
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Learning Generalizable Pivoting Skills with Object Feature
Based State/Action Projections

Zhang, Xiang; Jain, Siddarth; Huang, Baichuan; Tomizuka, Masayoshi; Romeres, Diego

TR2023-048 May 25, 2023

Abstract
The task of pivoting an object with a robotic manipulator is challenging due to the precise
application of force required to maintain contact with the object. However, even if the robot
is capable of pivoting a particular object, generalizing these skills across different objects
presents a more complex challenge. In this paper, we propose a method for generalizing a
single-object pivoting skill to other objects by utilizing object visual features. Specifically,
we train an encoder to extract the kinematic properties of arbitrary objects from their depth
images. Then, we learn projections based on these properties to adjust the state and ac-
tion space to adapt the single-object pivoting skill to the new pivoting task. The proposed
approach is entirely trained in simulation. It requires only one depth image of the object
and can zero-shot transfer to real-world objects. We demonstrate robustness to sim-to-real
transfer and generalization to multiple objects.

ICRA 2023 Workshop on Effective Representations, Abstractions, and Priors for Robot
Learning (RAP4Robots)

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Learning Generalizable Pivoting Skills with Object Feature Based
State/Action Projections

Xiang Zhang1, Siddarth Jain2, Baichuan Huang3, Masayoshi Tomizuka1, and Diego Romeres2

Abstract— The task of pivoting an object with a robotic
manipulator is challenging due to the precise application of
force required to maintain contact with the object. However,
even if the robot is capable of pivoting a particular object,
generalizing these skills across different objects presents a
more complex challenge. In this paper, we propose a method
for generalizing a single-object pivoting skill to other objects
by utilizing object visual features. Specifically, we train an
encoder to extract the kinematic properties of arbitrary objects
from their depth images. Then, we learn projections based on
these properties to adjust the state and action space to adapt
the single-object pivoting skill to the new pivoting task. The
proposed approach is entirely trained in simulation. It requires
only one depth image of the object and can zero-shot transfer
to real-world objects. We demonstrate robustness to sim-to-real
transfer and generalization to multiple objects.

I. INTRODUCTION

Table-top manipulation skills like pivoting are required
to reorient objects often to create pre-conditions for other
manipulation skills. For example, a book on the table may
be too large for a robot to grasp, and a peg may lay
in the wrong orientation for an insertion task. However,
reorienting the book and the peg with a pivoting motion
creates the conditions for a successful grasp. Fig. 1(a) depicts
the pivoting setup when the object is between two external
surfaces, and the robot needs to exploit the interaction with
these surfaces to pivot the object. A significant difficulty for
pivoting is that the robot must maintain the object-gripper
and object-surfaces contacts. Furthermore, multiple objects’
different kinematic and inertial properties entail additional
complexity like instability, slipping, and rolling properties.

This paper proposes a framework for learning a general-
izable robotic skill of pivoting real-world objects from only
simulation experience. Specifically, we would like to adapt
the pivoting policy on one object to multi-objects based on
the object depth image. An overview of our approach is
shown in Fig 1(b). We assume that a pivoting policy is
available to pivot one specific object, which we call the
“unitary” object. Such a policy can be learned either by
reinforcement learning or imitation learning. the proposed
framework consists of three parts. Then, to extract object
kinematic properties from object depth images, we employed
supervised learning on a dataset collected in simulation to
learn a feature space by predicting the object class and

1Mechanical Systems Control Lab, UC Berkeley, Berkeley, CA, USA.
{xiang zhang 98, tomizuka}@berkeley.edu

2Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA,
USA {sjain,romeres@merl}.com

3Department of Computer Science, Rutgers University, Piscataway, NJ,
USA. baichuan.huang@rutgers.edu

Policy Learning for

Single Object

Object Feature Learning

State/Action Projections

Learning for Multi-Objects

Policy Learning in Simulation Zero-Shot Transfer in Real-World

(a) (b)

Fig. 1: a) Pivoting task setup. b) policy learning in simulation
and zero-shot transfer to real-world

size. Finally, object-specific state and action projections are
learned to adapt the unitary policy to a novel object by
adjusting the state and action space. These projects are linear
transformations obtained from the object features and learned
with a policy-gradient based approach. Intuitively, the state
projections adjust the states of the new object to make it
similar to the unitary object. Accordingly to the new object,
the action projections alter policy outputs to improve policy
performance. The proposed approach is trained entirely in
the simulation and zero-shot transferred to a series of real-
world pivoting tasks.

In summary, our work makes following contributions: 1)
It introduces a framework to learn generalizable pivoting
robotic skills of real-world objects with training only in
simulation. 2) It proposes a policy-gradient based approach
to learning state/action transformations to achieve generaliza-
tion to unseen objects. 3) It provides an extensive evaluation
of our proposed approach in both simulation and real-world
experiments with promising success rates.

II. RELATED WORKS

A. Robot Pivoting Task

A robot pivoting task is a type of manipulation task
where a robot is required to rotate an object around a fixed
point. Previous approaches can be mainly categorized into
two classes: model-based methods and model-free methods.
Model-based approaches [1] develop open-loop and feedback
control strategies by modeling contact dynamics. However,
this approach requires precise modeling of the object contact
dynamics. The model-free approaches skip the complex
contact dynamics modeling and directly learn a policy to
achieve the manipulation task. Specifically, authors of [2]
investigated pivoting tasks using RL. However, their pivoting
policy is learned on one object during training and can only
apply to similar-sized objects, limiting their application.

B. Learning Generalizable Robot Skills

Generalization is a significant concern for robot skill
learning because we are interested in robot skills that are
robust to environments and task condition changes. However,
it is indeed a difficult task since different objects have
different geometric shapes, physical properties, and contact
dynamics. Researchers have proposed approaches to learn
robust skills that work for different task settings or can
adapt quickly to new tasks. Domain randomization [3] can be
applied for robustness to force the learned policy to extract
useful information from the state. Furthermore, Meta RL
is applied to quickly adapt to new, unseen tasks based on
experience gained from previous tasks. Examples can be
found in both gradient-based methods[4] which learns a set
of policy parameters that can adapt to new tasks in a few
trials and contextual-based methods [5]–[8] which encode
the task information into the policy.

Researchers also consider skill generalization as a domain
adaptation problem. For different tasks, the state and action
space may vary depending on the task settings, such as the
robot and object shapes, and it is necessary to analyze how to
transfer a learned policy to other tasks. One popular approach
is to discover a shared latent space between tasks that is
invariant to task settings. Once the skill is learned in the
invariant latent space, it can be transferred to different task
settings using task-specific mappings [9], [10]. Alternatively,
direct mapping on the state or action space can be applied to
transfer the skill in the source domain to the test domain
[11], [12]. However, in these prior approaches, the state
or action space mappings are either obtained manually by
analyzing the differences between spaces or by utilizing
the point cloud registration algorithm, which relies on prior
human knowledge. In contrast, our proposed method auto-
matically discovers the underlying mappings on the state or
action space by maximizing the trajectory return, thereby
eliminating the need for prior human knowledge.

III. PROBLEM FORMULATION

The pivoting task setting is depicted in Fig 1(a), where a
rigid object o is at rest on a flat surface like a table, and it is in
the proximity of a second surface, called wall, perpendicular
to the table. The object o can be manipulated by any end-
effector of a robotic manipulator that can establish a patch
contact with the object, like the fingers of a gripper. The goal
is to learn a policy, π(·|s) where s is the system state, that
can utilize the environmental contacts gripper-object, object-
table, and object-wall to pivot the object to stand-up.

In this work, we propose a framework to learn the robotic
skill of pivoting real-world objects in a structured environ-
ment with zero-shot transfer learning from simulation to
the real world. The main focus is generalizing the learned
pivoting skill to arbitrary unseen objects.

IV. PROPOSED APPROACH

In this section, we introduce our proposed approach to
solve the problem described in Section III. The basic idea
is that the pivoting operation of different objects might be

Resnet-18 Sampling Linear
Layer

Resnet18

State Projection Net

Unitary
Policy

Action Projection Net

Overall Policy

Unitary
Policy

Multi-Objects

Unitary Object

Learnable
Network

Fixed
Network

Variable

(a)

(c)

(b)

Fig. 2: Three steps of pivoting policy learning in simula-
tion: a) learning pivoting policy on the unitary object. b)
object feature learning by predicting object class and size c)
state/action projection nets learning on multi-objects pivoting

computed as a transformation of a policy learned on one
primary object rather than be learned from scratch every
time. We decompose the approach into three main steps.
First, a pivoting policy is learned in simulation for an
arbitrary object, denominated the “Unitary” object. Second,
a latent space of object features is learned to represent the
shape of objects based on synthetic depth images generated
in simulation. Finally, two neural networks are trained to
adapt the unitary policy to a novel object by adjusting the
state and action space. The overall framework is shown in
Fig 2, and the steps are detailed in the following section.

A. Reinforcement Learning for Pivoting the Unitary Object

The first step in our approach is to acquire a pivoting
policy that can manipulate a single arbitrary object, which
we refer to as a ”unitary” object. To this end, we utilized
Reinforcement Learning (RL) to learn a pivoting policy
denoted as π(a|s), where a is the robot’s action that includes
the linear velocity of the robot gripper in the X, Y, and Z
axes as well as the angular velocity in the pitch direction,
and s denotes the state that contains the poses of the gripper
and the object, along with the external forces measured by
the F/T sensor at the robot wrist. More details of RL training
can be found in Appendix I.

B. Representation Learning for Object Features

The objective is to adapt the pivoting unitary policy to
work with multiple objects. The kinematic information of
the novel object is required to achieve this goal. We rely on
representation learning to learn a low-dimensional feature
space of the object based on their top-down depth images.

Fig 2(b) shows the proposed network F (f |I) to learn
the object features f based on the object depth image
I. First, the standard Resnet18 architecture [13] processes
the object depth image I and outputs the mean, and the
standard deviation of the object features fmean and fstd.
Second, similarly to the variational auto-encoder [14], we
use the reparametrization trick to sample the object feature
f . Finally, another linear layer outputs the predicted object
size ŝobj and logits for the object class ĉobj . The loss function
to train the network is designed as follows:

L = Lshape + Lclass + βLKL = ∥sobj − ŝobj∥2

+ LCE(cobj , ĉobj) + βDKL(N(fmean, fstd), N(0, 1))

Fig. 3: Snapshots of: a) pivoting the unitary object in simu-
lation b) pivoting a peg in real-world c) recovery behavior.

where LCE is the cross entropy loss and β is a weight on the
KL divergence loss. The first two terms of the loss are for
supervised learning to predict the object size and class. The
KL divergence loss regulates the learned feature space and
mitigates over-fitting [14]. In our approach, we rely on the
simulated object depth images to train features. Appendix II
includes the details of the generated dataset.

C. State and Action Projection Nets

The single object pivoting used in Section IV-A does not
generalize to objects with significantly different kinematic
properties. However, as shown in Fig 4(b), the trajectories
of different objects during pivoting are similar in shape and
possibly can be described by trivial transformations in the
right space. Inspired by this intuition, we propose learning
object-based transformations to adjust the state and action
spaces and generalize the unitary policy to novel objects
instead of learning from scratch. Specifically, we choose
to use linear transformations for simplicity and call these
transformations state and action projection nets as depicted
in Fig 2(c). The State Projection Net: Ts = ρϕ(f) is
parameterized by ϕ, and takes as input the feature of the
object f to output a diagonal matrix Ts of state dimensions.
The output is used as a linear operator to project the object
state, s, to a space similar to the unitary state s̄u: s̄u =
Tss. The projected state s̄u is fed into the unitary policy
āu = πuθ (āu|s̄u) to generate the pivoting action. However,
āu needs to be transformed to work into the original object.
For this reason, we train the Action Transformation Net:
Ta = ρψ(f, s̄u) , that given f, su outputs a diagonal matrix
Ta of action dimensions. That is used to compute the pivoting
actions: a = Taāu. The overall action inference process can
be summarized as:

a = Taāu = Taπ
u
θ (āu|s̄u) = Taπ

u
θ (āu|Tss) (1)

Thus, the overall generalizable pivoting policy consists
of: the unitary policy, the object feature extraction net-
work, and the state/action projection nets. The former two
are already trained, and the weights are frozen. Only the
state/action projection nets need to be trained to adapt the
pivoting policy to different objects. In particular, we use a
policy gradient approach to learn the state/action projection
nets to maximize the trajectory return of pivoting different

(a) (b)

(c)

Fig. 4: a) t-SNE visualization of learned object features, color
difference within the same class indicates different object
size, b) pivoting trajectories before and after projection of
different objects, c) learning curves for policy adaption

objects. Suppose we collected a pivoting trajectory τ =
(s1, a1, Ts, Ta, f, r1, . . . , sT , aT , Ts, Ta, f, rT) of an object
with feature f , the advantage functions of the state/action
transformation nets are, respectively:

Âs =
1

T

T∑
i=0

γiri; Âat =

T∑
i=t

γiri (2)

where ri is the reward at time i and γ is the discount factor.
Then both state and action projection nets can be learned by
maximizing these two objectives. In our approach, we choose
to use PPO [15] to update two projection nets by RL. More
training details are summarized in Appendix III.

V. EXPERIMENTS

A. Simulation: Training and Validation Experiments

RL for Pivoting Unitary Object: We first test the
single object pivoting policy in simulation. Fig 3(a) depicts
a sequence of snapshots of pivoting the unitary object in
simulation after training the policy. The gripper first pushes
the object towards the wall to establish contact between the
object and the wall. Then, the robot moves upwards to rotate
the object against the wall. Finally, the object is flipped up
and standing on the table.

Representation Learning of Object Features: We then
evaluated the encoding neural network described in Sec-
tion IV-B using the t-SNE method [16]. As shown in Fig 4(a),
object features are clustered into four groups in the learned
feature space, representing four object classes. In addition,
within each class, this feature space can distinguish the size
information of different objects, which shows the learned
feature space can be utilized for downstream tasks.

State/Action Projection Nets Training: Once the unitary
policy and the object features are learned, the State/Action
Projection Nets are trained on 40 randomly-sized objects, 10
objects for each class cobj . Since the elements of quaternions
in the state are coupled and will be distorted by the trans-
formation, we only apply the same projection to both the

Fig. 5: Test objects and success rates for the two vision systems

object and gripper positions for the state projection net, that
is Ts ∈ R3×3 and Ta ∈ R4×4 remains unchanged.

Multi-objects generalization performances: The pro-
posed approach is evaluated in simulation and compared
against three ablation studies and two baselines:

1) NN projections: train two neural networks s̄u =
ρs(f, s), a = ρa(f, s̄u) to replace the linear transfor-
mations in the state/action projection nets;

2) w/o state: our approach without state projection net;
3) w/o action: our approach without action projection net;
4) Finetune: the unitary policy is fine tuned using PPO

without state and action projection nets;
5) Pearl: train one s.o.t.a. Meta-RL approach, Pearl [8].

As depicted in Fig 4(c), the proposed approach and the
ablation w/o action outperform all the other approaches. The
NN projections does not adapt the unitary policy to multi-
objects, possibly because it cannot use the structure of the
linear transformation and might require much more data to
learn the task. We also notice that the state projection net
helps the most for adaption and converges faster than the
proposed method. The reason is that the proposed method’s
action projection is not perfect initially and slows down
the training. However, as shown in Table I, the proposed
method achieves a higher success rate than all the baselines,
which indicates the action projection helps to adjust policy
according to the object feature. In our experiments, Pearl can
approach the objects but cannot learn to pivot for multiple
objects. We conclude that the objects are too different, mak-
ing it difficult for Pearl to learn a policy for all objects from
scratch. Since the objects in the simulation are randomly
generated, some objects have small surfaces to stand on
compared to their sizes, which makes them challenging to
pivot, and our approach fails.

Ours w/o action w/o state Finetune NN Pearl
30/40 27/40 19/40 15/40 0/40 0/40

TABLE I: Average success rates on 40 objects in the training
environment over 3 random runs

We further analyze the effect of the state projection net by
plotting the pivoting trajectories of different objects before
and after the projection in the two most representative axis
X,Z. As depicted in Fig 4(b), even though the original
trajectories are very diverse (solid lines), the projection net
brings the pivoting trajectories together, enabling the unitary
policy to adapt to new objects.

B. Real-World Experiments

The proposed approach is evaluated with zero-shot transfer
learning over all objects. An experiment is deemed successful
when an object reaches a stable stand-up position, and the
success rates are shown in Fig 5. We start the analysis
considering the April-Tag system to estimate the state. Even
though the shapes and sizes of the objects are very dif-
ferent, i.e., lx = [6, 18.5], ly = [1, 15], lz = [1, 5][cm].
our approach achieves 100% success rate on almost all the
objects, demonstrating direct sim-to-real transfer capability
and generalization to multiple objects. The failure cases
happen all in objects with a cylindrical base, i.e., Cylinder 1,2
and Peg 2, because their shape is prone to a rolling behaviour
and have a smaller base to stand on. However, the policy is
robust to these difficulties in most of the cases and failed only
once. Successful pivoting experiments are visualized with a
sequence of snapshots in Fig 3(b)-(c).

Next, we test the generalization to two out-of-distribution
objects: “sanitizer” and the “mustard bottle”. The shapes
of these two objects are complex, non-convex and with
irregular contact surfaces that are not flat. Moreover, no
similarly shaped object is considered in training. However,
our approach succeeds on these two objects with 100%
success rate and demonstrates generalizability properties.

Finally, we evaluate the performance when using the
vision tracking system that returns more noisy state estima-
tions. As shown in Fig 5, we still achieves 100% success
rates for most objects. The failure cases are due to excessive
noise in the state: in Box 2 because the object has no texture,
in Cylinder 2 because the object is very small, and for the
Mustard bottle the tracking gets lost when close to the goal.

VI. CONCLUSIONS

We propose a framework to learn robotic skills for pivoting
real-world objects. The method is trained only in simulation,
requiring only one depth image of the manipulated object
to transfer to real-world tasks. Moreover, the same policy
generalizes to pivot multiple real-world objects. The main
idea is based on learning a robust RL policy for a “unitary”
object and then learning two projection networks that adapt
the states and actions fed into/outputted by such a policy. An
object feature space is learned from top-down view depth
images of the objects to encode the kinematic properties
such as size and shape. The real-world experiments show
a successful zero-shot transferring for sim2real gap and
generalization to multiple objects.

REFERENCES

[1] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Robust
pivoting: Exploiting frictional stability using bilevel optimization,” in
2022 International Conference on Robotics and Automation (ICRA),
2022, pp. 992–998.

[2] W. Zhou and D. Held, “Learning to grasp the ungraspable with
emergent extrinsic dexterity,” in ICRA 2022 Workshop: Reinforcement
Learning for Contact-Rich Manipulation, 2022. [Online]. Available:
https://openreview.net/forum?id=Zrp4wpa9lqh

[3] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in neural
information processing systems, vol. 33, pp. 19 884–19 895, 2020.

[4] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[5] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz,
S. Schaal, and S. Levine, “Offline meta-reinforcement learning for
industrial insertion,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 6386–6393.

[6] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Ried-
miller, “Learning an embedding space for transferable robot skills,” in
International Conference on Learning Representations, 2018.

[7] T. Li, N. Lambert, R. Calandra, F. Meier, and A. Rai, “Learning gen-
eralizable locomotion skills with hierarchical reinforcement learning,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 413–419.

[8] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331–5340.

[9] Z.-H. Yin, L. Sun, H. Ma, M. Tomizuka, and W.-J. Li, “Cross domain
robot imitation with invariant representation,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
455–461.

[10] K. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon, “Domain adaptive
imitation learning,” in International Conference on Machine Learning.
PMLR, 2020, pp. 5286–5295.

[11] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-
task mappings for temporal difference learning.” Journal of Machine
Learning Research, vol. 8, no. 9, 2007.

[12] T. Tang, C. Liu, W. Chen, and M. Tomizuka, “Robotic manipulation
of deformable objects by tangent space mapping and non-rigid reg-
istration,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 2689–2696.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[14] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[16] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[17] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ Int. Conf. on Intelligent
Robots and Syst. IEEE, 2012, pp. 5026–5033.

[18] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[19] Rail-Berkeley, “Rail-berkeley/rlkit: Collection of reinforcement
learning algorithms.” [Online]. Available: https://github.com/
rail-berkeley/rlkit

[20] E. Olson, “Apriltag: A robust and flexible visual fiducial system,”
in 2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 3400–3407.

[21] C. Mayer, M. Danelljan, G. Bhat, M. Paul, D. P. Paudel, F. Yu,
and L. Van Gool, “Transforming model prediction for tracking,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 8731–8740.

[22] J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon,
and M. Humenberger, “R2d2: repeatable and reliable detector and
descriptor,” arXiv preprint arXiv:1906.06195, 2019.

[23] B. Huang, J. Yu, and S. Jain, “EARL: Eye-on-hand reinforcement
learner for dynamic grasping with active pose estimation,” 2023.

[24] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking for novel ob-
jects without instance or category-level 3d models,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 8067–8074.

APPENDIX

APPENDIX I
DETAILED REINFORCEMENT LEARNING SETUP FOR

UNITARY OBJECT PIVOTING

The simulation environment. The unitary pivoting policy
πuθ (a|s) parameterized by θ is learned in a Mujoco [17] sim-
ulation environment, as shown in Fig. 6(a). The simulation
includes the robot gripper and the unitary object, which is a
9 × 9 × 3 cm3 box. The dimensions are arbitrarily chosen,
and they don’t affect the algorithm. Moreover, a rigid wall
is placed at what we consider the world frame origin to act
as an external surface.
The details to train πuθ (a|s) are as follows:
The state space is defined by three components: object
pose so, gripper pose sg , and the external forces measured
by the F/T sensor at the wrist of the robotic manipulator,
right above the gripper, sF . The object and gripper pose
include the cartesian position (X, Y, Z axes) and orientation
in quaternion, so, sg ∈ R7 while sF contains the forces
measured along the X, Y, and Z axes, sF ∈ R3. Thus, the
state s := [so, sg, sF] ∈ R17. The maximum forces applied
by the robot in the simulation are ±10N in each axes, and
sF is normalized to ±1N .
The action space is defined by the linear velocity of the
robot gripper in X, Y, and Z axes as well as the angular
velocity in the pitch direction, a = [ax, ay, az, aρ] ∈ R4. The
actions are limited by a moving threshold set to 25 mm. If
the gripper moves more than this limit during training, the
robot stops and proceeds to the next action.
The reward function is the distance between the current
object rotation matrix R and the goal rotation matrix Rgoal

which is defined as:

r =
π

2
− d, with d = arccos

(
0.5(Tr(RgoalRT)− 1)

)
(3)

where Tr(·) indicates the trace of a matrix. π
2 is added

to the reward to make the initial reward close to 0. This
reward encourages the robot to pivot the object to the goal
orientation Rgoal, which is set as the orientation when the
object is perpendicular to the ground.
Domain randomization is employed to improve the robust-
ness of the pivoting policy with three kinds of noises:

1) Uncertainty of the wall position. The origin of the world
frame is set at the wall, and we assume the exact position of
the wall is unknown. Since the positions of the object and
gripper are measured w.r.t the wall, we model this uncertainty
by adding a zero-mean Gaussian noise with an std of 2 cm
to the object and the gripper positions.

2) Force measurement noise. To model the noise of the F/T
sensor measurements, a zero-mean Gaussian noise with an
std of 0.5 N is added to the measured force in the simulation.

3) Initial pose distribution. During the training, we ran-
domized the initial pose of the object. Specifically, the object

https://openreview.net/forum?id=Zrp4wpa9lqh
https://github.com/rail-berkeley/rlkit
https://github.com/rail-berkeley/rlkit

XY

Z

(a) (b)

Fig. 6: Simulation in Mujoco: a) training on the unitary
object, b) four classes of objects (box, circle, cylinder, peg)

is placed with an offset to the wall and is oriented by a
random angle. The initial offset ∆x is sampled uniformly
from range [0, 5 cm]. The initial rotation angle limit is
defined as ± arctan(∆x/4.5), and the initial rotation angle
is sampled from this range to avoid an unfeasible initial pose.
Training hyperparameters: The pivoting policy is trained
with the SAC [18] algorithm using the implementation
from RLkit [19]. The policy and Q-function networks are
parameterized as two-layer Relu networks with 128 and 256
units, respectively. The batch size is 1024, and learning rates
are 5e− 3 for the Q-function and 3e− 4 for the policy.

APPENDIX II
DEPTH IMAGE DATASET GENERATION

We first build a dataset of depth images in simulation
to learn such a feature space. As depicted in Fig 6(b),
we generated the dataset from four object classes cobj :
rectangular box, circle, cylinder, and peg. For each class, 100
randomly sized objects are generated. The generated dataset
is composed as D := {Ii, cobj,i, sobj,i}400i where Ii are the
depth images of each object and sobj,i = [lx, ly, lz] are the
sizes, recorded as labels. Then, D is augmented ten times to
4000 data points by applying random translations, rotations,
and Gaussian noise to each original data point.

APPENDIX III
LEARNING PROJECTION NETWORKS WITH PPO

In this paper, we apply a simpler version of PPO [15] to
update both state and action projection nets. Given two ad-
vantage functions pre-mentioned in 2, the objective function
for state and action projection nets are:

Ls(f, Ts, ϕ, ϕold) = (4)

min

(
ρϕ(f)

ρϕold(f)
, clip

(
ρϕ(f)

ρϕold(f)
, 1 + ϵs, 1− ϵs

))
As

La(f, su, Ta, ψ, ψold) = (5)

min

(
ρψ(f, su)

ρψold(f, su)
, clip

(
ρψ(f, su)

ρψold(f, su)
, 1 + ϵa, 1− ϵa

))
Aa

where ρ1(·)
ρ2(·) is the ratio of likelihood of two projections and

ϵs, ϵa are clipping factors for update. The weights of the two
projection nets are updated by:

ϕk+1 = argmax
ϕ

E
(f,Ts)∼πϕk

Ls(f, Ts, ϕ, ϕk) (6)

ψk+1 = argmax
ψ

E
(f,su,Ts)∼πψk

La(f, su, Ta, ψ, ψk) (7)

X

Y

Z

Wall

F/T
Sensor

Object

Gripper

(a) (b)

Fig. 7: a) Real-world setup. b) Objects in the real world.

Essentially, we maximize the likelihood of state or action
transformations with higher reward-to-go. The details of our
proposed approach are summarised in Algorithm 1.

Algorithm 1: Learning state and action projections
Initialize state and action projection nets
ρϕ(f), ρψ(f, su) with random weights ϕ, ψ

Initialize the unitary policy πuθ (āu|s̄u) and feature
extraction network F (f |I) with pretrained weights.

for i = 0, 1, 2, . . . until convergence do
for iteration k = 1 to K do

Randomly sample an object ok with image Ik
Infer the object feature fk ∼ F (f |Ik)
Infer actions using (1) to collect a trajectory

end
Calculate advantages for state and action
transformations using (2)

for iteration m = 1 to M do
Update State/Action Projection Nets (6),(7)

end
end

APPENDIX IV
REAL-WORLD EXPERIMENTAL SETUPS

Real Robot Setup and Vision Feedback: We use a
6DoF Mitsubishi Assista RV-5AS-D collaborative robot arm
with a WSG32 gripper as shown in Fig. 7(a). The robot is
controlled in impedance control mode with stiffness set to 12
N/mm. The external forces are measured by wrist mounted
F/T sensor. For state estimation, we compare two systems
to obtain the object pose from an RGB-D camera (Intel
Realsense D435). The first system uses April-tags [20] on
the objects for tracking. This system provides high-accuracy
state information but needs the tag’s placement. The second
system comprises vision-based 6D pose estimation consisting
of a mask and deep feature extraction [21], [22] pipeline
with pose tracking. To accomplish fast tracking of novel
objects in motion using RGB-D images, we introduce several
augmentations to enhance the pose tracking [23] based on
the BundleTrack [24]. The method does not require CAD
models, and because of sensor noise, the state estimation can
be noisier. We test pivoting manipulation with both systems
to evaluate the robustness of our proposed approach.

Object Dataset: Fig 7(b) shows the objects we used
for the real-world experiments. We considered nine objects
which can be categorized into four object classes in the

simulation to test the sim-to-real transfer performance of the
proposed approach. Furthermore, we test the generalizability
on two irregularly shaped objects (sanitizer and mustard
bottle). Please note that none of these objects was seen during
the simulation and the same hold for depth images of the real
objects taken by the camera and used to infer object features.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-048.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

