m)
c (x

(m)
t , ν

(m)
t )

be the closed-loop motion of the evasive maneuver. The
objective of this paper is as follows.

Problem 1: Given a safety horizon N ∈ Z+, design κ(m),
m ∈ Z[0,M ] such that under nominal operation x

(0)
t+1 =

f
(0)
c (x

(0)
t , r

(0)
t ) satisfies (2) for m = 0 and, if failure

m 6= 0 occurs at any x
(0)
t of the closed-loop trajectory,

there exist
(
ν

(m)
τ

)t+N−1

τ=t
such that x(m)

τ+1 = f
(m)
c (x

(m)
τ , ν

(m)
τ )

satisfies (2) and (3) for all τ ∈ Z[t,t+N ].

III. EVASIVE MANEUVER CONTROLLER CONSTRUCTION

For the evasive maneuver controllers we determine a
structure and the set of the states and parameters for which
the controller achieves the behavior solving Problem 1. Since
we aim at keeping the calculations simple, to ensure fast
reaction time, we consider linear feedforward-plus-feedback
controllers

κ(m)(x(m), ν(m)) = K(m)x(m)+G(m)ν(m),m ∈ Z[1,M ]. (6)

For a linear model of the evasive motion x
(m)
t+1 =

A(m)x
(m)
t +B(m)u

(m)
t , such as those in (5), with a control

law in the form of (6) and an auxiliary constant reference
dynamics, the closed-loop evasive maneuver motion model



is

x
(m)
k+1|t = (A(m)+B(m)K(m))x

(m)
k|t +B(m)G(m)ν

(m)
k|t (7a)

ν
(m)
k+1|t = ν

(m)
k|t (7b)

p
(m)
k|t = C(m)x

(m)
k|t (7c)

where (7c) is the position in the maneuver reference frame.
Here, we recall some basic results, see, e.g., [12], [20].
Definition 1: Given system xt+1 = f(xt), and set S the

(1-step) backward reachable set of S through f is the set of
states that are in S after one step through f , i.e., Pref (S) =
{x : f(x) ∈ S}. The N-steps backward reachable set is
recursively defined as PreNf (S) = Pref (PreN−1

f (S)). �
Definition 2: Given system xt+1 = f(xt) subject to yt =

h(xt) ∈ S , the N -steps constraint admissible set is the set
of initial states for which the evolution through f satisfies
the constraints for at least N steps, ON = {x : xk+1 =
f(xk), x0 = x, h(xk) ∈ S, ∀k ∈ Z[0,N ]}. �

Definition 3: A constraint admissible set is the limit of a
sequence of N -steps admissible sets, O∞ = limN→∞ON .
A constraint admissible set is maximal if it contains all others
constraint admissible sets. �

Result 1: Let f , h define an asymptotically stable, fully
observable linear system, and S be a compact polytope.
Then, the maximal constrained admissible set O∞: (i) exists;
(ii) is a finitely determined polytope, i.e., described by a
finite number of constraints; (iii) is the fix point of the
sequence O0 = S, Ok+1 = Ok∩Pref (Ok), which is reached
in finite time k̄, i.e, Ok̄+1 = Ok̄. �

Next, we define the set where the evasive maneuver (7)
for the failure scenario m satisfies (1), (2). The exclusion
zone (3) is the region to be avoided from the time when the
failure scenario m occurs,

A(m) ={(p(m),ρ(m)) : −`(m)
min ≤ (p(m)−ρ(m)) ≤ `(m)

max}, (8)

where ρ(m) is the position of the reference point of the exclu-
sion zone in the reference frame of the evasive maneuver, and
the vectors `(m)

min, `(m)
max define the spatial extent. For allowing

the exclusion zone to move with a known motion from the
initial time when the failure occurs, e.g., a car cutting in
front of the ego vehicle and proceeding at a slow speed, we
model ρ(m) as the output of a known system,

φ
(m)
k+1|t = Φ(m)φ

(m)
k|t , (9a)

ρ
(m)
k|t = Θ(m)φ

(m)
k|t , (9b)

where φ(m) is the state and the initial value φ0|t is known and
describe the conditions when the fault initially occurs. Thus,
for each failure scenario, the exclusion zone is defined by
its spatial extent (8), its motion after the failure occured (9),
and the initial state of (9) when the failure occurs φ0|t.

We combine (7), (9) in a dynamical system

ξ
(m)
t+1 = A

(m)
ξ ξt, ηt = C

(m)
ξ ξ

(m)
t , (10)

A
(m)
ξ =

[
A(m)+B(m)K(m) B(m)F (m) 0

0 I 0
0 0 Φ(m)

]
, Cξ=[C(m) 0 −Υ(m) ]

where ξ(m)
t = (x

(m)
t , ν

(m)
t , φ

(m)
t ) is the state. The exclusion

zone polytope

A(m)
ξ = {(x(m), ν(m), φ(m)) : H(m)

x x(m)

+H
(m)
φ φ(m) +H(m)

ν ν ≤ H(m)
b }, (11)

where we may add constraints to ensure boundedness based
on (2) without removing any relevant part of the space. The
set such that ξ(m)

k ∈ A(m)
ξ for k ∈ Z[0,N ] is

W(m)
k = PrekAξ(A

(m)
ξ ), (12)

and the safe set where collisions are avoided for N steps is

F (m) =

(
N⋃
k=0

W(m)
k

)c
. (13)

which is in general non-convex. Then, the exclusion zone
avoidance constraint is (x

(m)
t , ν

(m)
t , φ

(m)
0|t ) ∈ F (m).

Besides the exclusion zone avoidance, the evasive maneu-
ver must satisfy some vehicle and traffic rules constraints (2),
where m 6= 0, although these may be relaxed with re-
spect to those for nominal driving. Since the maneuver is
parametrized through its reference, we compute the con-
straint admissible set of states and references for (7) subject
to (2), and then lift it to the dimension of (10), resulting in

O(m)
∞ = {(x(m), ν(m),φ(m)) : x

(m)
0 =x(m), ν

(m)
0 =r,

φ
(m)
0|t =φ(m) =⇒ (7) satisfies (2),∀t∈Z+}. (14)

In this work, we consider constraints (2) that for m 6= 0,
when formulated with respect to (7) are linear inequalities.
Thus, by Result 1, O(m)

∞ is a polyhedron. According to
Problem 1, in (15) it is enough to use O(m)

N , but here we
use O(m)

∞ since it may be beneficial to ensure constraint
feasibility for longer horizons.

Based on (13), (14) we can characterize the region where
the evasive maneuver (7) succeeds in avoiding the exclusion
zone (3) and in satisfying the constraints (2).

Proposition 1: Consider failure scenario m ∈ Z[1,M ] with
exclusion zone defined by (8), (9), φ(m)

0|t , all given for every

t ∈ Z0+. For all xt such that there exists ν(m)
t for which

(x
(m)
t , ν

(m)
t , φ

(m)
0|t ) ∈ F (m) ∩ O(m)

∞ (15)

evasive maneuver (7) satisfies (2), (3) for all τ ∈ Z[t,t+N ].
Remark 1: If the entire maneuver input sequence were

free, as in [10] that only require avoidance, the sets di-
mensions will grow with the safety horizon, so that the
computations at design time become hard and those at
runtime, slow. The approach of “eliminating” the inputs in
the set computation [10] avoids such an issue, but avoidance
and constraint satisfaction can no longer be enforced at the
same time, because there is no guarantee that a single input
can achieve both, i.e., we cannot intersect the sets as in (15).
Parameterizing the evasive maneuver by a constant reference
avoids the dimension to grow with N , and allows intersecting
the sets as in (15), which guarantees both, exclusion zone
avoidance and constraint satisfaction. �



Next, we discuss how the failure-safe controller ensures
the feasibility of evasive maneuvers by imposing the nominal
operation to satisfy the conditions of Proposition 1.

IV. FAILURE-SAFE VEHICLE CONTROL BY MPC

Next, we design the failure-safe controller in Figure 2 that
produces nominal maneuvers ensuring that should the failure
be detected the evasive maneuver succeeds.

A. Failure-safe Model Predictive Control

We design a model predictive control (MPC) based on
the nominal vehicle model (1) and nominal constraints (2),
that ensures that the trajectory remains within the region
where (15) is feasible. At every step t the supervisor shown
in Figure 2 provides the subsetMt ⊆ Z[1,M ] of the possible
failure scenarios and the initial conditions for the exclusion
zone motion (9), and the failure-safe controller solves the
optimal control problem

min
Ut,Υt

F (x
(0)
Np|t, r

(0)
Np|t)+

Np−1∑
k=0

(
L(x

(0)
k|t , uk|t, r

(0)
k|t )+

∑
m∈Mt

L(m)
ν (ν

(m)
k|t )

)
(16a)

s.t. x(0)
k+1|t = f (0)(x

(0)
k|t , uk|t) (16b)

(x
(0)
k|t , uk|t) ∈ C

(0) (16c)

x
(m)
k|t = h(m)(x

(0)
k|t , uk|t, r

(0)
k|t ), (16d)

(x
(m)
k|t , ν

(m)
k|t , φ

(m)
k|t ) ∈ O(m)

∞ ∩ F̃ (m)
k|t (16e)

x
(0)
0|t = x(t), φ

(m)
k|t = φ(m)(t+ k),∀m ∈Mt (16f)

where in (16a), Np is the prediction horizon, usually Np �
N , F and L are the terminal and stage cost for nominal
driving, L(m)

ν , m ∈ Z[1,M ], are costs associated to the
evasive maneuvers parameters, Ut = (u0|t . . . uNp−1|t),
Υt =

{
(ν

(m)
0|k . . . ν

(m)
Np|t)

}
m∈Mt

, (16c) are the nominal con-
straints (2) for m = 0, (16e) imposes membership in the sets
where the evasive maneuvers succeed and F̃ (m)

k|t ⊆ F
(m),

for all k ∈ Z[0,Np−1], m ∈ Mt, (16d) constructs the state
of the model of evasive maneuver m from the nominal
state, input and reference rt|k, k ∈ Z[0,Np], which contains
road information, (16b) is the nominal driving dynamics1(1),
and (16f) initializes the prediction model and the exclusion
zone motions at each prediction step. The initialization
in (16f) defines the initial state of the exclusion zone when a
failure occurs at different instants in the prediction horizon,
while (9) describes the evolution of the exclusion zone after
the failure occurs. Hence, φ(t + k), k ∈ Z[0,N−1], are
initialized by the failure scenario selector.

Based on the solution of (16), U∗t = (u∗0|k . . . u
∗
Np|t),

Υ∗t =
{

(ν
(m),∗
0|k . . . ν

(m),∗
Np|t )

}
m∈Mt

, the nominal controller

1Model (1) may be extended with auxiliary states for constructing the
evasive maneuver states, e.g., previous states to compute 1-step changes.

and evasive controllers of Problem 1 are constructed as

κ(0)
(
xt, {r(0)

k|t}
N
k=0, {φ

(m)
t }m∈Mt

)
= u∗0|t (17a)

κ(m)
(
xt, {r(0)

k|t}
N
k=0, {φ

(m)
t }m∈Mt

)
= K(m)x(t) +G(m)ν

(m),∗
0|t , ∀m ∈Mt. (17b)

In (16e), F̃ (m)
k|t ⊆ F

(m) is a convex subset, which makes
the computations in (16) simpler and may avoid additional
approximations internal to the optimization routine. F̃ (m)

k|t
can be constructed in multiple ways, see, e.g., [9], [20]. Next,
we briefly describe the approach used here.

B. Avoidance Constraint Convexification

Convexification based on a single separating hyper-
plane [9] prevents the trajectory from entering regions sur-
rounded by sets W(m)

k on multiple sides. For automated
driving applications, this may be limiting due to the shape of
the sets W(m)

k , for instance for sway maneuvers. Thus, we
convexify F (m) around the trajectory from previous time
step by projections, obtaining

F̃ (m)
k|t = {ξ : Γ

(m)
k|t ξ ≤ γ

(m)
k|t − ε 1}, (18)

where ξ = (x(m),∗, ν(m), φ(m)), Γ
(m)
k|t and γ(m)

k|t are a matrix
and a vector with N + 1 rows, and ε is an arbitrarily small
positive constant. Let ξ̄(m)

k|t = (x
(m),∗
k+1|t−1, ν

(m),∗
k+1|t−1, φ

(m)
k|t ),

and its projection onto W(m)
j−1 be

ξ̂
(m)
k|t,j = Proj(ξ̄

(m)
k|t ,W

(m)
j−1), j ∈ Z[1,N+1]. (19)

Define the jth row of Γ
(m)
k|t , and component of γ(m)

k|t by

[Γ
(m)
k|t ]j = ξ̂

(m)
k|t,j − ξ̄

(m)
k|t , [γ

(m)
k|t ]j = [Γ

(m)
k|t ]j ξ̂

(m)
k|t,j .

Then, −[Γ
(m)
k|t ]′j is in the normal cone of Wj−1 at ξ̂(m)

k|t,j , and

hence H(m)
j,k|t = {ξ : [Γ

(m)
k|t ]jξ ≤ [Γ

(m)
k|t ]j ξ̂

(m)
k|t,j − ε} ensures

H(m)
j,k|t ⊆ (W(m)

j−1)c for all ε > 0. Thus, by De Morgan’s law,

F̃ (m)
k|t =

⋂N
j=0H

(m)
j,k|t = {ξ : Γ

(m)
k|t ξ ≤ γ

(m)
k|t − ε1} ⊆ F

(m).
Remark 2: ε is introduced to obtain non-strict inequalities

as required by solvers for (16). The main computations
for (19) are the projections (19) that, when considering
orthogonal projection on polyhedral sets W(m)

j , amount to
N + 1 small scale quadratic program for each k ∈ Z[0,Np].

Next we summarize (17) solves Problem 1.
Proposition 2: At time t ∈ Z0+, let Mt, x(t), rt|k and
{φ(m)(t+ k)}Np−1

k=0 for all m ∈ Mt, k ∈ Z[0,Np] be given.
When (16) has a feasible solution, if a failure m ∈ Mt oc-
curs, the evasive maneuver (7), according to (17b) guarantees
that the constraints (2) are satisfied and the exclusion zone is
avoided (3). Otherwise, the nominal control based on (17a)
ensures satisfaction of (2), for m = 0.
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Fig. 3. Simulation of nominal driving and evasive maneuver, both sway and braking, in a failure scenario due to an obstacle (green) unexpectedly
appearing 40m ahead of the ego vehicle. (a) Trajectories: ego vehicle position (black circles), ego vehicle position when failure occurs (red), final position
of braking maneuver (purple), reference lateral position for sway maneuver (blue stars). (b) Lateral and (c) Longitudinal vehicle dynamics signals: nominal
driving (black), evasive sway maneuver (blue), evasive braking maneuver (red), constraints of nominal and evasive maneuvers (dash red).

V. CASE STUDIES

Next, we demonstrate the operation of the vehicle in some
scenarios. The ego vehicle is traveling on a straight West-East
road with two lanes, each 4m wide, with a target velocity of
20m/s. The nominal driving is operated by a nonlinear MPC
based on the kinematic bicycle model (1) with sampling
period Ts = 0.1s and prediction horizon Np = 10 steps. The
nominal driving is subject to constraints on steering angle,
δ ∈ [−75, 75]deg at the steering wheel, lateral position error
with respect to the reference, which is the centerlane when
keeping the lane, ye ∈ [−2, 2], acceleration a ∈ [−0.4, 0.3]g,
and steering rate σ ∈ [−50, 50]deg/s. We consider one failure
scenario, where an obstacle appears 40m in front of the ego
vehicle, and is stopped. This results in an exclusion zone (8)
that has extent 1.6m in width, 2.6m in length and that,
according to (9), is initialized with position 40m in front
of the vehicle at every time t, by φ0|t, and it is predicted
not to move from such position, which is a challenging, and
dangerous, failure scenario. Thus, until the failure occurs,
the exclusion zone moves ahead with the vehicle.

We apply two evasive maneuvers with N = 40 safety
steps, i.e., 4s: sway, based on dynamic bicycle model with
respect to centerlane (5a), and braking, based on longitu-
dinal model (5b). During evasive maneuvers, we consider
relaxed constraints δ ∈ [−135, 135]deg, ye ∈ [−2, 6], ψe ∈
[−30, 30]deg, acceleration a ∈ [−0.85, 0.65]g, and we leave
the steering rate σ unconstrained. The controllers for the two
evasive maneuvers are as in (6), where the feedback com-
ponent is an LQR, and the feedforward component is gives
unitary gain with respect to the reference lateral position

rye ∈ [−2, 6]m for sway, and reference stopping distance
rd ∈ [0, 100]m, for braking. All models use data from a real
vehicle, a mid-size SUV, experimentally validated [19].

Figure 3 shows the behavior of the failure-safe controller
when the failure scenario occurs at 5s in the simulation, for
the two cases when sway and braking evasive maneuvers are
enabled. Figure 3(a) shows that exclusion zone is avoided
in both cases, and Figures 3(b), 3(c) show that the relaxed
constraints for the evasive maneuver are satisfied. For the
braking, we allow the velocity to be slightly negative, for the
numerics in the set construction. In practice, as the velocity
is almost zero, the vehicle stops due to friction and will not
move backwards.

Figures 4, 5 show a more challenging case where the
exclusion zone in the failure scenario has width 8m. In this
case the sway evasive maneuver would not be able to avoid
the exclusion zone if the vehicle drives in the centerlane.
As a result, the constraints (15) force the nominal driving
MPC to offset the lateral position in the lane. This ensures
that, when the failure occurs at t = 3s, the exclusion zone
is avoided while still satisfying the constraints.

VI. CONCLUSIONS

We proposed a failure-safe controller that executes evasive
maneuvers, which are less restricted than the ones in nominal
driving, in presence of failures, e.g., due to not detecting or
wrongly predicting another vehicle. The controller ensures
avoidance of a risk area and satisfaction of maneuver con-
straints using reachable and invariant sets for the closed-loop
evasive maneuvers parametrized by references. Such sets are



Fig. 4. Simulation of nominal driving and sway evasive maneuver in a failure scenario due to a large obstacle (green) unexpectedly appearing 40m ahead
of the ego vehicle. Trajectories: ego vehicle position (black circles), ego vehicle position when failure occurs (red), final position of braking maneuver
(purple), reference lateral position for sway maneuver (blue stars).

Fig. 5. Simulation of nominal driving and sway evasive maneuver in
a failure scenario due to a large obstacle unexpectedly appearing 40m
ahead of the ego vehicle. Lateral vehicle dynamics signals: nominal driving
(black), evasive sway maneuver (blue), constraints of nominal and evasive
maneuvers (dash red).

imposed as constraints in the nominal driving controller, and
the maneuver references are additional decision variables.

In the future we will consider more expressive
parametrizations of the evasive maneuvers, e.g., by lever-
aging with a structure similar to the extended command
governor [12], more general formulations of the nominal
driving controller to ensure feasibility of at least one evasive
maneuver, and we will investigate recursive feasibility con-
ditions. Other works will focus on the design of the failure
supervisor that selects the possible failures for the current
traffic conditions, and on detecting the failures.
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