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In electric motor design tasks, multiple design goals often need to be placed on a single motor,
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process is typically ineffective and heavily dependent on the expertise of the engineers due
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motor design candidate. In this paper, we propose an inverse design approach for electric
machines based on a tandem neural network, which can effectively provide desired motor
design candidates for various design targets without iteration. The one- to-many mapping
problem can be avoided by the tandem neural network, which constructs loss functions based
on the responses of the generated motor designs. The proposed intelligent design strategy is
generally applicable for the design tasks of different types of electric motors.
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Abstract—In electric motor design tasks, multiple design goals
often need to be placed on a single motor, and multi-objective
optimization plays a significant role. Trade-offs and Pareto
front searching are needed, as these design goals or responses
cannot be optimized concurrently due to their interdependent
nature. However, tuning the motor parameters in the iterative
optimization process is typically ineffective and heavily dependent
on the expertise of the engineers due to the large number of time-
consuming finite-element simulations required to evaluate each
motor design candidate. In this paper, we propose an inverse
design approach for electric machines based on a tandem neural
network, which can effectively provide desired motor design
candidates for various design targets without iteration. The one-
to-many mapping problem can be avoided by the tandem neural
network, which constructs loss functions based on the responses
of the generated motor designs. The proposed intelligent design
strategy is generally applicable for the design tasks of different
types of electric motors.

Index Terms—Topic— Electric motor, inverse design, machine
learning, tandem neural network, surrogate model

I. INTRODUCTION

Electric motors are essential components in many aspects
of the modern society, including transportation networks,
industrial machinery, and household appliances. The need for
power-dense, highly efficient, and economically viable motors
is ever increasing. When trying to find the best designs for
motors, multi-objective design optimization is frequently used
to take into account various characteristics that are critical
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for machine design, such as average torque generation, torque
ripple, cogging torque, weight, and material cost. The design
parameters are often iteratively updated using evolutionary
algorithms such as genetic algorithms, and finite-element anal-
ysis (FEA) based numerical simulations are used to assess the
performance of each design candidate within the optimization
loop [1]. The challenges of this design optimization process
can be summarized into the following three aspects. First, the
design goals are typically interrelated, which implies that there
may be trade-offs or even conflicts between them, making
it difficult for one motor to satisfy all the design goals at
once. Second, multiple motor design candidates need to be
evaluated with numerical simulations (e.g. FEA), which are
very time-consuming, especially when a large number of rotor
positions or operating points of a motor design candidate need
to be evaluated. Lastly, the optimization process is typically
not a one-shot operation, meaning the best design(s) cannot
be generated within a single optimization step, but rather an
iterative process of trial and error. As a result, this procedure
requires extremely long computation time with these problems
combined. Strong domain knowledge and know-how from
motor designers are also necessary in order to conduct the
optimization tasks.

In recent years, intelligent design approaches, based on
contemporary numerical optimization and machine learning
algorithms, have had considerable success across multiple dis-
ciplines, including photonic [2], acoustic [3], and mechanical
[4] device designs. They have the potential to address these
motor design issues and offer a more effective and efficient



Fig. 1. Mappings of forward prediction and inverse design. (a) Forward prediction mapping, each design D will have one determined response R, (b) Inverse
design mapping, a given target response R may correspond to multiple designs D1, D2, D3, etc.

approach for electric motor design tasks. For instance, deep
neural networks (DNNs) mimic the neuron behaviors in the
human brain, connecting layers with a linear transformation
and a nonlinear activation [5]–[7]. The DNNs may be able
to map or infer any functions by stacking multiple layers
of neurons. In physical systems, DNNs can be constructed
and trained as a forward surrogate model that can assess a
specific physical design and output the predicted response
without physical simulation. Such surrogate models can be
used to speed up the design optimization process. Various
deep learning models have been proposed as surrogate models
for electric motors to replace finite-element simulations in the
design optimization process [8]–[14]. Note that the iterative
optimization process is still required with DNN based surro-
gate models.

On the other hand, DNNs can also be built to work as an
inverse model that provides physical device design candidates
as the output of the model for a particular set of design
requirements, without going through the iterative optimization
process [15]. One main technical challenge exists in the
training of inverse design model. While forward surrogate
models represent a one-to-one mapping between input and
output that produces a deterministic response for a given
design, inverse models using DNNs often deal with one-to-
many mapping problems, as shown in Fig. 1. If we build
DNN models for inverse design in a similar manner as forward
models by swapping the input and output data, they may not
be able to converge in the training process, or simply fail to
produce effective designs [16].

In this paper, we propose to use a tandem neural network as
an inverse design strategy for electric machines, which avoids
the one-to-many problem. We demonstrate the effectiveness
of this technique by applying it to a surface-mount permanent
magnet (SPM) motor design problem, and show that it can
providing good motor designs for a set of design goals
without iteration. The generated designs are validated with
FEA simulations, and show good accuracy of the model, as
well as the effectiveness of achieving pre-set design goals.

II. INVERSE DESIGN PROCESS BASED ON TANDEM
NEURAL NETWORK

For motor design tasks, DNN-based surrogate models take
in a motor design, represented in either a set of parameters
or its cross-section image, as input, and output a prediction
to one or more responses or performance metrics of the
motor. However, a typical motor design task is considered
an inverse design process: find the best motor design that
meets the design goals. In order to utilize DNN for inverse
design, we need to take motor design goals as input, and
construct the DNN model such that it provides motor designs
as its output. The forward surrogate model is a relatively
straightforward one-to-one mapping between a motor design
and its response, as shown in Fig. 1(a), while multiple motors
with different design parameters may exhibit similar or even
identical responses, as shown in Fig. 1(b). The training dataset
may therefore contain “conflicting” data, where three designs
D1, D2 and D3 have the same responses R.

To be more specific, we illustrate the one-to-many mapping
problem with SPM motor designs. The motor has 10 poles
and 12 slots, and a total of 9 design parameters (shown in
Fig. 2) are varied for design optimization, while other major
geometrical parameter are fixed. Fig. 2 shows the comparison
of the cross-sections of two motor design candidates. Although
the two designs on the left (D1) and right (D2) side of the
figure are distinct in design parameters, they have almost
identical responses R in the categories we evaluate, including
slot area r1, 12th Fourier order of cogging torque r2, magnetic
flux r3, 1st Fourier order of induced voltage r4, and its total
harmonic distortion r5.

These “conflict” data pairs are the essential component
of the one-to-many mapping. When we receive a target re-
sponse R, there might be two (or even more) designs in
the dataset, D1 and D2, that match the response. When R
is provided as input, a deterministic model like the fully-
connected neural network will only predict one design D∗

based on the input. Now, because D1 ̸= D2, the components
in the loss function, i.e. (D1 −D∗)2 and (D2 −D∗)2, cannot



Motor parameters D

Unit: mm d1 d2 d3 d4 d5 d6 d7 d8 d9
Motor 1 3.8 47.5 16 11 5 1.6 3 0 5.75
Motor 2 2.8 48.5 16 10.5 4 1.4 3 0 7

Motor response R

Unit: r1 (mm2) r2 (N· m) r3 (Wb) r4 (V) r5 (1)
Motor 1 29.08 3.3× 10−4 0.0449 19.21 0.0324
Motor 2 29.12 5.2× 10−5 0.0448 19.17 0.0316

Fig. 2. Example of a one-to-many mapping: two different motor designs have the nearly identical responses. Figure shows half of cross-section magnetic
design for the two motors side-by-side, with motor design parameters indicated in the figure, and exact values shown in the top right table. The responses of
the two motors are shown in the bottom right table.

be minimized concurrently. As a result, back-propagation
using the loss function cannot effectively optimize the neural
network parameters. Although the designs D1 and D2 are
different, we know that their responses are the same, i.e.,
f(D1) = R1 = R = R2 = f(D2). Here, f(·) denotes
the forward evaluation of the motor designs, which could
be either provided by numerical simulation or a DNN-based
surrogate model. With this in mind, an alternative approach
to get around the problem is to evaluate the generated design
first to get R∗ = f(D∗), then compare the responses of design
candidates (R∗) to the target responses (R1 = R2 = R).
This avoids the drawback of directly comparing the design
candidate (D∗) with design candidates in the dataset (D1 and
D2). This strategy is not only effective in avoiding the one-
to-many mapping problem, but also makes sense in real-world
design applications. Indeed, when a design goal is given, we
do not restrict our design candidates to the motor designs
readily available in the dataset; instead, any motor design
that can meet the design goal is considered a good design.
Additionally, by using this forward evaluation, there is no
longer a conflict because R1 = R2 = R. Therefore, the loss
can be simultaneously minimized for the two data points and
the parameters in the DNN can be effectively updated using
back-propagation.

Based on this concept, we construct a tandem neural net-
work, whose schematic diagram is shown in Fig. 3. The
tandem network comprises an inverse design model coupled
to a pre-trained surrogate model. The surrogate model should
be either a physics-based analytical model or a pre-trained
DNN in order for the gradient of the loss to successfully back-
propagate to the inverse design model. Only the response R
is fed into the inverse model during training as the design
goal. The design candidates D∗ for the target response will
then be generated by the inverse model, which is based on
a fully-connected neural network. The design candidate will
then be evaluated using the pre-trained surrogate model, and a
predicted response R∗ will be provided by the output layer. By
comparing the target response R with the expected response
R∗, a root-mean-squared error (RMSE) based prediction loss
function LP (R,R∗) =

√
(R−R∗)2 can be constructed. As

a result, it avoids making a direct comparison between the
ground truth parameters and the predicted parameters (in
the intermediate layer), which could be unstable due to the
one-to-many mapping problem. To obtain accurate response
prediction for the generated design candidate, it is important
to note that only the network parameters in the inverse design
model are tuned in the back-propagation process, while the
parameters in the pre-trained surrogate model are fixed during
the training of the tandem network to ensure an accurate
evaluation of these generated designs.

III. MODEL IMPLEMENTATION & TEST RESULTS

Fig. 3. Schematic of a tandem neural network.

To train and validate the performance of the tandem net-
work, the first step is to generate a dataset. We used FEA
simulations with JMAG to construct the SPM dataset, which
involved evaluating a total of 8, 916 motor designs. Each
design is characterized by a set of geometrical parameters, de-
noted by D : [d1, d2, ..., d9], and a corresponding set of motor
responses, denoted by R : [r1, r2, ..., r5]. The representation
of each design parameter (di) can be found in Fig. 2, while
the motor response (ri) is described in the previous section.
An 80:20 split ratio is used for the training and test data from
the dataset.



Fig. 4. Training loss and validation loss at different training epochs.

The inverse design problem can be defined as follows: given
a target response R (a five-dimensional vector), the model
should provide a motor design candidate D, described by
nine design parameters, such that the resulting response R∗

equals the target response R. This problem is central to the
performance validation of our tandem network model. It is
important to highlight that the inverse problem we defined
allows us to parameterize the motor designs. This is different
from designs generated by methods such as topology optimiza-
tion, which rely on image representations of motors. By using
parameter descriptions, we can mitigate the manufacturing
difficulty associated with testing designs in the real world. As
a result, the motor designs generated by our tandem network
model are most likely to be feasible in both physical and
manufacturing considerations, provided that they satisfy some
simple criteria regarding the parameters. We will discuss these
criteria further in the following text.

We constructed the surrogate model for our study using
Pyrenn, an open-source tool for deep neural network (DNN)
implementation with the Levenberg-Marquardt (LM) algo-
rithm [17], [18]. The LM algorithm is an iterative optimiza-
tion method that alternates between Newton’s method and
stochastic gradient descent. It aims to efficiently update the
neural network in each iteration to achieve the best possible
performance. The surrogate model we created using Pyrenn
consists of an input layer with 9 nodes that represent the
input parameters. These nodes are fully connected to a hidden
layer with 100 neurons, which are activated using the default
tanh(·) activation function. The output layer consists of 5
nodes, each representing a predicted response. We trained
the surrogate model for 1000 epochs. By using Pyrenn with
the LM algorithm, we were able to create a highly accurate
and efficient surrogate model that can accurately predict the
response of the motor design based on its parameters.

The inverse model is constructed and implemented in Py-
Torch, an open-source tool for DNN implementation. The
model contains one input layer, one hidden layer with 100
neuron nodes, and one output layer. It is directly connected to
a pretrained surrogate model which is also constructed with

Fig. 5. (a-c) Reconstructed vs. ground-truth parameter of motors and (d-f)
predicted vs. target motor responses for three motor design examples from
the dataset.

100 nodes in a single hidden layer.
To ensure that the motor designs generated by our tandem

network model are valid and feasible for manufacturing, we
have included several criteria in the inverse design model.
Firstly, all the design parameters must be non-negative. To
enforce this condition, we have added a rectified linear unit
(ReLU) layer at the end of the inverse model, which ensures
that the output parameters are non-negative. Secondly, the
slot opening of the motor should not be larger than the slot
width. This means that the value of parameter d7 should
be greater than or equal to parameter d6 (i.e., d6 ≤ d7).
Additionally, the magnets in the motor should not overlap with
their neighboring magnets. This condition can be expressed as
(d2−2 ·d1) · sin(π/10) ≥ d4. If a motor design violates either
of these two constraints, a penalty term is added to the loss
function, which effectively discards these design candidates.
By enforcing these criteria, we can guarantee that the motor
designs generated by the tandem network model are physically
allowed and feasible for manufacturing.

Both the surrogate model and the inverse model in our
study have been designed to be lightweight, which allows
for efficient computation speed, especially when dealing with
large amounts of parallel inverse design tasks. The tandem
network model is trained with the training dataset. The test
dataset is used to validate the model during training phase.
Fig. 4 plots the training and validation error as function of
training epoch during the training phase, which clearly show
convergence of the loss function L toward the end of the
training.

The trained model is then tested on the test dataset, with
the responses of each motor design in the test dataset as the
input of the inverse model. We can check the motor design
parameter reconstructed by the inverse model, and compare
them with the corresponding parameters associated with the
input responses. We can also compare the response generated



Fig. 6. The distribution of all parameters in the dataset (blue) and all reconstructed parameters from the tandem network with wr = 0.1 (orange).

Fig. 7. Comparison of results from different loss functions and tandem
network settings.

from the tandem network with the input target response. Three
test examples are shown in Fig. 5, with Fig. 5(a)-(c) show
the reconstruction capability of the inverse model, and Fig.
5 (d)-(f) show the responses of the generated motor designs
as compared with the design target. The response plot in the
second row are shown in logarithmic scale, since the order of
different responses varied a lot.

While the main goal of the tandem network is to provide
motor designs with minimal prediction loss, it is still necessary
to evaluate the overall reconstruction loss on the test dataset,
which compares generated designs and the available designs in
the dataset. The main reason is that here we are using a DNN-
based surrogate model which is trained based on the same
dataset. We should be mindful that, the predicted responses
are generated using the surrogate model, which also has some
errors. The overall error of the inverse design model should
consist of both the prediction error LP , and the mismatch

between the actual response and the predicted response from
the surrogate model (denote as LS). In the tandem network,
only the first component LP is evaluated. To account for the
second error, ideally, we can refer to the previous section
for the error of the parameter-based surrogate model. But the
case is more complicated in our case: If we look at Fig. 6
which visualizes the distributions of the design parameters in
the dataset (blue) and from the inverse model (orange), we
can readily see that their range still have slight deviation,
especially for d1 and d2 in 6(a)-(b). We may anticipate an
even larger prediction loss of the surrogate model when it is
used for the generated design parameters which follow the
orange distribution if we keep in mind that the surrogate
models were pre-trained with the same dataset following the
blue distribution.

In this case, we can use another loss component LS to
evaluate the RMSE between the model prediction of the motor
response and the one obtained from numerical simulation.
Note that the surrogate models were pre-trained with the same
dataset. A higher LS is anticipated when it is used to evaluate
the generated design parameters which lie outside of the
parameter domain defined by the training dataset. Only with
additional numerical simulations or a surrogate model trained
on a separate dataset can this error be eliminated. However,
we can positively correlate LS with the reconstruction loss
LR which describes the difference between the reconstructed
designs generated by the inverse model, and those in the
training dataset as the RMSE LR(D,D∗) =

√
(D −D∗)2.

It is therefore important to lower both LR and LP during the
training phase.

A weighted loss function L = LP +wr ·LR is then used in
the training process, where wr is the regularization weight
on reconstruction loss LR. Several models are trained and
evaluated with different wr values. By changing the weighting
factor wr value, a trade-off is apparent: on the one hand,
the generated parameters will have a distribution substantially
different from the dataset if wr is minimal, which lowers the



Fig. 8. The predicted responses of the generated design vs. the target responses, for wr = 0.1. The responses are (a) slot area, (b) cogging torque, (c)
magnetic flux, (d) induced voltage and (e) harmonic distortion.

Fig. 9. The distribution of all parameters in the dataset (blue) and all reconstructed parameters from the tandem network with lower and upper constraints
for the parameters (orange).

accuracy of the surrogate model; on the other hand, if the
weight wr is high, the inverse models will concentrate on
obtaining the same design as the ground truth, which will
exacerbate the one-to-many mapping problem. Therefore, we
should balance the two loss terms with a suitable loss weight
wr. We may infer from Fig. 7 that it will be easier to reduce
LR and maintain an extremely low LP simultaneously to
achieve modest and reliable inverse design if the weight of
the reconstruction loss is relatively low (between 0 and 0.1).

The test result of this model when wr = 0.1 is shown in Fig.
8, which plots the predicted responses of the generated design
from the inverse model R∗ vs. the design goals R. Excellent
matches are obtained for all 5 responses. This verifies that the
performance of the inverse design is almost flawless. Based on
the current results, we can see that the trained inverse model
based on the tandem network is very effective in providing
motor design for a given set of design goals.

In certain inverse design scenarios, the desired solution
may be limited to a specific range, defined by lower and
upper bounds. To address this requirement, we can make slight
modifications to our inverse model by incorporating a sigmoid
function at the output layer. This ensures that the generated
designs adhere to the desired data range, as demonstrated in
Fig. 9. However, the inclusion of additional constraints through

this modification leads to an increase in prediction loss, which
represents a trade-off between the desired range constraint and
the overall performance of the inverse design model. Fig. 7
shows how all of these models are compared.

As previously mentioned, there may be unexpected errors
when evaluating the inverse design with the surrogate model.
To ensure accuracy, we conducted FEA simulations to evaluate
the motors based on the inverse design model. In Fig. 10, we
randomly selected 30 target responses that included all five
metrics (r1,...,r5). We then used the tandem network proposed
to obtain 30 motor design parameters from the inverse design.
These 30 designs were simulated using FEA to obtain accurate
true responses (as opposed to using only the surrogate model
for prediction). The resulting true responses were plotted as
green markers against the target responses. The r2 value
confirms that these motor designs from the tandem network
are valid in exhibiting the user-defined target responses, albeit
with a slightly larger error for the cogging torque (Fig. 10(b)).

It should be noted that the inverse model is not limited
to a specific design problem. The method is generalizable
to different design tasks as long as the data structure is
similar, i.e., a relationship between design parameters and
responses. For new design tasks, one can easily figure out
the design parameters and corresponding response, generate a



Fig. 10. Validation of the inverse designed motors with FEA simulation. The responses are (a) slot area, (b) cogging torque, (c) magnetic flux, (d) induced
voltage and (e) harmonic distortion.

new training dataset, and retrain the same inverse model (or
slightly modified model) to work for the task. Our experiments
have demonstrated the accuracy of the inverse model, and its
generalization to other design tasks is a promising direction
for future research.

One downside of the tandem network is that, while it can
bypass the one-to-many mapping problem and demonstrate
excellent inverse design performance, it can only provide
one solution for the target response, even though there are
multiple solutions available due to the deterministic nature of
the inverse model. In the future, we will evaluate other model
architectures and develop deep generative models which can
generate multiple motor design candidates for a given design
target.

IV. CONCLUSIONS

In this paper, we proposed an inverse design strategy for
electric machines using a tandem neural network architecture.
Trained machine learning-based inverse design models have
the potential to generate desired motor designs almost instan-
taneously and avoid the iterative optimization process with
numerical simulations. One challenge in the inverse model is
the one-to-many mapping problem, which creates problems
in training neural networks based on back-propagation. We
designed a tandem neural network, where an inverse model
and a pre-trained surrogate model are combined to avoid the
problem. We demonstrated the effectiveness of the method
through the design of a surface-mount permanent magnet
motor. Results show that the inverse model can effectively
generate motor design candidates very close to the design
target, as validated with FEA simulations. The proposed
method can be generally applied to other motor design tasks.

REFERENCES

[1] G. Bramerdorfer, J. A. Tapia, J. J. Pyrhönen, and A. Cavagnino, “Modern
electrical machine design optimization: Techniques, trends, and best
practices,” IEEE Transactions on Industrial Electronics, vol. 65, no. 10,
pp. 7672–7684, 2018.

[2] Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discovery
and design of photonic structures,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 10, no. 1, pp. 126–135,
2020.

[3] B. Zheng, J. Yang, B. Liang, and J.-c. Cheng, “Inverse design of
acoustic metamaterials based on machine learning using a Gauss–
Bayesian model,” Journal of Applied Physics, vol. 128, no. 13, p.
134902, 2020.

[4] Q. Zeng, Z. Zhao, H. Lei, and P. Wang, “A deep learning approach
for inverse design of gradient mechanical metamaterials,” International
Journal of Mechanical Sciences, vol. 240, p. 107920, 2023.

[5] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[6] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu,
“Deep learning for the design of photonic structures,” Nature Photonics,
vol. 15, no. 2, pp. 77–90, 2021.

[7] Y. Xu, X. Zhang, Y. Fu, and Y. Liu, “Interfacing photonics with artificial
intelligence: an innovative design strategy for photonic structures and
devices based on artificial neural networks,” Photonics Research, vol. 9,
no. 4, pp. B135–B152, 2021.

[8] S. Doi, H. Sasaki, and H. Igarashi, “Multi-objective topology optimiza-
tion of rotating machines using deep learning,” IEEE transactions on
magnetics, vol. 55, no. 6, pp. 1–5, 2019.

[9] H. Sasaki and H. Igarashi, “Topology optimization accelerated by deep
learning,” IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1–5,
2019.

[10] A. Khan, V. Ghorbanian, and D. Lowther, “Deep learning for magnetic
field estimation,” IEEE Transactions on Magnetics, vol. 55, no. 6, pp.
1–4, 2019.

[11] A. Khan, M. H. Mohammadi, V. Ghorbanian, and D. Lowther, “Ef-
ficiency map prediction of motor drives using deep learning,” IEEE
Transactions on Magnetics, vol. 56, no. 3, pp. 1–4, 2020.

[12] Z. Pan, S. Fang, H. Wang, and Y. Zhong, “Accurate and efficient
surrogate model-assisted optimal design of flux reversal permanent
magnet arc motor,” IEEE Transactions on Industrial Electronics, 2022.

[13] B. Wang, A. Khaled Ahsan Talukder, and Y. Sakamoto, “Topological
data analysis for image-based machine learning: Application to electric
motors,” in 2022 International Conference on Electrical Machines
(ICEM), 2022, pp. 1015–1021.

[14] A. K. A. Talukder, B. Wang, and Y. Sakamoto, “Electric machine two-
dimensional flux map prediction with ensemble learning,” in 2022 25th
International Conference on Electrical Machines and Systems (ICEMS),
2022, pp. 1–4.

[15] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin,
and K. Parsons, “Deep neural network inverse design of integrated
photonic power splitters,” Scientific reports, vol. 9, no. 1, p. 1368, 2019.

[16] D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks
for the inverse design of nanophotonic structures,” Acs Photonics, vol. 5,
no. 4, pp. 1365–1369, 2018.

[17] S. Ide, “Striations, duration, migration and tidal response in deep
tremor,” Nature, vol. 466, no. 7304, pp. 356–359, 2010.

[18] D. Mardquardt, “An algorithm for least square estimation of parameters,”
J. Soc. Ind. Appl. Math, vol. 11, pp. 431–441, 1963.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-040.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


