
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Learning Residual Dynamics via Physics-Augmented Neural
Networks: Application to Vapor Compression Cycles

Chinchilla, Raphael; Deshpande, Vedang M.; Chakrabarty, Ankush; Laughman, Christopher R.

TR2023-051 May 31, 2023

Abstract
In order to improve the control performance of vapor compression cycles (VCCs), it is often
necessary to construct accurate dynamical models of the underlying thermo-fluid dynamics.
These dynamics are represented by complex mathematical models that are composed of large
systems of nonlinear and numerically stiff differential algebraic equations (DAEs). The effects
of nonlinearity and stiffness may be ameliorated by using physics-based models to describe
characteristic system behaviors, and approximating the residual (unmodeled) dynamics us-
ing neural networks. In these so-called ‘physics-augmented’ or ‘physics-informed’ machine
learning approaches, the learning problem is often solved by jointly estimating parameters
of the physics component model and weights of the network. Furthermore, such approaches
also often assume the availability of full-state information, which typically are not available
in practice for energy systems such as VCCs after deployment. Rather than concurrently
performing state/parameter estimation and network training, which often leads to numeri-
cal instabilities, we propose a framework for decoupling the network training from the joint
state/parameter estimation problem by employing state-constrained Kalman smoothers cus-
tomized for VCC applications. We show the effectiveness of our proposed framework on a
Julia-based, high-fidelity simulation environment calibrated to a model of a commercially-
available VCC and achieve an accuracy of 98% calculated over 24 states and multiple initial
conditions under realistic operating conditions.

American Control Conference (ACC) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Learning Residual Dynamics via Physics-Augmented Neural Networks:
Application to Vapor Compression Cycles

Raphael Chinchilla1, Vedang M. Deshpande2,†, Ankush Chakrabarty2, and Christopher R. Laughman2

Abstract— In order to improve the control performance
of vapor compression cycles (VCCs), it is often necessary
to construct accurate dynamical models of the underlying
thermo-fluid dynamics. These dynamics are represented by
complex mathematical models that are composed of large
systems of nonlinear and numerically stiff differential algebraic
equations (DAEs). The effects of nonlinearity and stiffness
may be ameliorated by using physics-based models to describe
characteristic system behaviors, and approximating the residual
(unmodeled) dynamics using neural networks. In these so-called
‘physics-augmented’ or ‘physics-informed’ machine learning
approaches, the learning problem is often solved by jointly
estimating parameters of the physics component model and
weights of the network. Furthermore, such approaches also
often assume the availability of full-state information, which
typically are not available in practice for energy systems such as
VCCs after deployment. Rather than concurrently performing
state/parameter estimation and network training, which often
leads to numerical instabilities, we propose a framework for
decoupling the network training from the joint state/parameter
estimation problem by employing state-constrained Kalman
smoothers customized for VCC applications. We show the
effectiveness of our proposed framework on a Julia-based,
high-fidelity simulation environment calibrated to a model of a
commercially-available VCC and achieve an accuracy of 98%
calculated over 24 states and multiple initial conditions under
realistic operating conditions.

Index Terms— Energy systems, physics-informed machine
learning, state estimation, data-driven methods, system iden-
tification, HVAC.

I. INTRODUCTION

Vapor compression cycles are prevalent in a diverse array
of applications due to their ability to provide heating and
cooling capacity over a wide range of temperatures. They
are positioned to play an increasingly important role in
our society, as they offer an effective means to advance
decarbonization goals by replacing fossil fuel-based heating
systems and utilizing the power generated by renewable
energy resources. Unfortunately, vapor compression cycles
are also responsible for 10% of total annual electricity
consumption in US, which is attributed to space cooling
in buildings alone, and many common refrigerants used in
such equipment have global warming potential hundreds to
thousands of times higher than CO2 [1]. Because of their
wide-spread use, technologies to improve the performance

1Center for Control, Dynamical Systems, and Computation, at Uni-
versity of California, Santa Barbara. This work was completed dur-
ing a research internship at Mitsubishi Electric Research Laboratories.
raphaelchinchilla@ucsb.edu

2Mitsubishi Electric Research Laboratories.
{deshpande,chakrabarty,laughman}@merl.com

†Corresponding author. � +1 (617) 621-7548.

of vapor compression cycles have the potential to make a
significant impact in the future.

A range of control technologies employed in vapor com-
pression cycles use computational models that represent the
underlying physics of the system for prediction, e.g., model
predictive control [2] and estimation of performance parame-
ters such as cooling capacity delivered by the heat exchangers
(HEXs) [3]. Models of vapor compression cycles also play
an important role in the development of fault detection and
diagnosis algorithms, and are central to emerging digital
twin technologies [4] aiming to improve energy efficiency,
streamline maintenance, and maximize the occupant comfort.

Longstanding efforts have been focused on developing
physics-based descriptions of vapor-compression cycle dy-
namics, at both the component and system level, for the pur-
poses of obtaining good predictive models for this variety of
applications [5], [6]. These models are generally formulated
to satisfy application-specific physics-based or computational
requirements and relate to the physical processes most rel-
evant to the application. The simplifying assumptions that
accompany these requirements, such as lumped parameters
and finite discretizations, often lead to a mismatch between
the model and data collected from the underlying physical
system. Addressing this mismatch to improve the accuracy
of model predictions is often a significant focus in model
development processes.

Recent advances in machine learning methods and im-
provements in computational resources have continued to
motivate work in data-driven modeling and identification
of physical systems. Pure data-driven treatments in which
the underlying system is modeled using a pre-specified
dictionary of basis functions [7], basis functions partially
derived based on the data [8], or a neural network as a
black box [9], are popular approaches because of their
system-agnostic perspective. Unfortunately, these methods
are rarely applicable to vapor-compression systems because
these methods often need large datasets containing full-state
trajectories to achieve reasonable modeling accuracy that
are unavailable for field-installed equipment due to limited
sensor data. Moreover, purely data-driven methods often
suffer from a combination of other challenges such as non-
interpretability of the model, large parameter search spaces,
and do not explicitly account for the fundamental physical
laws that govern the system.

Hybrid modeling paradigms that combine physics-based
models with data-driven components, e.g., neural networks,
to learn the behavior of a dynamical system and thereby
circumvent some of the shortcomings of purely data-driven

approaches have been recently gaining in popularity [10]–
[16]. One focus area has been in employing a neural
network as an additive term to a physics based model
for function approximation. In particular, the APHINITY
framework presented in [10] is designed such that most of
the information comes from the physics-based model while
minimizing contributions of the neural network. Because
this method requires noiseless observations of all the states
in the system, the authors of [12] modify the APHYNITY
method by augmenting the cost function with a penalization
between the output of the learned system and the real
observations. Similarly, [11] modifies APHINITY to use
partial observations in learning by introducing bounds on
the contribution of the neural network and statistical model
to control the contribution of each one.

The APHYNITY method and its variations concurrently
learn the optimal value of the physics-based model param-
eters and neural network weights by solving a constrained
optimization problem. Such simultaneous physical-parameter
estimation and neural network training can be challenging
for vapor-compression cycles because the training process
often leads to instabilities within numerically stiff models.
Concurrent methods are also difficult to apply to many VCC
models, as they are typically implemented in a modeling and
simulation environment that is different from the machine
learning ecosystem. In the this paper, we address some of
these challenges associated with the existing approaches.

The contributions of this work are twofold. In Section II,
we first present a framework in which the problems of
physical-model parameter estimation and neural network
training are decoupled into two optimization problems, which
are easier to solve separately and can accommodate partial
and noisy state observations. In this formulation, the first
optimization problem essentially becomes a joint state and
parameter estimation problem that can be solved using non-
linear state estimation tools such as state-constrained Kalman
smoothers. In the second optimization problem, the neural
network performs a regression to learn the residual dynamics,
enabling the use of machine learning methods that may not
be applied directly to the physics-based model. These two
optimization problems can be potentially solved in different
simulation environments that allow exchange of data. While
the proposed formulations are motivated by applications in
VCC, they have wide applicability to a multitude of similar
problems. Secondly, the proposed approach is applied to a
model of a commercially-available VCC in Section III. While
significant work has been done on physics-based learning for
energy and buildings systems [17]–[19], only a limited set of
explorations of neural networks to vapor-compression cycles
have been investigated, such as for modeling component-
level dynamics of HEXs [20], and certain cycle parameters
such as steady-state performance coefficients [21] and mass
flow rates [22]. System-level hybrid modeling of cycles to
predict internal states using neural networks has been largely
an unexplored topic, which we address in the present study.
Concluding remarks are provided in Section IV.

II. LEARNING RESIDUAL DYNAMICS

We consider an abstracted dynamical model

x+ = F (x, u) (1)

where F : X ×U → X is an unknown map, with X ⊂ Rnx

being the domain of state trajectories and U ⊂ Rnu being
the domain of admissible controls. This definition can be
extended to accommodate an explicit dependence on time
variable, if required. Based on our physical understanding of
thermo-fluid dynamics, we can model parametric representa-
tions of F as Fp : X ×U ×Θ → X , where Θ is the space of
physics-based model parameters. While these representations
tend to be somewhat accurate and interpretable, there remain
unmodeled dynamics F−Fp, referred to herein as a residual
model.

Improving the accuracy of Fp to reduce the magnitude
of the residual dynamics is often expensive and incurs sig-
nificant modeling complexity or extensive experimentation
on the VCC, both of which are often impractical. Alterna-
tively, one could use a function approximator to learn the
residual dynamics. While the theoretical results presented
in this section do not make assumptions on the type of
function approximator, the results are developed with neural
networks as potential approximators because of their ability
to approximate arbitrarily complex functions.

More precisely, let Fnn : X × U ×W → X be a neural
network with weights lying in the space W . Once the neural
architecture for Fnn is set, an accurate physics-augmented1

neural network can be built by computing parameters θ∗ and
w∗ such that

F (x, u) = Fp(x, u, θ
∗) + Fnn(x, u, w

∗), (2)

for all (x, u) ∈ X × U . Clearly, one cannot evaluate the
VCC for all possible combinations of X ×U , therefore, it is
more practical to choose an architecture of Fnn and then find
optimal parameters θ∗, w∗ for a finite data set and expect the
model to generalize over all X × U .

In general, it is not possible to measure all the states of
VCCs, as one is often restricted to the availability of specific
measurements. Moreover, commercially-available sensors do
not have infinite precision, which is mathematically trans-
lated as an additive noise to the measurement. Finally, system
are often subject to external site-specific factors that are
not included in a general model of a vapor compression
cycle. These may include the effects of particular pipe
lengths or configurations, the effects of local airflow patterns,
or installation-specific considerations that result from the
construction of the system at a particular geographic location.
These effects are not modeled using domain knowledge, and
are instead interpreted as random process disturbances.

In the following subsection, we assume the availability
of full state information with no noise or disturbances to
begin our exposition. In subsequent subsections, we consider

1We refrain from referring to this as a ‘physics-informed’ neural network
(PINN) because the PINN terminology admits a specific network and
training paradigm; c.f. [23].

the case of noisy partial state observations, and conclude by
presenting a method for learning unmodeled dynamics in the
case where the system is subject to noisy partial observations
and process disturbances.

Remark 1 (Discrete-time vs. continuous-time): While we
consider Fp to be a discrete-time system, it is generally
obtained from the solution of an ordinary differential equa-
tion, that is Fp(x, u, θ) = x+

∫ t+∆t

t
fp(x(τ), u, θ) dτ , where

fp(x, u, θ) is a continuous-time model. Most formulations
that combine neural networks with physics-based models di-
rectly use a continuous-time model, which has the advantage
that the neural network is not trained for a specific sampling
time. However, as is the case with VCCs, many industrial
process models fp(·) are numerically stiff and tend to be very
sensitive to numerical perturbations in the dynamics. They
are often built using a combination of analytical equations,
splines, and lookup tables and have to operate strictly in
a given regions in state space. Once the neural network is
included, the solution of the differential equation can violate
the operational conditions, especially during training, leading
to simulation failures. ◁

A. Noise-free Full State Observations

Suppose we are able to obtain noise-free full state obser-
vation of the solution of (1). We will denote by x(n)k the ob-
served solution at time tk given the initial condition x(n)(0)
of nth trajectory in the data set. Inspired by the APHYNITY
framework for continuous-time proposed in [10], one can
obtain parameters θ∗ and network weights w∗ by solving

min
θ∈Θ,w∈W

N∑
n=1

K∑
k=1

∥∥∥Fnn(x
(n)
k , u

(n)
k , w)

∥∥∥2
P−1

s.t. x
(n)
k+1 = Fp(x

(n)
k , u

(n)
k , θ) + Fnn(x

(n)
k , u

(n)
k , w)

(3)

for all k = 1, · · · ,K and n = 1, · · · , N . Here, P ≻ 0
is a weight matrix, ∥v∥2P ≜ v⊤Pv, and Fnn(·) is assumed
to be expressive enough to satisfy the equality constraints.
The practical implications regarding the satisfaction of this
constraint are discussed at the end of this subsection.

The rationale for using (3) instead of simply minimiz-

ing
∥∥∥x(n)k+1 − Fp(x

(n)
k , u

(n)
k , θ)− Fnn(x

(n)
k , u

(n)
k , w)

∥∥∥2 is that
this cost can lead to undesired solutions. For instance, a
combination of parameters (θ∗, w∗) can exist such that
Fp(x

(n)
k , u

(n)
k , θ∗) = 0 and all the dynamics information

comes from the neural network. Instead, we desire that the
physics-based model Fp(·) provide most of the explanation
of the system dynamics because it tends to generalize better
to unseen data. In the limiting case, if there is a parameter θ∗

such that F (x, u) = Fp(x, u, θ
∗) ∀(x, u) ∈ X × U , then (3)

will find such parameters and discard any contribution from
the network.

The numerical optimization required to solve (3) tends
to be challenging. First, the equality constraints either have
to be relaxed or managed via Lagrangian methods, as pro-
posed in [10]. Second, θ and w are fundamentally different
optimization variables. On one hand, θ in general has low

dimension but derivatives that are hard to compute, as
they require the derivative of the solution of a differential
equation. Moreover, the dynamics of the vapor-compression
cycle are nonlinear, numerically stiff, and have derivative
discontinuities due to the phase changes that accompany
evaporation or condensation. On the other hand, w has large
dimension, but the derivatives can be efficiently computed
using standard computing tools such as automatic differen-
tiation.

These challenges can be addressed by the result from the
following proposition, which allows us to decouple (3) into
two tractable optimization problems.

Proposition 1 (Equivalent two optimizations): Let Ω ≜⋃
{(θ∗, w∗)}, where pair (θ∗, w∗) denotes any minimizer

of (3). Suppose θ⋆ be a solution to the problem

min
θ∈Θ

N∑
n=1

K∑
k=1

∥∥∥x(n)k+1 − Fp(x
(n)
k , u

(n)
k , θ)

∥∥∥2
P−1

, (4a)

and w⋆ be a solution to the optimization problem

min
w∈W

N∑
n=1

K∑
k=1

∥∥∥δ(n)∗k − Fnn(x
(n)
k , u

(n)
k , w)

∥∥∥2, (4b)

where the residual δ(n)∗k ≜ x
(n)
k+1 − Fp(x

(n)
k , u

(n)
k , θ∗), then

(θ⋆, w⋆) ∈ Ω. ◁
Proof: For any (θ∗, w∗) ∈ Ω, if one takes

Fnn(x
(n)
k , u

(n)
k , w∗) = δ

(n)∗
k then (θ∗, δ

(n)∗
k) is a solution

of

min
θ∈Θ,δ

(n)
k ∈D(n)

k

N∑
n=1

K∑
k=1

∥∥∥δ(n)k

∥∥∥2
P−1

s.t.: x(n)k+1 = Fp(x
(n)
k , u

(n)
k , θ) + δ

(n)
k ,

(5)

for all k = 1, . . . ,K, and n = 1, . . . , N where D(n)
k :=

{Fnn(x
(n)
k , u

(n)
k , w) ∀w ∈ W}. To obtain (4a) from (5), we

solve for δ(n)k in the equality constraints and substitute back
into the cost function.

After solving (4a), to obtain w∗, we substitute x
(n)
k+1 −

Fp(x
(n)
k , u

(n)
k , θ) by δ(n)∗k in (3):

min
w∈W

N∑
n=1

K∑
k=1

∥∥∥Fnn(x
(n)
k , u

(n)
k , w)

∥∥∥2
P−1

s.t.: Fnn(x
(n)
k , u

(n)
k , w) = δ

(n)
k

∀k = 1, . . . ,K, and n = 1, . . . , N.

(6)

By definition, we can rewrite this expression as

min
w∈W

N∑
n=1

K∑
k=1

∥∥∥δ(n)k

∥∥∥2
P−1

s.t.: Fnn(x
(n)
k , u

(n)
k , w) = δ

(n)
k

∀k = 1, . . . ,K, and n = 1, . . . , N

(7)

As δ(n)k is a constant, this optimization is just equivalent to
find w such that the equality constraint is satisfied, which is
the same as solving (4b).

A crucial point in the proof is the (implicit) assumption
that the neural network is expressive enough such that the
non-linear equation in w, namely Fnn(x

(n)
k , u

(n)
k , w) = δ

(n)
k

has a solution. This assumption is already present in the
formulation of (3) by assuming the equality constraint is
feasible. Since neural networks are universal function ap-
proximators, in principle, there exist neural architectures
and corresponding weights that will satisfy such feasibility
conditions. However, it is practically impossible to determine
such a neural network with finite data. As we mentioned
before, in APHYNITY [10] this potential feasibility issue
is addressed by effectively relaxing the equality constraint
when numerically solving the problem. In our approach, the
possible limited expressiveness of Fnn can be addressed by
accepting solutions of (4b) achieving a cost smaller than the
specified tolerance, which typically requires a search over
different Fnn architectures and space of hyperparameters.

B. Noisy Partial State Observations

In the previous subsection, we assume that perfect obser-
vations of all the states of the system are available. However,
only partial and noisy observations of the states are available
in VCCs and many other applications, which are represented
by the observation equation

y = h(x) + ν (8)

where ν is a zero-mean white Gaussian process with covari-
ance R and h(·) is a state observation function. Moreover,
the initial state is generally not known, so one assumes a
prior distribution on the initial state x0 given by a Gaussian
distribution with mean x̄0 and covariance S. Finally, even
if the states are not observed, physics-based considerations
often stipulate that they belong to a set of admissible states
X , such as the positive cone. Let y(n)k be observations of the
real states x(n)k according to (8) given initial condition x(n)0 .
Inspired by (3), we can construct the optimization problem

min
θ∈Θ,w∈W,x̂

(n)
k ∈X

N∑
n=1

K∑
k=0

∥∥∥Fnn(x̂
(n)
k , u

(n)
k , w)

∥∥∥2
P−1

+
∥∥∥y(n)k − h(x̂

(n)
k)

∥∥∥2
R−1

+
∥∥∥x̄0 − x̂

(n)
0

∥∥∥
S−1

s.t.: x̂(n)k+1 = Fp(x̂
(n)
k , u

(n)
k , θ) + Fnn(x̂

(n)
k , u

(n)
k , w)

∀k = 0, . . . ,K − 1, and n = 1, . . . , N

(9)

This expression is a generalization of (3) in the following
sense: Supposing that h(x) = x, there is no observation
noise, and the initial condition x(n)0 is known and equal to x̄0,
then R = 0I and S = 0I where I is the identity matrix. If we
use the convention that (0I)−1 = +∞I , this is equivalent
to enforcing the equality constraint h(x̂(n)k) = y

(n)
k =⇒

x̂
(n)
k = x

(n)
k , which, if we substitute back in (9), gives (3).

Proposition 2: Let Ω′ ≜
⋃
{(θ∗, w∗, x̂

(n)∗
k)}, where the

tuple (θ∗, w∗, x̂
(n)∗
k) denotes any minimizer of (9). Suppos-

ing that (θ∗, x̂(n)∗k) is a solution to the problem

min
θ∈Θ,x̂

(n)
k ∈X

N∑
n=1

K−1∑
k=0

∥∥∥x̂(n)k+1− Fp(x̂
(n)
k , u

(n)
k , θ)

∥∥∥2
P−1

+
∥∥∥y(n)k − h(x̂

(n)
k)

∥∥∥2
R−1

+
∥∥∥x̄0 − x̂

(n)
0

∥∥∥
S−1

(10a)

and w⋆ be a solution to the optimization problem

min
w∈W

N∑
n=1

K∑
k=1

∥∥∥δ(n)∗k − Fnn(x̂
(n)∗

k , u
(n)
k , w)

∥∥∥2 (10b)

where the residual δ(n)∗k = x̂
(n)∗
k+1 − Fp(x̂

(n)∗
k , u

(n)
k , θ∗), then

(θ⋆, w⋆, x
(n)∗
k) ∈ Ω′. ◁

Proof: The proof is similar to that of Proposition 1 and
is briefly outlined below.

First, Fnn(x̂
(n)
k , u

(n)
k , w) in the objective of (9) is elimi-

nated using the equality constraints, which gives us (10a).
Then the residuals calculated using δ

(n)∗
k = x̂

(n)∗
k+1 −

Fp(x̂
(n)∗
k , u

(n)
k , θ∗) must satisfy the equality constraints in

(9), which gives us an equivalent feasibility problem (10b).

Remark 2: Equation (10a) can be interpreted as a maxi-
mum a posteriori estimation of θ and x, where the dynamical
system is subject to Gaussian disturbances (with a uniform
(possibly improper) prior on the domain of θ). Instead
of explicitly solving (10a) one can obtain approximate θ∗

and x̂(n)∗ using optimal smoothing and data assimilation
methods, such as Kalman smoothers or 4DVar [24], which
can be customized for specific VCC applications [3] for
substantially faster solutions. ◁

C. Noisy Partial State Observations with Process Distur-
bances

To account for the stochastic disturbances in the real
system, the model (1) is updated to add a disturbance term,
i.e.

x+ = F (x, u) + d (11)

where d zero-mean white Gaussian process with covariance
Q. If we applied (9) or (10) to learn the missing dynamics
from data from such system, the neural network Fnn(·)
would try to over fit and learn these disturbances. This
can be addressed elegantly when using an approach which
formulates two optimization problems.

First, one can obtain an optimal (θ∗, x̂(n)∗k) by solving

arg min
θ∈Θ,x̂

(n)
k ∈X

N∑
n=1

K−1∑
k=0

∥∥∥x̂(n)k+1− Fp(x̂
(n)
k , u

(n)
k , θ)

∥∥∥2
P−1

+
∥∥∥y(n)k − h(x̂

(n)
k)

∥∥∥2
R−1

+
∥∥∥x̄0 − x̂

(n)
0

∥∥∥
S−1

(12a)

which is the same optimization as (10a). It does not need
to be modified as it already implicitly assumes that Fp(·)
cannot fully describe the dynamics.

Second, to avoid over fitting the neural network that could
happen if using (4b) or (10b), we modify the neural network

learning problem to

min
w

N∑
n=1

K∑
k=1

∥∥∥Fnn(x̂
(n)∗
k , u

(n)
k , w∗)

∥∥∥2
P−1

+
∥∥∥Fnn(x̂

(n)∗
k , u

(n)
k , w∗)− δ

(n)∗
k

∥∥∥2
Q−1

s.t.: Fp(x̂
(n)∗
k , u

(n)
k , θ∗) + Fnn(x̂

(n)∗
k , u

(n)
k , w) ∈ X .

(12b)

This second expression is motivated by (6) in the proof
of Proposition 1. To obtain (12b), we relax the equality
constraint Fnn(x

(n)∗
k , u

(n)
k , w∗) = δ

(n)∗
k , which is the cause

for the over fitting, by including it in the cost with the
weight Q−1. Notice that, similar to the case of partial and
noisy state observations, we can see this expression as a
generalization of the case with no process disturbance. No
process disturbance is equivalent to Q = 0I , so if we use
the convention Q−1 = ∞I we retrieve the expression with
equality constraints, where there is an infinite cost if the
constraint is not respected.

While (12b) has the constraint Fp(x̂
(n)∗
k , u

(n)
k , θ∗) +

Fnn(x̂
(n)∗
k , u

(n)
k , w) ∈ X , we will see in the next subsection

that satisfaction of this constraint is not fundamental. If X :=
{x : Rn : G(x) = 0, F (x) ≤ 0}, a simple alternative is to
include the penalization µ∥G(x)∥2+µ∥max(0, F (x))∥2 with
µ sufficiently large such that the constraint is approximately
satisfied.

Remark 3: In general, the optimizers in all three scenarios
above (i.e., full state observation, partial state observation
and partial state observation with process disturbances) do
not guarantee that Fp(x, u, θ

∗) + Fnn(x, u, w
∗) ∈ X for an

arbitrary feasible pair (x, u), especially if it is outside of
the training data set. This can be addressed by passing the
learned model through a projection operator, i.e.,

x+ = ΠX

(
Fp(x, u, θ) + Fnn(x, u, w)

)
, (13)

where ΠX (·) is projection operator to the set X defined as

ΠX (x) ∈ arg min
x̄∈X

∥x− x̄∥.

While in theory this requires rewriting all of the optimiza-
tions in this section using (13) as the dynamical model, this
is usually not necessary because most of the trajectory points
x
(n)
k in the training data will be in the interior of X . ◁
We demonstrate the results of the approach presented

in this section using a simple illustrative example in the
next subsection, in which we consider a pendulum with
damping which is a common example in the literature of
learning unmodeled dynamics. The case study on VCC will
be discussed in Section III.

D. Illustrative Example: Pendulum with Damping
We consider a pendulum system complemented with pro-

cess disturbances and noisy observations described to obtain

[
ϕ+

ω+

]
=

[
ϕ
ω

]
+

∫ t+∆t

t

[
ω(τ)

−ψϕ(τ)− αω(τ)

]
dτ+d (14a)

y =
[
ϕ ω

]T
+ ν (14b)

Fig. 1: (Top row) Comparison between the real trajectory (F)
of the pendulum, the strictly physics-based model (Fp), and
our physics-augmented neural network (Fp +Fnn). (Bottom
row) Prediction errors calculated w.r.t. the real trajectory (F).

Fig. 2: Comparison of the residual dynamics (δk) with the
neural network (Fnn) output that learns the residuals.

where ϕ is the angular position, ω the angular velocity,
ψ = 2 the fundamental frequency, α = 0.4 the attrition
coefficient, ∆t = 0.1 the sampling time, and d and ν zero
mean Gaussian random variables with covariance matrices
0.052I and 0.012I .

The parametric representation or the physics-based model
of the pendulum is assumed to not account for the damping
and is given by

Fp(ϕ, ω, ψ) =

[
ϕ
ω

]
+

∫ t+∆t

t

[
ω(τ)

−ψϕ(τ)

]
dτ. (15)

To learn the unmodeled part of the dynamics, we use a neural
network Fnn with a single hidden layer of width 50 and
with ReLU as the first and identity as the second activation
functions.

The optimal parameters are determined using (12a) and
(12b) with a thousand trajectories of (14) with a time span
of 1 second (and therefore 10 thousand data points) and
each trajectory’s initial condition drawn from a zero mean
Gaussian variable with covariance matrix 0.62I . Once the
parameters are learned, we compare the trajectories of the
real model (14a) and the learned model given the same initial
conditions and disturbances over a time span of 10 seconds.
The results are shown in Figure 1.

The reconstructed trajectory from the learned dynamic
system is able to represent the general behavior of the real
system, as seen in the top row of Figure 1, while the trajec-

Fig. 3: Structure of a vapor compression cycle.

tory of physics-based model (Fp) deviates significantly from
the real trajectory. The errors in angular position and velocity,
as shown in bottom row of Figure 1, are significantly larger
for the physics-based model (Fp) which does not account
for the damping. The reconstructed trajectory has damping
behavior, which would not be possible without the neural
network. As the purpose of the neural network is to learn
the residual dynamics not modeled in Fp, i.e., the damping
behavior of the system, we compare the neural network
output to the residual in Figure 2. While the neural network
output is close to the residual, the small difference between
them can be attributed to noise and practical limitations of
neural approximations from finite data. The neural network
can be seen to learn from the estimated state trajectories
despite the presence of these disturbances.

III. APPLICATION TO VAPOR COMPRESSION CYCLES

Figure 3 illustrates a vapor compression cycle consisting
of two refrigerant-to-air heat exchangers (HEXs) with vari-
able speed fans, a variable-speed compressor, and a variable-
position expansion device. This system transports thermal
energy from the air passing through the evaporating HEX
to the air passing through the condensing HEX via the
refrigerant by using the latent heat of condensation and
evaporation, where the compressor can operate efficiently at
pressures for which the refrigerant evaporating temperature
can be set lower than common occupied space temperatures,
while the refrigerant condensing temperature can be set
higher than common ambient temperatures.

A physics-based model of the system shown in Figure 3
was developed to describe its behavior. Since HEXs dom-
inate the overall cycle dynamics, the HEX models were
constructed from an index-1 system of differential algebraic
equations (DAEs), while algebraic models were constructed
for the compressor and expansion valve. The development
of HEX models was facilitated by a series of simplifying
assumptions, such as one-dimensional pipe flow, thermody-
namic equilibrium in each discrete volume of the refrigerant
pipe at each instant in time, negligible gravitational forces,
and equality of the liquid and vapor phase velocities in the
two-phase region.

A spline-based representation of the thermodynamic re-
frigerant properties [25] was utilized in the refrigerant pipe
model that enforces the conservation of mass, momentum,
and energy. The conservation laws expressed as nonlinear
partial differential equations can be adapted to a finite control

volume discretization into an arbitrary number volumes
Nvol that employs a staggered-grid approach to maintain
numerical stability. Increasing Nvol generally improves the
accuracy of the model, but also increases its computational
complexity. The airflow across each volume was modeled
using an algebraic model, while an ordinary differential
equation (ODE) model was constructed for the refrigerant
pipe wall with one heat storage element. Each heat exchanger
element thus comprises a refrigerant-side volume, a pipe wall
element, and an air-side volume results in a set of index-1
DAE which is transformed in to a set of ordinary differential
equations via the the Pantelides algorithm. The state vector
x after index reduction contains the pressures (Pi), specific
enthalpies (hi), and temperatures (θi) for each discretized
volume for the two HEXs, for a total of 3 × 2 × Nvol

dimensions. The control inputs to the model are compressor
speed and expansion valve position. For the purpose of this
study, both of these control inputs are assumed to be piece-
wise constants. Further information on the HEX, compressor
and expansion valve models is available in [5].

This model was implemented in the Julia programming
language using ModelingToolkit.jl [26], which provides a
framework that allows the models to be defined in a declar-
ative context that can be used with other packages such
as differential equation solvers and automatic differentiation
tools. Further details on the model implementation can be
found in [3].

A. Problem Setup
Epistemic and aleatoric uncertainty imposes practical lim-

itations on the fidelity of models created using the results
of Section II, which motivates this work in reducing the
model mismatch by combining the physics-based model with
a neural network. Our experimental setup uses a dual model
approach. As a proxy for the real (and unknown) cycle model
F (·), we create a model that discretizes the heat exchangers
into 9 volumes each, for a total of 54 states, to produce a
continuous time model f9(·). We then discretize in time f9(·)
to obtain a “high-fidelity” discrete time model

x+ = x+

∫ t+∆t

t

f9(x(τ), u)dτ + d = F (x, u) + d (16)

where d is a zero mean random Gaussian disturbances.
A separate physics-based model Fp, which is known to
exhibit differences in behavior from the high-fidelity model,
is then constructed by discretizing the heat exchangers into 3
volumes each, for a total of 18 states, to produce a continuous
time model f3(·). We then discretize in time f3 to obtain a
“low-fidelity” discrete time model

x+ = x+

∫ t+∆t

t

f3(x(τ), u)dτ = Fp(x, u). (17)

The integrals in (16) and (17) are calculated numerically
because of the high-dimensional complex nonlinear nature
of the model. This system is numerically quite stiff, thus,
numerical solvers that can handle stiff problems are required,
and the solver QNDF [27] is employed to propagate this
model forward in time.

Fig. 4: Top row of plots shows comparison between the tra-
jectory of the high fidelity VCC model (F), the low fidelity
model (Fp) and the reconstructed using low fidelity physics-
augmented neural networks (Fp+Fnn) for states of one of the
finite volumes. The bottom row shows corresponding errors
calculated with respect to high fidelity VCC model (F).

B. Numerical Results

In real world applications, cost and reliability consider-
ations limit the availability of sensors in common vapor
compression equipment. To incorporate this limitation in our
problem, we assume that only 18 of the 54 states of the high
fidelity system can be measured, with sensors that measure
pressures, enthalpies and temperatures at select locations.
The sensors are assumed to have some imprecisions, which
is represented by an additive zero mean Gaussian noise.

The deep neural network component Fnn has five hidden
layers, with ReLU activation functions. The input layer has
18 neurons associated with the states, 2 neurons associated
with the controls, and 1 neuron for the time for a total of
21 input neurons. While neither F (·) nor Fp(·) are explic-
itly time-dependent on time, the control inputs are time-
dependent and we obtained better results via its inclusion.
The hidden layers have each 100 neurons. The output layer
has 18 neurons. This deep neural network is implemented
in Julia using Lux [28] and with automatic differentiation
provided by Zygote [29].

We first generate 1000 initial conditions to build the
dataset. We then run the high-fidelity model for a time
span of 50 seconds, with sampling time (∆t) of 1 second,
generating a total of 5×104 data points. The trajectories are
divided into 600 for training, 300 for validation and 100 for
testing. By using these limited measurements, this problem
falls into the category of partial noisy state observation and
process disturbances as described in Section II-C, for which
we have to solve (12a) and (12b). Note that in this case
there are no parameters θ for Fp(·) to be estimated. A more
general architecture which includes it will be developed in
future work.

Instead of explicitly solving (12a), we pose this as an esti-
mation problem described in Section II-B, which we approx-
imately solve using a constrained extended Kalman smoother

(C-EKS) from [3] which is customized for VCC applications.
C-EKS explicitly enforces state-constraints such as mono-
tonic decrements in pressure in the direction of refrigerant
flow in the system, which otherwise would not have been
guaranteed to be satisfied during the estimation process.
This also ensures that the residuals from which the neural
network learns are consistent with the fundamental physics
of the cycle. C-EKS can be viewed as a modified form of
Rauch–Tung–Striebel (RTS) smoother that explicitly incor-
porates state-constraints during measurement updates using
PDF truncation methods. Detailed equations and discussion
on C-EKS are available in [3].

For training the neural network, which means solving
(12b), we use the Adam optimizer on 6000 epochs. Every 50
epochs we test the parameters w on the validation set, and
if there is an improvement in cost compared to the previous
evaluation, we choose that value of w as the optimal. The
total time for training is about 10 minutes on an Nvidia Titan
X desktop GPU.

In order to compare the quality of our reconstruction, for
each trajectory x(n)k in the training set with initial condition
x
(n)
0 and disturbances d

(n)
k , we generate a reconstructed

trajectory

x̃
(n)
k+1 = Fp(x̃

(n)
k , uk) + Fnn(x̃

(n)
k , uk, w

∗) + d
(n)
k

using the same initial condition x(n)0 and disturbances d(n)k .
The top row of Figure 4 shows the trajectories of pressure,

specific enthalpy, and temperature in the volume at the inlet
to the evaporating HEX for one of the trajectories for the
high fidelity model (F), the low fidelity model (Fp) and the
reconstructed states (Fp + Fnn). The corresponding errors
calculated with respect to the high fidelity model (F) are
shown in the bottom row of Figure 4. The reconstructed
state is better at generating a trajectory that approximates
the high fidelity model than just using the low fidelity
model. In particular, the reduced maximum amplitude of the
error for all three variables suggests that the reconstructed
states represent a better description of the underlying system
behavior than the physics-based model Fp alone.

A comparison of the simulation time to run both the
high-fidelity model F and the low-fidelity model Fp also
provides additional insight into the application of these
modeling methods. Whereas it takes 16 sec to integrate F
from 0 to 50 sec, the low-fidelity model can be solved
over the same time interval in 10 sec. This suggests that
the tradeoff between forecast accuracy and computational
complexity in models can be addressed in part by using
these augmented modeling techniques. Rather than pay a
high computational price by using a high-fidelity model for
prediction, it may be possible to instead use a low-fidelity
physics-augmented neural network to obtain state-predictions
of acceptable quality for a lower computational cost.

The point-wise normalized error of an estimated trajectory
x
(n)
k calculated with respect to the high-fidelity trajectory
x̄
(n)
k is given as ε(n)k = (x

(n)
k − x̄

(n)
k)/(x̄

(n)
k) where the vec-

tor division is interpreted element-wise. The error statistics

TABLE I: Error statistics of the low fidelity (Fp) and the
reconstructed (Fp + Fnn) trajectories.

Error Fp Fp + Fnn

Mean 3.8% 2.3%
Standard deviation 6.8% 3.5%

Maximum 53.9% 35.6%

calculated over each state, time step, and trajectory for the
low fidelity (Fp) and the reconstructed (Fp+Fnn) trajectories
are shown in Table I. The learned model with neural network
demonstrates overall better accuracy than the low-fidelity
model. It should be noted that the performance of hybrid
model Fp+Fnn is limited by the low-fidelity model Fp which
is used for state estimation and residual calculations in (12a).
However, as seen from Table I, when the neural network is
included, the prediction accuracy is improved about by 40-
50% (in terms of mean and standard deviation) with respect
to low-fidelity model. The overall accuracy of the hybrid
model Fp + Fnn can be further improved if the parameters
of Fp are also optimized, which has not been an aspect of
this study and is subject to future work.

IV. CONCLUSIONS

In this article, we developed and demonstrated the effec-
tiveness of a framework to augment physics-based models of
complex physical systems such as vapor compression cycles
(VCC) with neural networks to learn unmodeled dynamics
and achieve better prediction capabilities using partial noisy
state-observations. The problem of jointly estimating the
VCC model parameters and training neural network was
decoupled in to two optimizations that were solved, respec-
tively, using state-constrained Kalman smoothing algorithms
and an Adam optimizer. Numerical results showed that an
approximate low-fidelity VCC model, when augmented with
a neural network, was able to achieve improved prediction
accuracy which can be leveraged to improve overall perfor-
mance of the system.

REFERENCES

[1] IEA, “The future of cooling,” tech. rep., International Energy Agency,
Paris, 2018.

[2] S. Bortoff, P. Schwerdtner, C. Danielson, and S. Di Cairano, “H-
infinity loop-shaped model predictive control with heat pump applica-
tion,” in 18th European Control Conference, pp. 2386–2393, 2019.

[3] V. M. Deshpande, C. R. Laughman, Y. Ma, and C. Rackauckas,
“Constrained smoothers for state estimation of vapor compression
cycles,” in 2022 American Control Conference, pp. 2333–2340, 2022.

[4] C. Vering, S. Borges, D. Coakley, H. Kruetzfeldt, P. Mehrfeld, and
D. Müller, “Digital twin design with on-line calibration for HVAC
systems in buildings,” in Proceedings of Building Simulation 2021:
17th Conference of IBPSA, vol. 17 of Building Simulation, (Bruges,
Belgium), pp. 2938–2945, IBPSA, September 2021.

[5] H. Qiao, V. Aute, and R. Radermacher, “Transient modeling of a flash
tank vapor injection heat pump system–Part I: Model development,”
International Journal of Refrigeration, vol. 49, pp. 169–182, 2015.

[6] C. R. Laughman and H. Qiao, “On closure relations for dynamic vapor
compression cycle models,” in American Modelica Conference, Oct.
2018.

[7] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[8] V. M. Deshpande and R. Bhattacharya, “Surrogate modeling of dy-
namics from sparse data using maximum entropy basis functions,” in
2020 American Control Conference (ACC), pp. 4046–4051, 2020.

[9] K. S. Narendra and K. Parthasarathy, “Neural networks and dynamical
systems,” International Journal of Approximate Reasoning, vol. 6,
no. 2, pp. 109–131, 1992.

[10] Y. Yin, V. L. Guen, J. Dona, E. de Bezenac, I. Ayed, N. Thome,
and P. Gallinari, “Augmenting Physical Models with Deep Net-
works for Complex Dynamics Forecasting,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2021, p. 124012, Dec. 2021.
arXiv:2010.04456 [cs, stat].

[11] J. Dona, M. Déchelle, P. Gallinari, and M. Levy, “Constrained
Physical-Statistics Models for Dynamical System Identification and
Prediction,” in Tenth International Conference on Learning Represen-
tations, Sept. 2021.

[12] M. Buisson-Fenet, V. Morgenthaler, S. Trimpe, and F. Di Meglio,
“Learning dynamics from partial observations with structured neural
ODEs,” May 2022. arXiv:2205.12550.

[13] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 9784–9790, IEEE, 2019.

[14] M. Saveriano, Y. Yin, P. Falco, and D. Lee, “Data-efficient control
policy search using residual dynamics learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 4709–4715, IEEE, 2017.

[15] K. Kaheman, E. Kaiser, B. Strom, J. N. Kutz, and S. L. Brunton,
“Learning discrepancy models from experimental data,” arXiv preprint
arXiv:1909.08574, 2019.

[16] A. Farchi, P. Laloyaux, M. Bonavita, and M. Bocquet, “Using machine
learning to correct model error in data assimilation and forecast
applications,” Quarterly Journal of the Royal Meteorological Society,
vol. 147, no. 739, pp. 3067–3084, 2021.

[17] Y. D. Zhong, B. Dey, and A. Chakraborty, “Dissipative SymODEN:
Encoding Hamiltonian Dynamics with Dissipation and Control into
Deep Learning,” 2020.

[18] J. Drgoňa, A. R. Tuor, V. Chandan, and D. L. Vrabie, “Physics-
constrained deep learning of multi-zone building thermal dynamics,”
Energy and Buildings, vol. 243, p. 110992, 2021.

[19] Y. Peng, A. Rysanek, Z. Nagy, and A. Schlüter, “Using machine
learning techniques for occupancy-prediction-based cooling control in
office buildings,” Applied Energy, vol. 211, pp. 1343–1358, 2018.

[20] C. Bhattacharya, A. Chakrabarty, C. R. Laughman, and H. Qiao,
“CNN-GRU: Efficient Learning of Thermo-Fluid Dynamical Systems
with Convolutions and Recurrence,” in To appear, Proc. Modeling
Estimation and Control Conference,, New Jersey, NJ, USA, 2022(T),
2022.

[21] D. Jani, M. Mishra, and P. Sahoo, “Performance prediction of solid
desiccant – vapor compression hybrid air-conditioning system using
artificial neural network,” Energy, vol. 103, pp. 618–629, 2016.

[22] J. Gill and J. Singh, “Use of artificial neural network approach for
depicting mass flow rate of R134a/LPG refrigerant through straight
and helical coiled adiabatic capillary tubes of vapor compression
refrigeration system,” International Journal of Refrigeration, vol. 86,
pp. 228–238, 2018.

[23] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational physics, vol. 378, pp. 686–707, 2019.

[24] M. Asch, M. Bocquet, and M. Nodet, Data assimilation: methods,
algorithms, and applications. No. 11 in Fundamentals of algorithms,
Philadelphia: SIAM, Society for Industrial and Applied Mathematics,
2016. OCLC: 992490263.

[25] C. Laughman and H. Qiao, “Patch-based thermodynamic property
models for the subcritical region,” in International Refrigeration and
Air-Conditioning Conference at Purdue, pp. 1–10, 2021. Paper 2258.

[26] Y. Ma, S. Gowda, R. Anantharaman, C. R. Laughman, V. Shah, and
C. Rackauckas, “ModelingToolkit: A composable graph transforma-
tion system for equation-based modeling,” 2021.

[27] L. F. Shampine and M. W. Reichelt, “The MATLAB ODE suite,”
SIAM Journal on Scientific Computing, vol. 18, no. 1, pp. 1–22, 1997.

[28] A. Pal, “Lux: Explicit parameterization of deep neural networks in
julia.” https://github.com/avik-spal/Lux.jl/, 2022.

[29] M. Innes, “Don’t Unroll Adjoint: Differentiating SSA-Form Pro-
grams,” CoRR, vol. abs/1810.07951, 2018.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-051.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

