
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

DeepEAD: Explainable Anomaly Detection from System
Logs

Wang, Xinda; Kim, Kyeong Jin; Wang, Ye; Koike-Akino, Toshiaki; Parsons, Kieran

TR2023-050 May 31, 2023

Abstract
System logs record rich information for system events. Practical anomaly detection from sys-
tem logs should be able to address three challenges: 1) understanding complicated attributes
in event logs; 2) extracting complex context relations among events; and 3) providing concrete
explanations to human analysts. In this paper, we develop an attention-equipped encoder-
decoder system to capture context from system logs for explain- able anomaly detection. For
each target event, we collect its nearby events in chronological order as its context events.
Instead of using a recurrent neural network-based encoder like previous works, we adopt a
Transformer-based encoder to extract complex relations among context events and their at-
tributes. Then, a context vector is generated and passed to the decoder, where an attention
matrix is learned and used to weigh the context events for detecting the anomalies. Eval-
uation on the large-scale real-world Los Alamos National Laboratory dataset shows that,
compared with existing works, our methods can provide fine- grained one-to-one attention to
help explain the importance of each attribute in the context events to the prediction, without
sacrificing detection performance.

IEEE International Conference on Communications (ICC) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





DeepEAD: Explainable Anomaly Detection
from System Logs

Xinda Wang∗†, Kyeong Jin Kim∗, Ye Wang∗, Toshiaki Koike-Akino∗, Kieran Parsons∗
∗Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

†Center for Secure Information Systems, George Mason University, Fairfax, VA, USA
xwang44@gmu.edu, {kkim, yewang, koike, parsons}@merl.com

Abstract—System logs record rich information for system
events. Practical anomaly detection from system logs should be
able to address three challenges: 1) understanding complicated
attributes in event logs; 2) extracting complex context relations
among events; and 3) providing concrete explanations to human
analysts. In this paper, we develop an attention-equipped encoder-
decoder system to capture context from system logs for explain-
able anomaly detection. For each target event, we collect its
nearby events in chronological order as its context events. Instead
of using a recurrent neural network-based encoder like previous
works, we adopt a Transformer-based encoder to extract complex
relations among context events and their attributes. Then, a
context vector is generated and passed to the decoder, where
an attention matrix is learned and used to weigh the context
events for detecting the anomalies. Evaluation on the large-scale
real-world Los Alamos National Laboratory dataset shows that,
compared with existing works, our methods can provide fine-
grained one-to-one attention to help explain the importance of
each attribute in the context events to the prediction, without
sacrificing detection performance.

Index Terms—Anomaly detection, Transformer, explainable
deep learning, context analysis.

I. INTRODUCTION

Available in almost all computer systems, logs are used
to record various events for monitoring, administration, and
debugging, which provide a good source of information for
analyzing and identifying anomalies. Since modern IT in-
frastructure systems continuously generate an overwhelming
amount of event logs and attacks are evolving and becoming
more complex [1], automated anomaly detectors are usually
applied to flag potential anomalies. Then, detected events will
be handed over to human analysts for further analysis [2].
However, as reported in FireEye M-Trends 2021 [3], the
median time for organizations to identify incidents by the help
of anomaly detectors is 24 days, yielding too much time to
attackers for conducting malicious activities. This is due to two
major weaknesses of existing anomaly detectors: high false-
positive rate and lack of explanations in detection results.

Although anomaly detectors aim to filter out unlikely sus-
picious events to reduce the workload of human analysts,
they still generate an excessive number of alerts. Recent
surveys conducted by [4] and [5] show that a typical security
operations team receives over 11,000 alerts daily, while less
than a fifth of them are actual attacks. Given such a huge
alert volume, only 7% of alerts are investigated by analysts

∗Xinda Wang’s work was conducted during her internship at MERL.

in time [6]. Failing to effectively consider the context around
the event is the main reason for false alarms. To circumvent
anomaly detectors, recent attackers tend to organize complex
attacks where benign events are interleaved with suspicious
ones. Without excluding unrelated benign events, models pro-
posed by [7] and [8] may learn these benign events as anomaly
features. To solve this problem, the proposed approach should
be able to capture the context where a suspicious event is
triggered in event logs and put emphasis on suspicious events.

Although several approaches extract the context from log
sequences by adopting a series of recurrent neural network
(RNN)-based models [9]–[13], they only predict if there is an
anomaly, but cannot explain why, which still necessitates much
effort to manually examine neighboring logs and correlate
context events. To help understand the context events involved
during automated anomaly decisions, attention mechanisms
are employed by [14] and [15]. However, their attention
vectors are not directly applied to input events. Rather, they
are applied over a complex combination of current and his-
torical states, which is less interpretable for understanding the
importance of current event [16]. To mitigate this, a one-to-
one mapping mechanism between attention and context event
should be produced for concrete explanations.

In this paper, we propose a deep learning-based explainable
anomaly detection system, named DeepEAD, which adopts an
attention-equipped encoder-decoder architecture. Specifically,
a Transformer-based encoder is used to extract context rela-
tions among different attributes in context events. Then, an
attention decoder is designed to decode the context informa-
tion into an attention matrix, which represents the weights for
each context attribute as well as enables explainability. After
associating context events with attention weights, the event
decoder predicts the target event. An anomaly is detected if the
actual event is predicted not to happen. Such a process does not
require anomaly labels and is fully unsupervised. If anomaly
labels are available, we further leverage the transfer learning
to transform the event prediction model into the anomaly
prediction domain. The transferred model is supervised on the
binary prediction task of anomaly detection.

We conduct experimental evaluations on a large-scale real-
world dataset collected by the Los Alamos National Lab-
oratory (LANL). Comparison results show that our system
enables explainability and achieves comparable detection per-
formance with state-of-the-art works at the same time. Besides,



Anomaly Event

System Logs DeepEAD

Explainable
Context

Human Analysts

Fig. 1: Workflow of the DeepEAD system.

we perform a case study to show how attention weights work
to explain the model behavior in specific cases.

II. METHODOLOGY

Assumption. We use system logs as the input to our anomaly
detection system. Intuitively, the preceding events can lead to
the following event and the postceding events can be affected
by the previous event. Further, attackers tend to launch attacks
with the help of several different accounts and devices, which
causes victim computers become the destination of a series of
events. Therefore, for a target event, we assume its context to
be events happening around the same time and destined at the
same device.

Overview. To reduce the workload of human analysts, we
aim at detecting suspicious events from system logs, while
providing context and explainability for anomaly detection.
The workflow of the network security system that employs
DeepEAD is shown in Fig. 1, where DeepEAD works as
an intermediate step to filter out the overwhelming number
of unrelated logs, flag any anomaly event that is a part of
an attack, and provide a necessary explanation to the human
analysts for further investigation.

As illustrated in Fig. 2 at the top of the next page, Deep-
EAD is an attention-equipped encoder-decoder system, where
DeepEAD takes a sequence of preprocessed context events
as inputs. A Transformer-based context encoder addresses
complex relations among different attributes in context events
to generate a context matrix. Then, the attention decoder
decodes the context vector into an attention matrix, which
represents how each attribute in each context event relates to
the target event. Finally, the event decoder associates context
events with an attention matrix through multiplication and uses
a neural network to detect the anomaly through unsupervised
learning and optionally supervised learning. We detail each
module in the following.

A. System Log Preprocessing

Systems logs record various events for monitoring, ad-
ministration, and debugging. Although logs can be produced
from different systems (e.g., operating systems, firewalls, and
containers), they are usually well-organized and composed of
multiple attributes. For instance, authentication logs of the
LANL internal network [17] consist of timestamp, source
user, destination user, source computer, destination computer,
authentication type, logon type, authentication orientation,
and success/failure. Such forms enable us to transform each

event log into a vector that can be input into the DeepEAD
system. Specifically, for each value in an attribute, we use an
individual numeric value to represent it, so that an event e that
is composed of m attributes can be represented with a single
vector [attr0, ..., attrm−1]. A numeric value is also used to
index each different event type. The above event representation
makes our method system-independent since it can be easily
adapted to any formatted logs generated by other systems.
We also discard user-related features (e.g., user, domain,
and computer ID) and retain only event-related features to
represent events, which allows our system to handle future
event logs without considering unseen out-of-vocabulary users,
domains, or computer IDs.

Since there are usually an overwhelming number of event
logs generated by the computer systems, we only need to
consider logs providing context for the target event. Otherwise,
unrelated events will introduce a large amount of noise to
the detection process. As stated in our assumptions, we sort
system logs according to the timestamp and group them by
the destination device to determine the context for each event.

Considering that both previous and following events can
provide context information, we use a bi-directional sliding
window to retrieve the context events (after excluding the
target event). For an event ei, we use its npre preceding events
and npost postceding events to form a context event sequence
Si = [ei−npre , ..., ei−1, ei+1, ..., ei+npost ]. We empirically set
both npre and npost as 10, such that each event has a 20-length
context sequence. Also, we limit our search space of context
within 24 hours to remove irrelevant events that happen too
early or late. Note that these values can be adjusted for time-
sensitive applications. A specific event vector is used to pad if
there are no sufficient preceding or postceding context events.

B. Transformer-Based Context Encoder

Previous work [18] takes the one-hot encoding for events
as the inputs and uses an RNN to extract context information.
However, as the LANL event log sample shown in the last
subsection, a practical system log is usually composed of mul-
tiple attributes, and these attributes may not be independent.
Thus, to provide a meaningful context for anomaly detection,
correlation among multiple attributes in the same and different
context events should be well extracted. To this end, instead
of using the one-hot encoding, we first adopt an embedding
layer to embed context events and get an embedded context
sequence S′

i = [e′i−npre
, ..., e′i−1, e

′
i+1, ..., e

′
i+npost

], where
each attribute of each event is encoded into a 128-dimensional
vector. To further address complex context relations among
multiple attributes from the context sequence, we apply a
Transformer-based encoder [19] where the scaled dot product
attention allows any attribute in an event can attend to any
other events and the multi-head attention mechanism provides
multiple different aspects an event attribute can attend to.
Then, an embedded context event sequence is transformed into
a single fixed-length (e.g., 128 in our case) vector representa-
tion context vector ci.



Fig. 2: DeepEAD: An attention-based encoder-decoder architecture.

C. Multi-Attribute Attention Decoder

The design of the attention decoder is to
decode the context vector as an attention matrix
[[α0,0, ..., α0,m−1], ..., [αn−1,0, ..., αn−1,m−1]], where n
denotes the number of events in a context event sequence
(i.e., npre + npost) and m represents the number of attributes
in a context event. In such a design, each value in the
attention matrix corresponds to an attribute in the context
event and can be used to explain the correlation with the
predicted target event.

To achieve this, we apply the gated recurrent units (GRU)
layers [20] to generate the attention matrix. Then, a series of
linear layers and a Softmax function are used to normalize the
sum of these attention values to 1. Therefore, each value in the
attention vector can be regarded as a weight to describe the
importance of the corresponding attribute for the target event.
In addition, the sum of attention values in each context event
represents how it contributes to the target prediction.

D. Two-Stage Event Decoder

The event decoder applies the attention weights of each
attribute in the context event sequence to the embedded
context events by performing matrix multiplication between
the attention matrix and embedded context events, producing
a weighted context vector.

We design the rest of this module as a two-stage learning
process. Since the number of anomalies may be few for a sys-
tem at the very beginning and anomaly labels require excessive
human work, we design the first stage to be unsupervised
which does not require any anomaly labels. In this stage,
we train a model to predict the event given the context, so
that the anomaly is detected if the actual event is predicted
not to happen. In the second stage, we transform the context
knowledge learned from the first stage into a supervised model.
With the availability of anomaly labels from the prior detection
and human verification, we fine-tune the transferred model
with a small number of labeled data. As a result, it can directly
predict if there is an anomaly or not.

1) Stage-1: Unsupervised Detection

In the first stage, we train an event prediction model whose
output is a probability distribution over all types of events.
After generating the weighted context vector, a series of linear
layers and Softmax layers are used to predict not only the event
type but also the values for each attribute. Here, our goal is to
enable the model to learn more from each attribute of context
events by considering all of the losses in each attribute branch.
Note that we use only the outputs of the main branch (i.e.,
event type) to determine the anomaly.

The main branch will assign a probability for each event
type. By sorting the probability, we will get the top k events,
i.e., the most possible k events given the current context. Then,
if the actual event falls into the top k events, it will be regarded
as a normal event. Otherwise, it means that the actual event
should be unlikely to happen, which indicates that an anomaly
is detected. This stage is fully unsupervised since no anomaly
label is required for training.

2) Stage-2: Supervised Detection

After the cold start, some anomaly events may be detected
and further confirmed by human analysts so that anomaly
labels become available. Considering the lack of anomaly
samples and huge manual efforts during the anomaly in-
vestigation, we adopt transfer learning by transforming the
context knowledge learned from event prediction to anomaly
prediction. The rationales of such a design are due to two-fold
similarities. First, some types of events are highly likely to be
anomalies. Second, no matter what the prediction goal is, given
a series of preceding and postceding events, the specific events
composing an activity are determined. For example, given a
set of events: i. input the username; ii. check the privacy
policy; iii. follow a Twitter account; iv. enter the password;
and v. enter the one-time verification code, it is easy to identify
that i, iv, and v belong to a logon activity.

To retain such similarity and transfer from event prediction
to anomaly prediction, we use a small amount of data labeled
with anomaly or normality to fine-tune the model. Specifically,
we freeze the context encoder and attention decoder module
(i.e., retain the parameters) to keep the context information
among attributes as well as events and fine-tune the model
using labeled data for anomaly prediction.



More detailedly, as shown in Fig. 2 with dotted lines, a set
of linear layers are added to concatenate the pre-confidence
features of each branch as well as the weighted context
vector after the first linear layer as the inputs. The adoption
of the latter is inspired by the ResNet [21] to retain more
original information. After the Softmax, the final prediction
results will be expressed in binary, i.e., whether there is an
anomaly or not. Note that this stage is optional if no anomaly
labels are available. However, our experimental results show
that the additional supervised learning stage can improve the
performance of anomaly detection.

III. EVALUATION

A. Implementation

Inspired by DeepCASE [18], we develop DeepEAD with
extensive extensions to address complex correlation among
multiple attributes of different context events, generate fine-
grained attention, and integrate a two-stage multi-branch clas-
sifier. In total, we construct DeepEAD with 2K new LoC in
Python and PyTorch.

B. Experimental Setup

Dataset. We evaluate our DeepEAD on a real-world dataset
collected from LANL’s internal computer network collected
during 58 consecutive days [17]. The LANL dataset includes
large-scale logs from multiple sources, i.e., authentication,
process, network flow, and DNS lookup events, and each
log represents a single event. In the first 30 days of data,
some authentication events have been labeled as redteam
compromise events. Therefore, we perform our experiments
on the authentication logs and use these redteam events as the
ground truth labels of anomaly behavior.
Runtime Environments. All the experiments are conducted
on a Ubuntu 20.04 server with an Intel i7-7700K CPU running
at 4.20GHz, 64 GB RAM, and an NVIDIA TITAN Xp GPU.
The deep learning architecture is built on the NVIDIA CUDA
Toolkit 11.6 and cuDNN v7.6.0.
Evaluation Metrics. We adopt the area under the receiver
operating characteristic (AUROC) to show the ability of an
anomaly detection system. The ROC curve plots the true
positive (TP) rate against the false positive (FP) rate at
various threshold settings. For both unsupervised learning and
supervised learning (i.e., binary classification), TPs are the
predictions that are actual redteam events, whereas FPs are
predictions that are actual non-redteam events.

C. Performance Evaluation

For a fair comparison, we adopt the same training and test
datasets as those of existing works. Specifically, to compare
with existing RNN-based works [11], we train our model on
the first 12 days of data with 133M normal events and 316
redteam events and conduct the test on the following 18 days
of data, composed of 210M normal events and 385 redteam
events. We also compare our DeepEAD with a state-of-the-art
(SOTA) work with attention mechanisms [14] and the baseline
work named DeepCASE [18]), where the training phase is

performed on the Day 7 data with 9M normal events and 1
redteam event and the test is on the Day 8 data with 9M
normal events and 261 redteam events. Note that, since the
SOTA work is unsupervised and its adopted training set only
contains 1 anomaly sample that is insufficient for supervised
training, we use only the unsupervised stage of DeepEAD for
comparison.

TABLE I: Comparison results with existing anomaly
detection methods [11].

Method AUROC Attention Explainability

EM 0.932 × ×
BiEM 0.895 × ×

Tiered-EM 0.948 × ×
Tiered-BiEM 0.902 × ×

DeepEAD (stage-1) 0.939 ✓ ✓
DeepEAD (stage-2) 0.958 ✓ ✓

TABLE II: Comparison results with existing attention-based
anomaly detection methods [14], [18].

Method AUROC Explainability Fine Granularity

EM-fixed 0.976 ✓– ×
EM-syntactic 0.975 ✓– ×

EM-semantic1 0.980 ✓– ×
EM-semantic2 0.976 ✓– ×

DeepCASE 0.920 ✓ ×
DeepEAD 0.971 ✓ ✓

Table I shows the comparison results with a series of
existing RNN-based anomaly detection methods [11] including
simple Long Short-Term Memory (LSTM)-based Event Model
(EM), Bidirectional EM (BiEM), Tiered-EM, and Tiered-
BiEM. The AUROC of stage-1 in DeepEAD (unsupervised
detection) is 0.939, which outperforms all other methods ex-
cept Tiered-EM (0.948). Stage-2 further increases the AUROC
to 0.958. Further, these other methods do not incorporate
attention mechanisms so they cannot provide explainability.
By contrast, in DeepEAD, the attention matrix multiplied with
context events enables DeepEAD to explain the importance of
each context event for the detection results.

Furthermore, we compare the proposed DeepEAD with
SOTA attention-based approaches including EM with fixed,
syntactic, and two different semantic attention. As shown
in Table II, the AUROC of DeepEAD is comparable with
attention-based EM models. More importantly, the attention
in EM models cannot guarantee concrete explainability. The
reason is that the attention in EM models (e.g., LSTM) is
applied to a complex combination of multiple inputs (e.g.,
previous hidden states). Instead, the attention in DeepEAD
and DeepCASE is directly applied to each simple attribute in
the context event as introduced in Section II-C. In addition,
although DeepEAD adopts a similar attention mechanism, it
fails to address the complex information between attributes
and cannot provide any insights on the importance at attribute
granularity. Therefore, compared with these works, DeepEAD
provides superior one-to-one fine-grained explainability with-
out sacrificing too much detection performance.



Context Events

At
te

nt
io

n 
W

ei
gh

ts
 (R

el
ev

an
cy

)

Fig. 3: Average attention weights over different attributes in
each context event.

D. Explainability Analysis

Since each value in the attention vector of DeepEAD is
directly applied to the context event, it enables us to explain
the relevancy of each context event and attribute with the
prediction. In this subsection, we analyze the explainability
of our models from two perspectives: i) the general model
behavior by analyzing the attention weights for all testing
logs; and ii) the specific decision of the model by studying
the attention weights in individual cases.

1) Explainability in General: To get an overview of the
model behavior during the prediction, we consider the statistics
of all attention weights over the test samples in 18 days of
data. In Fig. 3, the solid lines show the attention weights for
each context event (including 10 preceding and 10 postceding
events listed in chronological order) and the shadows denote
the standard deviation. In particular, each attribute (i.e., au-
thentication type, logon type, authentication orientation, and
success/failure) is represented with different colors.

In general, the context events that happen near the target
event in time (e.g., the nearest preceding/postceding events
pre1 and post1 ) are shown to provide more attention than oth-
ers, which is consistent with our assumption that nearest events
offer more context information and are more relevant to the
target event. Among different attributes, authentication types
in neighboring context events are more important than others.
We can also see that the attention weights in authentication
orientation and success/failure of the neighboring preceding
events (e.g., pre1 ) are higher than neighboring postceding
events (e.g., post1 ) and those in logon type are quite the
contrary. This indicates that the orientation and success/failure
of most preceding events contribute more to the target events
and the logon type of the next postceding events are more
affected by the target event.

2) Explainability in Individual Cases: Attention weights
can help explain the importance of corresponding attributes
and context during the model prediction. We use the heatmap
to visualize the attention weights over attributes of different
context events. Fig. 4 shows a heatmap for a real-world normal

case in our test dataset where lighter colors denote higher
attention weights. Each column represents a context event from
left to right in time order. For instance, the first column illus-
trates the earliest context event (pre1 ): Unknown Network

LogOff Success. The first four rows are for four attributes
in the system logs. Each cell exhibits the attention weight on
the current attribute value and the sum of attention weights in
the first four rows for each column is shown in the last row
to suggest the importance of each context event. We can find
that nearest context events in this case get higher attention
weights and the authentication type of nearest preceding and
postceding events have the most attention, which aligns with
the trend of attention statistics depicted in Fig. 3. An Unknown

Network LogOff Success (pre1 ) after three Kerberos
Network Logon Success brings valuable context to the
target event. Also, although both the nearest preceding and
postceding events are Unknown Network LogOff Success

(pre2, pre3, pre4 ), different attention weights are given: au-
thentication type in post1, logon type in pre1, and orientation
type in post1 are more important than the corresponding one in
post1, pre1, and post1, and the whole post1 event contributes
more than pre1 event during the decision making.

Even though more attention weights are more likely given
to nearest context events, they learn to differ for different
cases. Fig. 5 presents an anomaly case where the fifth/sixth
postceding event and fourth/fifth preceding event are most
relevant with the predicted events while the nearest preceding
event is not that important like general ones. This may be
because there are repeated NTLM Network LogOn Success

and Unknown Network LogOff Success around the target
event. When the occurrence of such a pattern exceeds a
threshold (e.g., twice in this case), it is brought to the attention
of the model. Among all attributes in this case, orientation
types usually gain more attention weights but some specific
values (e.g., logon type Network in post1 ) can also receive
high attention, which indicates that they contribute more to
the prediction of the target event.

IV. RELATED WORKS

Machine learning has been widely used for detecting
anomalies to deal with the huge amount of log data generated
by modern systems and complicated contexts among them.
A series of RNN-based systems [9]–[11] are proposed to
predict future events from the previous log sequence. Similar
to our stage-1, they determine anomaly if a low probability
is assigned to the ground truth event. The authors in [12]
and [13] conclude the context relation among different logs
with authentication or heterogeneous graphs and then apply
a traditional logistic regression or clustering algorithm. Their
methods rely on pre-defined rules to construct the graph, which
is hard to adapt to other system logs.

ALEAP [22] is one of the earlier works that incorporate
attention mechanism into LSTM-based event prediction for
anomaly detection, but it does not leverage attention for the
explanation. Further, the work of [14] and [15] tries to use
attention weights to explain the prediction behaviors. However,



Fig. 4: One example of the heatmap showing attention weights on a normal case.

Fig. 5: One example of the heatmap showing attention weights on an anomaly case.

these attentions are applied over a complex combination of
multiple inputs, e.g., hidden states, not each attribute to-
ken, whose explainability is controversial [16], [23]. While
DeepCASE [18] mitigates this by applying a 1-to-1 map
between attention and context event, it assumes inputs as well-
represented events and does not consider complex relations
among multiple attributes of system logs.

V. CONCLUSION

In this work, we have presented DeepEAD, an attention-
equipped encoder-decoder architecture for explainable
anomaly detection from system logs. A Transformer-based
encoder is adopted to address complex relations among
attributes in multiple context events. A multi-attribute
attention decoder is designed to generate fine-grained
attention weights so as to enable concrete explainability for
each context event attribute. During the cold start, we have
applied an unsupervised learning-based event decoder for
event prediction. An anomaly will be detected if the predicted
event does not happen. When anomaly labels are available,
we apply transfer learning to fine-tune a binary classifier for
anomaly prediction.

Experimental evaluation on a large-scale real-world dataset
has shown that the DeepEAD achieves comparable perfor-
mance with state-of-the-art works. Additionally, the explain-
ability analysis on context events has demonstrated the effec-
tiveness of the DeepEAD to facilitate human investigation.

REFERENCES

[1] M. Du et al., “Lifelong anomaly detection through unlearning,” in
Proc. of the ACM SIGSAC Conf. on Computer and Commun. Security,
pp. 1283–1297, 2019.

[2] F. B. Kokulu et al., “Matched and mismatched socs: A qualitative study
on security operations center issues,” in Proc. of the ACM SIGSAC Conf.
on Computer and Commun. Security, pp. 1955–1970, 2019.

[3] FireEye, “M-Trends 2021: Cyber Security Insights.”
https://vision.fireeye.com/editions/11/11-m-trends.html.

[4] D3 Security, “The Time for SOAR is Now.”
https://d3security.com/blog/the-time-for-soar-is-now/.

[5] Redscan, “Overcoming cyber security alert fatigue.”
https://www.redscan.com/news/overcoming-cyber-security-alert-
fatigue/.

[6] DEMISTO, “The State of SOAR Report, 2018.”
https://start.paloaltonetworks.com/the-state-of-soar-report-2018.

[7] L. Bilge, Y. Han, and M. Dell’Amico, “Riskteller: Predicting the risk of
cyber incidents,” in Proc. of the ACM SIGSAC conf. on computer and
commun. security, pp. 1299–1311, 2017.

[8] Y. Liu et al., “Cloudy with a chance of breach: Forecasting cyber security
incidents,” in 24th USENIX Security Symposium (USENIX Security 15),
pp. 1009–1024, 2015.

[9] M. Du et al., “Deeplog: Anomaly detection and diagnosis from system
logs through deep learning,” in Proc. of ACM SIGSAC conf. on computer
and commun. security, pp. 1285–1298, 2017.

[10] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias:
Predicting security events through deep learning,” in Proc. of ACM
SIGSAC Conf. on Computer and Commun. Security, pp. 592–605, 2018.

[11] A. R. Tuor et al., “Recurrent neural network language models for open
vocabulary event-level cyber anomaly detection,” in Workshops at the
thirty-second AAAI conf. on artificial intelligence, 2018.

[12] F. Liu et al., “Log2vec: A heterogeneous graph embedding based
approach for detecting cyber threats within enterprise,” in Proc. of the
ACM SIGSAC Conf. on Computer and Commun. Security, pp. 1777–
1794, 2019.

[13] B. Bowman, C. Laprade, Y. Ji, and H. H. Huang, “Detecting lateral
movement in enterprise computer networks with unsupervised graph
AI,” in 23rd Int. Symp. on Research in Attacks, Intrusions and Defenses
(RAID 2020), pp. 257–268, 2020.

[14] A. Brown et al., “Recurrent neural network attention mechanisms for
interpretable system log anomaly detection,” in Proc. of the First
Workshop on Machine Learning for Computing Systems, pp. 1–8, 2018.

[15] A. Patil et al., “Explainable LSTM model for anomaly detection in
HDFS log file using layerwise relevance propagation,” in 2019 IEEE
Bombay Section Signature Conf. (IBSSC), pp. 1–6, IEEE, 2019.

[16] S. Jain and B. C. Wallace, “Attention is not explanation,” arXiv preprint
arXiv:1902.10186, 2019.

[17] A. D. Kent, “Cybersecurity Data Sources for Dynamic Network Re-
search,” in Dynamic Networks in Cybersecurity, Imperial College Press,
2015.

[18] T. van Ede et al., “Deepcase: Semi-supervised contextual analysis of
security events,” IEEE Security and Privacy, 2022.

[19] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE conf. on computer vision and pattern
recognition, pp. 770–778, 2016.

[22] S. Fan et al., “Aleap: Attention-based lstm with event embedding for
attack projection,” in Int. Performance Computing and Commun. Conf.
(IPCCC), pp. 1–8, IEEE, 2019.

[23] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” arXiv
preprint arXiv:1908.04626, 2019.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-050.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


