
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Learning Object Manipulation With Under-Actuated
Impulse Generator Arrays

Kong, Chuizheng; Yerazunis, William S.; Nikovski, Daniel

TR2023-053 May 31, 2023

Abstract
For more than half a century, vibratory bowl feeders have been the standard in automated
assembly for singulation, orientation, and manipulation of small parts. Unfortunately, these
feeders are expensive, noisy, and highly specialized on a single part design bases. We consider
an alternative device and learning control method for singulation, orientation, and manip-
ulation by means of seven fixed-position variable-energy solenoid impulse actuators located
beneath a semi-rigid part supporting surface. Using computer vision to provide part pose
information, we tested various machine learning (ML) algorithms to generate a control policy
that selects the optimal actuator and actuation energy. Our manipulation test object is a
6-sided craps-style die. Using the most suitable ML algorithm, we were able to flip the die
to any desired face 30.4% of the time with a single impulse, and 51.3% with two chosen
impulses, versus a random policy succeeding 5.1% of the time (that is, a randomly chosen
impulse delivered by a randomly chosen solenoid).

American Control Conference (ACC) 2023

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Learning Object Manipulation With
Under-Actuated Impulse Generator Arrays

C. Kong
Mitsubishi Electric Research Labs
Cambridge, Massachusetts, 02139

email: kczttm@gmail.com

W. S. Yerazunis
Mitsubishi Electric Research Labs
Cambridge, Massachusetts, 02139

email: yerazunis@merl.com
correspondence author

D. Nikovski
Mitsubishi Electric Research Labs
Cambridge, Massachusetts, 02139

email: nikovski@merl.com

Abstract—For more than half a century, vibratory bowl
feeders have been the standard in automated assembly for sin-
gulation, orientation, and manipulation of small parts. Unfortu-
nately, these feeders are expensive, noisy, and highly specialized
on a single part design bases. We consider an alternative device
and learning control method for singulation, orientation, and
manipulation by means of seven fixed-position variable-energy
solenoid impulse actuators located beneath a semi-rigid part
supporting surface. Using computer vision to provide part
pose information, we tested various machine learning (ML)
algorithms to generate a control policy that selects the optimal
actuator and actuation energy. Our manipulation test object is
a 6-sided craps-style die. Using the most suitable ML algorithm,
we were able to flip the die to any desired face 30.4% of the time
with a single impulse, and 51.3% with two chosen impulses,
versus a random policy succeeding 5.1% of the time (that is,
a randomly chosen impulse delivered by a randomly chosen
solenoid).

Index Terms—Optimal control under uncertainty, stochastic
modeling, learning control

I. INTRODUCTION

Automated assembly of products makes use of various
factory automation devices whose purpose is to put the
component parts together in the correct order and position.
When typical first-generation industrial robots are used for
the actual assembly, they execute the exact same sequence of
operations without any variation. The only way this would
be successful is if the component parts are presented in the
exact same position and orientation, and it is the job of other
types of factory automation equipment to make sure that this
is the case. A very common and popular such device is the
vibratory bowl feeder (VBF) [1] that uses a circular vibratory
pattern and a specially designed ramp to bring parts up the
ramp in the desired orientation.

VBFs are typically noisy, expensive, and difficult to de-
sign, due to their size and complexity. With costs reaching
hundreds of thousands of dollars and lead times of three to
six months, they make economic sense only for very large
production runs, and are a poor match to the increasing
trend towards high-mix, low-volume manufacturing. A new
generation of industrial robots equipped with cameras has
made it possible to grasp parts in a range of orientations, as
long as they are sufficiently singulated from one another.
This has led to the emergence of simplified part feeders

where the parts are deposited not in a bowl, but on a
flat surface which vibrates in a fixed pattern, eventually
singulating at least some of the parts so that they can be
grasped by a camera-equipped robot. This solution reduces
drastically the noise, size, and cost of the feeder, as the
vibration pattern is generic and no custom design is needed
for each part. Still, this solution does not eliminate the
problem of having the part often lie on the wrong facet.
The robot has some flexibility about how to grasp the part,
but at best the robot can approach it from a direction in
no more than half of the unit sphere, that is, from above. To
deal with this, when the part is facing the wrong way up, the
robot would have to pick it up, place it down on a different
facet, and regrasp it. There is no generic robot program to do
that reliably for an arbitrary part geometry, so a customized
program would need to be developed. Moreover, even if such
a program were developed, the robot would have to spend
time executing it, instead of doing actual assembly, thus
increasing the takt time of the assembly operation, which
is highly undesirable.

To solve this problem, we propose a novel design for a
part feeder that uses a set of solenoids mounted under the
surface to impart impulse shocks. When parts are placed
on the impact surface, impulses can create force and torque
at selected locations of the surface that flip the parts to
a different facet when the current one is not suitable for
grasping. The device is equipped with a camera whose
purpose is twofold: first, to recognize which facet the part
is lying on, and second, to register the part’s position and
orientation in order to decide which solenoid to fire in order
to maximize the chance of success in changing the facet.
Note that this camera could be the same camera that the
robot uses for grasping decisions, so it adds no additional
cost to the system, while effectively making the part feeder
adaptive.

This paper deals with the problem of deciding how to
control the system in order to manipulate the parts in the
feeder in an optimal way. The motion of the manipulated
object involves complex contact dynamics that vary accord-
ing to the geometry of the part, and traditional physical
modeling would be prohibitively difficult and expensive. For
this reason, we adopt the methodology of learning control

Fig. 1: The 7-solenoid impact manipulation surface
”Thumper”; the seven solenoids beneath the transparent

support surface are in the foreground, with the controller
board in the background

by learning probabilistic models of the outcomes as a result
of applied controls, and using them to choose the optimal
control [2]. Section II describes the design of the mechanism
and its instrumentation with sensors, and Section III proposes
a learning controller based on learned outcome models.
Section IV describes experimental verification with different
control objectives, and Section V concludes and proposes
some directions for improving the success rate of the device
and its controller.

II. DESIGN AND OPERATION OF THE EXPERIMENTAL
SYSTEM

Our experimental ”smart bowl”, called Thumper, is a
seven-solenoid impulse-drive open-bowl manipulator. It is
equipped with an HD webcam running at 30 fps, and has
individual control of the solenoid impulse generators, includ-
ing the time and duration of the applied impulse. The control
software takes the video in, processes it with OpenCV to
estimate the pose of the manipulated part, applies one of
several ML methods to generate a policy for manipulating
the object to a desired outcome, and from the generated
policy and the observed current object pose, determines
and issues impulse commands to impulsively maneuver the
object into the desired state.

The overall system can determine the pose of a ∼25 mm
test cube with an accuracy and repeatability of slightly less
than one millimeter in X and Y, and about one degree in

rotation, as projected onto the horizontal plane. The actual
manipulation commands are fairly sparse; the system can
only select which one of the seven solenoids to fire, and
choose a firing duration. The firing duration is limited by
empirical observation to be between 8 and 25 milliseconds,
as durations below eight milliseconds are observed to be
inadequate to actually move the test object, and impulses
over 25 milliseconds have no greater authority in moving a
test object. To confine the parts onto the bowl floor, a white
3-D printed hexagonal ”corral” is mounted 5mm above the
bowl floor. The mechatronic parts of the system can be seen
in Figure 1 and the assembled system in Figure 2.

Fig. 2: Thumper in
operation mode

Fig. 3: Thumper in
calibration mode

A 1080p HD webcam mounted above the bowl provides
∼30 frames per second to the computer vision (CV) system
that locates the test objects and determines the test object
pose. To calibrate the camera, we use a precise checkerboard
mounted on a 3-D printed mount that positions directly
against the vertical rods in a three-point kinematic arrange-
ment, as shown in Fig. 3.

For naming convenience, in this paper we will use the term
”thumper” to indicate the entire apparatus. We will also use
the term ”thumper” with a number to indicate one of the
seven sets of PowerFET, solenoid, and striker heads. The
actual layout and numbering of the solenoids are shown in
Figure 4.

Figure 5 shows an FEM analysis of the bowl floor dis-
torted by the static force of an impulse solenoid and Figure
6 shows the top view on Z displacement alone; of note is that
the areas of greatest Z-motion and the areas of greatest tilt
are not the same, nor are they exact inverses of each other.
We surmise that this is actually a useful attribute, because to
change the pose of the object, we must impart both a vertical
impulse sufficient to get the object into the air, and also a
rotational impulse sufficient to cause an adequate rotation of
the object before ground contact resumes.

III. LEARNING OBJECT MANIPULATION

We are interested in manipulating objects whose geome-
tries allow them to stand stably on one of (relatively few

Fig. 4: The geometrical layout of the solenoid array; the
inter-solenoid spacing is 60mm.

Fig. 5: FEM of a single solenoid’s static effect on the
support surface; displacements accentuated 10x

Fig. 6: FEM top view showing Z displacement; the blue
overlay shows areas where the support surface is moving

downward.

of) their sides. Examples of such objects are hexagonal nuts
and bolts, IC chips, etc. The state of such an object would
be characterized by the side s it is on (an integer), as well
as its position (x, y) and orientation θ (real numbers). The
objective is to devise a control policy u = π(s, x, y, θ) that
selects which solenoid us to fire with duration ud so as to
maximize the probability of moving the object into a desired
state, u ≜ (us, ud). This desired state can be described in
terms of one or more of the state components, for example
changing the face the part is lying on, or also possibly
bringing it to a desired position and orientation. Let the
Boolean function g(s, x, y, θ), provided by the user, indicate
whether state (s, x, y, θ) is a desired goal state or not.

Modeling the effect of impulse shocks on the manipu-
lated parts from the pertinent physical principles is usually
extremely difficult. Modern physics engines implement the

Fig. 7: CV recognition of a state (s, x, y, θ) of the die:
face=5, x=-49.801mm, y=7.66mm, angle=36.027 degrees

relevant physical laws of motion, as well as suitable contact
models, and can generate and simulate the equations of
motion automatically from geometrical scene descriptions,
thus alleviating the need to create a dynamical model man-
ually. However, this still involves a painstaking process of
careful geometric calibration of the scene, possibly along
with tuning a variety of contact model parameters, such as
coefficients of friction, restitution, stiffness, surface rough-
ness, edge and vertex radii, etc. A recent study on a task very
similar to ours (rolling a cube on a flat surface) showed that
even after very careful calibration, the behavior of the system
was largely unpredictable and not very consistent across
multiple physics engines [3]. This reflects the inherently
chaotic dynamics of such systems, where rolling from facet
to facet is associated with bifurcations in the system’s
dynamics. The bifurcation parameters include many of those
of the contact model — for example, whether a cube will
roll to the next facet for a given angular and linear velocity
or remain on the previous one would depend on how much
its edge will slip on the surface, and that is determined by
the friction coefficient; assuming an incorrect value for that
coefficient could predict a very different outcome as to how
the cube will land. Moreover, physics engines are inherently
deterministic, as their purpose is to predict the one physical
reality that will happen, whereas the chaotic dynamics of
irregular rolling parts might be better modeled by stochastic
models for control purposes.

For these reasons, we adopt a learning control approach.
There is a great variety of learning control methods in the
literature, whose success largely depends on the nature of
the control problem being solved. Early work on learning
non-prehensile manipulation of parts by means of tilting a
tray made use of observed examples of the effect of actions
(in that case, the direction of the tray’s tilt) to learn a model
of these actions, and used this model for planning [4]. This
method was based on earlier work on stochastic learning
automata (SLA), [5], and discretized the state space of the
manipulated part (position on the tray) into rather coarse
regions. This matched well the usual assumption of SLA
for relatively few discrete states, and made the learning

problem tractable, but led to the introduction of additional
uncertainty and stochasticity in the model due to partial state
observability, on top of the already significant stochasticity
of the system due to complex contact and impact dynamics.
Although our control problem bears strong similarity to the
one in [4], we believe that an approach that does not quantize
the state into a few coarse discrete states would be more
productive.

Another distinct approach to learning manipulation has
been to learn a full state-space model of the system dynam-
ics, using various system identification methods [6]. Whereas
this approach has been very productive for linear systems,
the complicated non-linear nature of contact dynamics has
required the application of advanced methods for learning
non-linear and possibly hybrid discrete/continuous dynami-
cal models. Various universal function approximation meth-
ods have been used to learn system dynamics, and neural
networks in particular have been investigated extensively for
a long time [7]–[9]. Recent interest in model-based rein-
forcement learning has renewed research efforts to find good
methods for learning world models [10]. Recently proposed
Contact Nets have improved considerably the accuracy of
predictive models with respect to earlier dynamical models
based on standard neural networks [11], [12]. However,
learning such models is quite complicated, and might also
be an overkill for our control problem, where prediction of
the entire future trajectory of the manipulated part is not
really necessary, and predicting the stable resting state would
suffice.

For this reason, we focused on learning predictive models
that predict only the resting state of the manipulated part
as a result of a particular action (solenoid fired). Similar to
SLA, these predictive models are probabilistic, to capture
the inherent stochasticity of the complex contact dynam-
ics involved. However, unlike SLA, our models use the
full continuous state of the manipulated part, measured as
precisely as technically and economically feasible, for the
purposes of predicting the resting state. That is, our problem
possesses significant aleatoric uncertainty (mostly due to
chaotic bifurcation dynamics and contact phenomena), but
not necessarily significant epistemic uncertainty, and there
is no reason to artificially inject such epistemic uncertainty
by quantizing the state; rather, a more productive approach
might be to measure the continuous state as accurately as
possible, and then employ machine learning methods that
can work with the full continuous state.

In particular, we propose to first learn probabilistic
models p = h(s, x, y, θ, u) = Pr[g(s′, x′, y′, θ′) =
True|s, x, y, θ, u] that predict the probability p of bringing
the part into a desired configuration by firing solenoid u
(and possibly, firing duration) when the part is in con-
figuration (s, x, y, θ). Here, (s′, x′, y′, θ′) is the successor
state resulting from applying the impulse shock. For a
multi-step decision policy, it might also be advantageous to
explicitly learn a model to predict this state, of the form
(s′, x′, y′, θ′) = f(s, x, y, θ, u). Such a model is known as
a forward model in the field of learning control, and if we

can learn a sufficiently accurate model of this kind, we can
devise a greedy control policy by choosing the solenoid
(and maybe duration) u∗ that maximizes the probability of
success: u∗ = argmaxu h(s, x, y, θ, u) [2], [8].

Learning of the predictive models proceeds in a self-
supervised fashion. During training, the system conducts a
relatively large number of experimental trials by firing the
solenoids randomly and recording the sequence of states
by utilizing the overhead computer vision system. In this
sequence, the successor state of a trial becomes the starting
state of the next trial. Each trial is represented as the
tuple (s, x, y, θ, u, s′, x′, y′, θ′). This training data is used
together with the success criterion g(s′, x′, y′, θ′) to learn the
predictive model h(s, x, y, θ, u) using a suitable supervised
machine learning algorithm.

A small fraction of the poses are “leaners” (where the
part is leaning on the corral and not flat on the bowl
bottom); we simply declare such poses invalid and fire a
random impulse to attempt achieving of an acceptable pose.
Although these invalid examples are logged, they are not
used for the machine learning inputs. Finally, the datasets
were desk-checked by a human looking at the saved final
video frames for quality assurance purposes. We have found
the OpenCV results to be at least 99.8% accurate.

IV. MANIPULATION OF A SIX-SIDED DIE

To understand the capability of the smart bowl, we at-
tempted a control task where the goal was to rotate a standard
six-sided die to a desired configuration with the fewest
number of impulses from a random starting position. We
developed a simple optical character recognizer to identify
which of the die’s sides was facing up as shown in Fig.
7. This impulse-based manipulation of the die was first
explored as a command domain question — what set of
solenoid / impulse pair were actually useful in rolling the
die. We designed a sub-task to answer this question.

A. Rolling the Die to any Other Face

In this sub-task, the goal was to roll the die to any face
other than the one it was currently on, easily recognizable
by the vision system as a change of the number on the
topmost face. Accomplishing this task in a minimal number
of attempts is equivalent to maximizing the probability of
success in one attempt. When starting in state (s, x, y, θ)
and ending up in state (s′, x′, y′, θ′), the success criterion is
g(s′, x′, y′, θ′) = True iff s′ ̸= s.

We started by running an exploratory experiment with
60,000 total firings of the solenoids (requiring about 18 hours
of unattended self-supervised operation). Both the solenoid
number and the firing duration (impulse of the solenoid)
were chosen randomly (firing duration was limited to a 25
millisecond maximum duration). The results are shown as a
histogram in Figure 8.

As the choice of solenoid was random, the total number
of hits from each solenoid were roughly the same. However,
thumper 2 (the center solenoid) has a much lower chance
of succeeding, comparing with other peripheral solenoids.

Fig. 8: Die face changing (success) counts and
probabilities for each solenoid with a random policy; the

average probability of changing the die face with the
random policy is 0.260

At first, we believed this was a mechanical or electrical
defect on that thumper channel, so we physically swapped
the center solenoid with a peripheral solenoid, but the low
rotation rate remained in the center position.

Aside from the center solenoid, if we randomly fire any
of the peripheral solenoids with a random impulse, there is
about 30% chance to roll the die to another face. This means
that there are regions where certain solenoids have little to
no authority over the rotation of the die, probably because
the solenoid can provide some lift, but not enough rotational
”kick” to rotate the die to the next face.

We then attempted actual control of the die — finding the
optimal solenoid and an effective impulse to provide enough
lift to roll the die to any other face. To do so, we need to
address the mixed nature of the solenoid impulse mechanism.

While the choice of which solenoid to fire is clearly a
categorical choice, the duration of impulse on each solenoid
is continuous (at least as viewed on a millisecond scale). This
requires a control policy that can yield simultaneous multi-
class classification (the solenoid number) and a regression-
style continuous-valued result (the firing duration). Addi-
tionally, our platform is under-actuated, and not all target
faces or goal states are reachable from every possible ini-
tial location. Instead of attempting nonlinear model-based
learning algorithms involving optimizing multiple hyper-
parameters simultaneously, we chose to consider memory-
based approaches where seven classifiers (one per solenoid)
will be trained.

Several informal tests were done with a k-nearest neigh-
bors (kNN) classifier [13] with k varying from 1 to 24,
but the results were not encouraging —the associated areas
under the receiver-operator characteristic (AUROC) curves1

were on the order of 0.69 at best. On closer inspection, it
was found that the sample dataset was strongly biased toward
having the die near the edge of the corral, probably due to the
die hitting the corral wall and losing energy in the partially

1The ROC curve describes the performance of a binary classification
model for multiple thresholds at the same time. The AUROC curve ranges
from 0.5 (random guessing) to 1 (correct on all test set).

Fig. 9: ROC curves for determining r (radius of
neighborhood) of the rN classifier; increasing the radius of
the neighborhood improves performance but radius beyond

5 mm yields little if any improvement (using an angle
conversion factor of d = wθ,w = 5mm/deg)

inelastic collision. This effect (akin to thermally induced
density gradients in a gas) caused significant depletion of
the sample population in the bowl center. In these low
density regions, the k-nearest neighborhood diameter was
expanding to 10-20mm. As we found in further testing using
a kinematic jig to reproducibly place the die in a controlled
location, the regions of the bowl where movements were
correlated and consistent are often smaller than 10mm. If
those regions happened to be low density as well, then the
effective area of the kNN would become much larger than
the correlation area and the kNN policy could behave no
better than random chance.

We found significantly better results with a radius neigh-
borhood (rN) classifier; the rN classifier includes all points
within a given radius r in the voting set rather than just the
k nearest points as in a kNN [14]; voting and final selection
of which solenoid to fire proceeds similarly to the kNN
and yields the categorical output choosing which solenoid
to actuate. The duration of the actuation is then chosen to
be the mean of the set of successful activation impulses on
that solenoid.

Like kNN, rN relies on some distance metric to determine
whether a sample (x, y, θ) is close enough to a prior obser-
vation (x0, y0, θ0). As θ inherits a different unit than x and
y, we make use of a single distance metric that scalarizes
the two distances in position and angle as follows:

D[(x0, y0, θ0), (x, y, θ)] = ∥(x0 − x, y0 − y)∥2 + w|θ0 − θ|

where w is a tuned conversion factor.

To determine an effective radius r and a suitable conver-
sion factor w for the rN classifier, we used 10-fold cross-
validation on each of the seven rN classifiers. For each
solenoid and its underlying classifier, we took test data from
the train-test split and swept a threshold a from 1.0 to 0.0.
E.g., when a = 0.7, for any query in the test split, 70% of
its neighbors (from train split) within r have to meet the
success criteria of face different, g(s′, x′, y′, θ′) = True
iff s′ ̸= s, for that query to be predicted as successful.
Predictions of all queries were then compared with the
ground truth label, and an entry of true / false positive rate
(TPR / FPR) was plotted. The resulting ROC curves of one
of the classifiers is shown in Figure 9. The value r = 5 with
w = 5 was commonly agreed by all seven classifiers from
the corresponding AUROC curve value.

We then performed an rN multi-class classification using
these parameter settings and 60,000 verified samples (about
8500 samples per classifier). Given an arbitrary state of the
die (s, x, y, θ), the controller will apply all 7 classifiers on
this state and then fire the solenoid whose corresponding
classifier provides the best probability to roll the die to a
different face. The result of this task is shown in Figure
10 with an average single-shot success probability of 0.753,
versus 0.260 for the random policy — an improvement of
almost three times.

Fig. 10: Die face changing (success) counts and rates on
each solenoid using the rN classifier; average is 75.3%.

B. Controlling the Die to a Specific Target Face
The next more complicated control problem was to learn

how to roll the die to a chosen face different from the one it
was currently on, so direction of rolling became significant.

The task here was to achieve a series of 2,000 randomly
chosen target values for the upper die face (with no sequen-
tial repeated faces) allowing up to 10 impulses to achieve
the desired die pose. This emulates the challenge of feeding
properly oriented parts to a manufacturing robot.

The first policy tested was the purely random-choice
policy, which served as the experiment’s control group. This
resulted in an overall 5.1% success rate for rotating the die
to a chosen face. The per-thumper activations and success
rates are shown in Figure 11.

Fig. 11: Number of failures (red) and successes (blue) in
achieving a targeted goal face for each solenoid as
controlled by a random policy. The average success

probability is 5.1% averaged over all thumper channels.

As before, the die’s initial position density variation
strongly favors the corral wall and avoids the center. Since
this is the random policy (and the experiment control group)
we expect to see a uniform distribution of initial positions
versus thumper, and we are correct in that (as seen in Figure
12).

Fig. 12: Random Policy: Die positions and the solenoid
fired.

We are now in a position to consider a data-driven ap-
proach to approximating h(s, x, y, θ, u) — the function that
predicts the probability p of bringing the part into a desired
configuration given the state (s, x, y, θ) and an impulse u;
we have the entire 60,000 ground-truth data points for use
as the base data for the rN policy.

For each of the seven solenoids, we formed a list of all
(s, x, y, θ) examples within the r = 5 radius (Figure 13).

Fig. 13: Training data used in the rN model for
classification; inset shows an example of a radius r = 5mm

neighborhood of a die at [23, -49, 196] that will be
evaluated.

Based on these training examples, we calculate the success
probability for each of the seven solenoids and select the one
with the highest success probability. To determine impulse
duration, we took the mean of the successful impulses for
that solenoid. In the case of a tie between two solenoids, we
chose one at random from the tied candidates. An example
of the decision neighborhood for a die at [23, -49, 196] is
shown in the inset of Figure 13, and its zoomed in view with
just the die’s orientation is shown in Figure 14.

In addition to the Boolean result of whether the die’s facet
has changed after the associated firing command (us, ud),
Figure 14 also provides the direction of the rotation. Know-
ing the facet configuration of the die, the six down pointing
arrows are transitions from face 2 to face 3 while the three
left pointing arrows are to face 6. If our goal state is face 3,
we would chose Thumper 0 with the mean firing duration -
17 ms as indicated by the arrow color. We fired Thumper0
at 17 ms, and the result was as predicted: the die landed
on face 3. Now if our goal state is face 1 (pointing right)
or face 4 (pointing up), we would examine the decision list
of other 6 solenoids to find the best solenoid number and
impulse duration pair.

As we are only choosing the best firing command without
looking more than one step ahead, we characterize this
as a greedy 1-step horizon approach to solve the under-
actuated control problem and tested this hypothesis with
another 2,000-random-goals experiment. Figure 15 shows a
scattergram of the XY positions of the die, with the color of
each dot indicating the particular thumper chosen by the rN
policy to have the best chance to rotate the die to the desired
face. This plot contrasts strongly with Figure 12 where the
solenoid firing commands are randomly chosen.

The results for this policy are shown in Figure 16, with the
rN policy achieving the chosen goal state 30.6% of the time
on the first impulse, beating the benchmark random policy
by a factor of ∼6 times for single impulses.

We also considered a 2-step MPC-like approach, by using
our probabilistic model to predict most likely die poses

Fig. 14: Sample decision list map of the die from Figure
13 at [23, -49, 196]; the neighbors within the radius r and

their rolling directions are shown.

Fig. 15: Die positions and the solenoid fired by the learned
rN policy seeking a particular target face. The Voronoi-like

segments are impure because the target face varies.

resulting from all of the possible thumper commands, and
evaluating the best next thumper commands for those likely
next poses, thus yielding a two-pulse optimized solution.
Unfortrunately, this strategy did not improve performance;
the reason for this remains an open question.

Figure 17 summarizes the results of all three policies
(random, greedy, and MPC) for the targeted-face task, as

Fig. 16: Number of impulses fired and successes. sorted by
solenoid; the overall average success rate on the first
impulse is 30.6%. Note the low density on the center

solenoid (#2) is correctly accommodated by the rN policy.

well as a purely theoretical ideally thrown die policy. Al-
lowing up to 10 repeated attempts, the greedy (horizon-
1) policy succeed 97.5% in 10 or fewer tries, versus the
benchmark random policy of 43.0% in 10 or fewer tries. The
performance is clearly superior to both a randomly-chosen
impulse command, and to a random throw of the die by hand
(Psucc of 1/6 = 0.1667 for a single toss, and 0.838 for 10
tosses)

Fig. 17: Cumulative success probabilities to rotate the die
to a randomly chosen goal face, with up to 10 attempts

allowed.

V. DISCUSSION AND FUTURE WORK

The experiments above show that impulse-based manipu-
lation can be effective for object orientation when driven
by an ML controller, even when treating the object and
impulse manipulator as completely black boxes and with
zero modeling of the actual contact physics. That is, it
can be effective, not necessarily will be effective, given the
poor showing of the kNN classifier over the rN classifier at
30%. The tuned rN classifier has demonstrated its robustness

against changes in operation environment as similar statistics
wered obtained when the device was reassembled in a
different lab space. Thus, the main contribution of this paper
is the identification of a relatively less known variant of
the kNN classifier — the rN method — as a very effective
component of a learning controller for part manipulation.
The six-fold increase in the success rate of the controller,
compared with a random firing policy, and the associated
six-fold decrease in the takt time of the system, combined
with the minimal need for manual supervision of the method
(all training is self-supervised), could possibly result in a
very fast and cost-effective method for part manipulation
for robotic assembly.

Future extensions of this work that we are considering
include multiple objects in the bowl simultaneously, multiple
solenoids being fired simultaneously or with inter-firing
delays on the order of the flexure propagation time of
the bowl bottom surface, the testing of other shapes, and
the integration of the Thumper system with an industrial
robot. Although our current best results were from a greedy
controller, improved predictive models of system dynamics
might lead to superior success rates of MPC schemes with
longer horizons.

REFERENCES

[1] M. T. Sgriccia, “Feeder bowl, US Patent 2654465,” 1950.
[2] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted

learning for control,” Artificial Intelligence Review, vol. 11, pp. 75–
113, 1997.

[3] S. Chung and N. Pollard, “Predictable behavior during contact simula-
tion: a comparison of selected physics engines,” Computer Animation
and Virtual Worlds, vol. 27, no. 3-4, pp. 262–270, 2016.

[4] A. D. Christiansen, M. T. Mason, and T. M. Mitchell, “Learning reli-
able manipulation strategies without initial physical models,” Robotics
and Autonomous Systems, vol. 8, no. 1-2, pp. 7–18, 1991.

[5] K. S. Narendra and M. A. L. Thathachar, “Learning automata - a
survey,” IEEE Transactions on systems, man, and cybernetics, no. 4,
pp. 323–334, 1974.

[6] L. Ljung, System identification: Theory for the user. Pearson, 1997.
[7] K. S. Narendra and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE Transactions on
neural networks, vol. 1, no. 1, pp. 4–27, 1990.

[8] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised
learning with a distal teacher,” Cognitive science, vol. 16, no. 3, pp.
307–354, 1992.

[9] K. S. Narendra and K. Parthasarathy, “Neural networks and dynamical
systems,” International Journal of Approximate Reasoning, vol. 6,
no. 2, pp. 109–131, 1992.

[10] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based
reinforcement learning: A survey,” arXiv preprint arXiv:2006.16712,
2020.

[11] S. Pfrommer, M. Halm, and M. Posa, “Contactnets: Learning dis-
continuous contact dynamics with smooth, implicit representations,”
arXiv preprint arXiv:2009.11193, 2020.

[12] M. Parmar, M. Halm, and M. Posa, “Fundamental challenges in deep
learning for stiff contact dynamics,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 5181–5188.

[13] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, Michel V., B. Thirion,
O. Grisel, M. Blondel, Prettenhofer P., R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-053.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

