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Abstract
This paper proposes a surrogate model for the rapid evaluation of electric machine designs,
based on a neural network combined with a semi-analytical subdomain model. Although
both analytical physical-model approaches and data-driven approaches have been proposed
to construct surrogate models, which can be significantly faster than numerical finite-element
simulations, issues still remain. On one hand, simplifications in analytical approaches often
cause inaccuracy, especially in the prediction of highly nonlinear phenomena such as cogging
torque of permanent magnet synchronous motors; on the other hand, purely data-driven
approaches often require a large amount of training data to achieve high accuracy. In our
proposed method, the performance of the electric machine is initially approximated by using
a semi-analytical subdomain method, and this initial prediction is used as the input of a
neural network, together with other design variables, to obtain the final prediction. We test
the method to predict the cogging torque of surface-mounted permanent magnet motors.
By combining physical-model and data-driven approaches, the proposed method can predict
cogging torque with good accuracy, which cannot be achieved with only physical-model;
the prediction accuracy is also much improved compared with conventional neural networks,
especially when the size of the training dataset is small.
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This paper proposes a surrogate model for the rapid evaluation of electric machine designs, based on a neural network combined
with a semi-analytical subdomain model. Although both analytical physical-model approaches and data-driven approaches have
been proposed to construct surrogate models, which can be significantly faster than numerical finite-element simulations, issues still
remain. On one hand, simplifications in analytical approaches often cause inaccuracy, especially in the prediction of highly nonlinear
phenomena such as cogging torque of permanent magnet synchronous motors; on the other hand, purely data-driven approaches
often require a large amount of training data to achieve high accuracy. In our proposed method, the performance of the electric
machine is initially approximated by using a semi-analytical subdomain method, and this initial prediction is used as the input of a
neural network, together with other design variables, to obtain the final prediction. We test the method to predict the cogging torque
of surface-mounted permanent magnet motors. By combining physical-model and data-driven approaches, the proposed method can
predict cogging torque with good accuracy, which cannot be achieved with only physical-model; the prediction accuracy is also much
improved compared with conventional neural networks, especially when the size of the training dataset is small.
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I. INTRODUCTION

THE design optimization of electric machines using the
surrogate model approach is attracting a lot of interests

because of its advantage in computational speed compared
with conventional finite-element method (FEM) based design
approaches. The neural network (NN) based machine learning
(ML) method is one of the promising ways to construct
the surrogate model due to its potential in predicting the
highly nonlinear performance of the electric machines [1],
[2]. However, a large amount of training data is required to
train these models with high prediction accuracy, especially for
complicated designs determined by a large number of design
variables. On the other hand, a lot of physics-based approaches
using analytical and semi-analytical models (AM), which re-
quire no training data, have also been proposed to predict the
electric machine performance in a significantly shorter time
than FEM simulations. These physical models, however, often
include some simplifications and approximations that lead to
inaccurate predictions compared with nonlinear FEM.

In particular, cogging torque is one critical requirement of
motor design, especially for precise motion control applica-
tions. Both data-driven approach [3] and analytical approach
[4] cannot achieve sufficient accuracy because the torque
waveform is often nonlinear and extremely sensitive to slight
changes in the dimensions around the air gap region, such
as slot-opening, tooth shoe height, and shape of the magnets.
The idea of analytical-model-assisted surrogate was discussed
by Tang et al. [5] for the accurate prediction of magnetic
saturation. However, motor performance metrics related to
higher harmonics of the waveform such as cogging torque were
not considered. In this study, we propose a surrogate model
for motor cogging torque prediction based on NN, in which
an analytical approximation is used as an additional input to

the NN. The trained model can achieve improved accuracy
compared with the analytical-model-only approach, as well as
the conventional NN approach, especially when the size of the
training dataset is not large enough.

II. MATERIALS AND METHODS

A. Problem setting

The schematic of an example surface-mounted permanent
magnet (SPM) motor is shown in Fig. 1. Nine parameters
marked in the figure are tunable design variables, while other
dimensions, such as outer diameter of the stator and axial
length of the motor, are fixed.

For machine learning purposes, a dataset is constructed,
with motor design candidates as input, which are generated
by tuning the values of the 9 design parameters, and motor
performances such as cogging torque as output, which are
obtained by conducting FEM simulations.

Fig. 1. SPM motor structure with 9 design variables.

B. Semi-analytical subdomain model

We employ a semi-analytical subdomain method [6] to ap-
proximate the motor performance with much less computation



time than FEM. In this method, the 2D motor geometry is
divided into several subdomains and transformed so that they
become rectangular shapes in the polar (r − θ) coordinate.
In setting up the problem, we also assume that the iron
permeability is infinity. The vector potential distribution is
analytically derived by solving Poisson’s equation, and the
magnetic properties such as magnetic field distribution and
torque can be calculated subsequently. However, these assump-
tions may cause an error in torque calculation because the
actual permeability of the iron, in particular at the tooth shoe,
can be much lower and varies with the rotational angle of the
rotor, depending on the nonlinear B-H relationship of the core
material.

C. Neural network with semi-analytical model assistance

The data-driven modeling process is shown in Fig. 2. In a
conventional NN-based surrogate model, the design parameters
defined in Fig. 1 are directly treated as input to the NN, and
the motor performance is output, as shown in Fig. 2 (a). In our
proposal, as illustrated in Fig. 2 (b), the motor performance is
first estimated using the analytical model, and the estimated
value is also used as input for the NN in addition to the original
design parameters. During the evaluation of the ML models,
training and test data are drawn from the shuffled dataset.
To confirm the prediction accuracy with the smaller size of
training data, several sets of training and test data are prepared
by varying the size of the training data. We also test the purely
data-driven NN in Fig. 2 (a) to compare with the proposed
method.

Fig. 2. The flowcharts of the process for (a) NN (b) AM-assisted NN

III. INITIAL RESULTS

The prediction accuracy of the proposed method in com-
parison with the analytical model and pure NN is shown in
Fig. 3, obtained with training data size of 2000. Here, the root
mean square error (RMSE) over the test data is defined as
RMSE =

√
1

ntest

∑ntest

i=1 (yi − ŷi)2, where ntest is the number
of test data, ŷi and yi are the predictions of the NN and
the ground truth obtained by FEM for the i-th test data,
respectively, both normalized by the training dataset. Since the
training process depends on the initial state of the NN, 20 tests
were carried out for each case with the same set of training
and test data, and then the mean and standard deviations of
the RMSE over the 20 tests were calculated. The proposed

method, i.e. the AM-assisted NN, gives the smallest mean value
of RMSE.

Figure 4 shows the relationship between the size of training
data and prediction accuracy. The RMSE value with the
proposed method is smaller than that of the pure NN when the
number of training data is 500 or less. When the training data
is sufficiently large (1000 or more), no significant difference
is observed. This result shows that the proposed method is
especially effective with small training data. In the future
we will further investigate the effectiveness of the proposed
method in the process of multi-objective design optimization
of rotating machines. Detailed analysis and results will be
presented in the full paper.

Fig. 3. The values of RMSE with AM, NN, and AM-assisted NN, for the
dataset with 500 training data.

Fig. 4. The relationship between RMSE and the size of the training dataset.
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