
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Deep Proximal Gradient Method for Learned Convex
Regularizers

Berk, Aaron; Ma, Yanting; Boufounos, Petros T.; Wang, Pu; Mansour, Hassan

TR2023-032 May 06, 2023

Abstract
We consider the problem of simultaneously learning a convex penalty function and its prox-
imity operator for image reconstruction from incomplete measurements. Our goal is to apply
Accelerated Proximal Gradient Method (APGM) using a learned proximity op- erator in place
of the true proximity operator of the learned penalty function. Starting from a Gaussian im-
age denoiser, we learn an associated penalty function and its proximity operator. The learned
penalty function offers provable reconstruction guarantees, whereas access to its proximity
operator presents the opportunity to achieve APGM convergence rates, which are faster than
those of subgradient descent approaches.

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





DEEP PROXIMAL GRADIENT METHOD FOR LEARNED CONVEX REGULARIZERS

Aaron Berk1, Yanting Ma2, Petros Boufounos2, Pu Wang2, Hassan Mansour2

1Department of Mathematics and Statistics, McGill University, Montréal, QC
2Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02140, USA

aaron.berk@mcgill.ca, {yma, petrosb, pwang, mansour}@merl.com

ABSTRACT

We consider the problem of simultaneously learning a convex
penalty function and its proximity operator for image reconstruction
from incomplete measurements. Our goal is to apply Accelerated
Proximal Gradient Method (APGM) using a learned proximity op-
erator in place of the true proximity operator of the learned penalty
function. Starting from a Gaussian image denoiser, we learn an
associated penalty function and its proximity operator. The learned
penalty function offers provable reconstruction guarantees, whereas
access to its proximity operator presents the opportunity to achieve
APGM convergence rates, which are faster than those of subgradient
descent approaches.

Index Terms— Deep learning, proximal gradient method, plug-
and-play prior, input-convex neural network

1. INTRODUCTION

Linear inverse problems are an important class of problems within
the realm of computational imaging [1–3]. Suppose we wish to esti-
mate an unknown image x∗ from measurements b = Ax∗+ξ where
A is the measurement matrix (forward operator) and ξ is noise with
variance σ2. The arguably de facto convex optimization approach
for solving such a problem is to estimate x∗ as

x̂ := argmin
x∈Rn

ℓ(x; b) + λρ(x), (1)

where ℓ(x; b) := 1
2σ2 ∥Ax − b∥22 is the loss function, ρ is a con-

vex regularizer suitably adapted to the natural structure of the im-
age class, and λ > 0 is a regularization parameter. One effec-
tive approach for computing x̂ is the (accelerated) proximal gradient
method (APGM). For (1) this takes the form

vk+1 ← xk − µ∇ℓ(xk; y)
zk+1 ← prox(µλρ)(vk+1)

xk+1 ← zk+1 + αk(zk+1 − zk),

where the proximity operator (or prox) of a function f : Rn → R∞
is defined by

proxf (x) := argmin
w∈Rn

{
1

2
∥x− w∥22 + f(w)

}
.

In general, proxf (x) is a set-valued mapping. However, if f :
Rn → R∞ is lower semicontinuous (lsc) [4, Definition 1.21] and

A. Berk conducted this work partially during a summer internship at
MERL. They are currently partially supported by Institut de valorisation des
donées (IVADO) and Centre de Recherches en Mathématiques (CRM) Ap-
plied Math Lab.

convex [4, Definition 8.1], then proxf (x) is single-valued [4, Propo-
sition 12.15] and Fix proxf = argmin f [4, Proposition 12.28]
where FixT = {x ∈ Rn : x = T (x)} denotes the set of fixed
points of the map T : Rn → Rn.

Inverse problems in computational imaging have benefitted from
recent advances in deep learning [1,4–12]. Image denoisers, includ-
ing neural networks (NNs), serve implicitly as natural image priors,
and may be used to substitute proximity operators in convex min-
imization algorithms [5]. Recent work [13] has examined the role
of learned convex regularizers for solving inverse problems. There,
the authors select the convex regularizer ρ(·) to be a learned input-
convex neural network (ICNN). Thus, one [13] may first learn a
suitable convex regularizer ρICNN = fθ(x) for the image class of
interest, and use it as the penalty function in the above convex op-
timization problem (1). This approach admits provable guarantees
for a subgradient descent method, deriving from the input-convex
assumption on the penalty function.

Unfortunately, such subgradient descent approaches are known
to admit poor convergence rates for non-smooth objective func-
tions [14]. Indeed, ℓ + λρ can be non-smooth: NNs commonly
incorporate piecewise linear activation functions like ReLU. Thus,
it is natural to seek an alternative approach admitting provable guar-
antees for an algorithm with known faster convergence rates for
non-smooth objectives.
1.1. Contributions

In this work we consider the problem of simultaneously learning a
convex penalty function ρ = fθ and its proximity operator Hψ ≈
proxfθ . We apply a version of PnP-APGM using Hψ in place of
proxρ. To this end, we initialize Hψ as a Gaussian denoiser and
learnHψ while simultaneously learning the associated penalty func-
tion. The learned penalty function offers the performance benefits
discussed in [13], whereas access to its prox presents the opportunity
to achieve APGM convergence rates, which are faster than those of
subgradient descent approaches.

To eke out provable guarantees, we assume that the architecture
of ρ is an ICNN, ρ = ρICNN = fθ(x) : Rn → R, and we ap-
proximate proxρ by a NN Hψ : Rn → Rn. For example, in our
numerical experiments Hψ is a DnCNN [10]. However, it could
equally well be a variational autoencoder (VAE) [15] or U-Net [16].
We show, under suitable assumptions on the convergence of the net-
works during training, that PnP-PGM with Hψ yields provable con-
vergence guarantees, with faster rates than those achievable by sub-
gradient descent.

1.2. Notation

Throughout, we assume that x, y ∈ Rn ∼= Rd×d are vectors
that represent square images. We may refer to them as “sig-
nals”. The “square” assumption is for notational convenience; it



can be removed without impacting our results. Denote the ex-
tended reals by R∞ = R ∪ {+∞} and the nonnegative reals by
R+ := {x ∈ R : x ≥ 0}. A matrix B is positive definite if B ≻ 0.

2. RELATED WORK

Regularization by denoising (RED) and Plug-and-Play priors are two
related approaches that have demonstrated the feasibility of incorpo-
rating deep image priors in iterative reconstruction algorithms. In
regularization by denoising, general-purpose signal denoisers yield
explicit regularizers for inverse problems [6, 7]. In the plug-and-
play (PnP) priors approach [8], ill-posed inverse problems are solved
by an iterative proximal-type algorithm (like APGM or ADMM),
in which a prox is swapped with a (typically non-convex) denois-
ing operation. For example, a PnP variant of APGM might replace
the prox with BM3D [9], DnCNN [10] or a firmly non-expansive
([4, Definition 4.1]) convolutional neural network (CNN) [11]. One
commonly substitutes the prox for a Gaussian denoiser when im-
plementing PnP methods in practice [9, 10, 12]. In such cases, it is
empirically well supported that the so-called PnP-APGM and PnP-
ADMM approaches obtain good recovery results [8, 12, 17].

ICNNs were proposed as tools for inference and optimization
tasks in [18]. In simplest terms, a d-layer ICNN zd = fθ(x) takes
the form

zi+1 := gi(W
(z)
i zi +W

(x)
i x+ bi), i = 0, . . . , d− 1.

Above, zi denotes the layer activations with z0,W
(z)
0 = 0; gi the ac-

tivation functions for each layer; and θ := (W
(x)
0:k−1,W

(z)
1:k−1, b0:k−1).

IfW (z)
1:k−1 are non-negative and all gi are convex and non-decreasing,

then the ICNN f is convex in x [18, Proposition 1]. Note CNNs can
be made input-convex since convolutions are linear transformations.

Convergence rates and computational cost for vanilla proximal
gradient methods can be found in [14, Ch. 10], under mild regular-
ity assumptions when ρ is closed and convex; [14, Theorem 8.13]
for projected subgradient descent. Previous work has analyzed con-
vergence of inexact proximal gradient methods, in which there is
error in both the computation of the gradient and the proximal map-
ping [19]. There, the authors required that the sequence of errors sat-
isfy certain summability conditions to establish sublinear and linear
convergence rate guarantees. Subsequent work [20] has analyzed the
non-convex non-smooth setting, using an approach that still requires
summability of the noise terms. From a practitioner’s standpoint,
this summability assumption can be read as a requirement of com-
putation to a pre-specified accuracy. However, such an assumption
may be unrealistic for pre-computed functions designed to approxi-
mate proximity operators.

Convergence guarantees for some PnP methods using a gradient-
step denoiser, which corresponds with the proximal operator of some
scalar function (by [21]), appear in [22]. See [23] for PnP conver-
gence guarantees in a compressed sensing setting. In [12], conver-
gence guarantees for PnP-PGM are given for a class of denoisers
satisfying a nonexpansivity condition.

3. THEORY

Suppose ρ : Rn → R+ in (1) is an unknown target penalty function.
Let fθ : Rn → R+ be an ICNN parametrized by θ ∈ Rp with
fθ(x) lsc in x for each θ, and let Hψ : Rn → Rn be a NN with
parametersψ ∈ Rq . Next, supposeD is a data distribution of interest
with marginalsDc andDn representing “clean” and “noisy” images,

respectively. To obtain a penalty function fθ̂ and its approximate
prox Hψ̂ , we propose jointly learning (θ̂, ψ̂) ∈ Rp×q to solve the
saddle optimization

min
ψ∈Rq

max
θ∈Rp

E
(x,y)∼D

{1

2
∥Hψ(y)− y∥22 + fθ(Hψ(y)) (2)

+ fθ(y)− 2fθ(x)
}
.

We believe our formulation (2) to be novel. Note (2) resembles
the generative adversarial network (GAN) optimization problem [24,
p.58]: the penalty function fθ is analogous to the discriminator, the
prox Hψ , the generator. Furthermore, in the objective, fθ aims to
maximize the term fθ(Hψ(y)), whereas Hψ aims to minimize it.

We now motivate the design of this program. First, if θ̂ were
known a priori, then (2) is equivalent to

min
ψ∈Rq

E
y∼Dn

{
1

2
∥Hψ(y)− y∥22 + fθ̂(Hψ(y))

}
. (3)

If Hψ were sufficiently expressive, then (3) promotes learning ψ̂
such that Hψ̂ acts like proxf

θ̂
, at least for y ∼ Dn. Indeed, one

might hope for ψ̂ solving (3) and εH > 0 sufficiently small with

Ey∼Dn ∥Hψ̂(y)− proxf
θ̂
(y)∥2 ≤ εH .

Quantifying the expressivity ofHψ is beyond the scope of this paper;
we support the efficacy of our approach empirically in §4.

On the other hand, if ψ̂ were known, then (2) is equivalent to

min
θ∈Rp

E
(x,y)∼D

{
fθ(x)−

1

2

(
fθ(y) + fθ(Hψ̂(y))

)}
. (4)

Observe that (4) promotes a penalty fθ that assigns low scores to
“clean” images x ∼ Dc, and high scores to “noisy” or “artificial”
images y,Hψ̂(y), where y ∼ Dn. This idea is consistent with the
denoising-based approaches discussed in §1.

3.1. Algorithm

We next present our main numerical procedure (5), which is obtained
by usingHψ̂ with PnP-APGM. We then provide a convergence guar-
antee for our method under a regularity assumption on Hψ̂ .

Suppose (θ̂, ψ̂) ∈ Rp×q solves (2). Motivated by PnP-APGM,
with the idea that Hψ̂ reasonably approximates proxf

θ̂
, we define

the accelerated deep proximal gradient (ADPG) iteration for each
integer t ≥ 0:

x(t+1/2) := Tψ̂(x
(t))

x(t+1) := x(t+1) + βt
(
x(t+1/2) − x(t)

)
Tψ̂(x

(t)) := Hψ̂

(
x(t) − αA∗(Ax(t) − b)

)
.

(5)

Note that x(0) ∈ Rn is a chosen initialization (e.g., one may take
x(0) := Hψ̂(A

∗b) in practice). When βt = 0, (5) converges to
Fix(Tψ̂). Importantly, it is reasonable to expect that Fix(Tψ̂) ̸= ∅
(e.g., see [4, Theorem 4.19]).

Theorem 3.1. Let A ∈ Cm×n with m ≥ n and A∗A ≻ 0. Let
b := Ax∗ + ξ for x∗ ∈ Rn and ξ ∈ Cm. With fθ : Rn → R
parametrized by θ ∈ Rp such that fθ is convex in its argument for



each θ ∈ Rp, and Hψ : Rn → Rn parametrized by ψ ∈ Rq , let
(θ̂, ψ̂) solve (2). Let x̂ ∈ Rn solve

min
x∈Rn

1

2
∥b−Ax∥22 +

1

α
fθ̂(x),

where 0 < α < λ−1
max(A

∗A). If Hψ̂ is nonexpansive and x̄ ∈
Fix(Tψ̂), then there exists ν ∈ (0, 1) and ε = ε(Hψ̂, x̂) > 0 so that
for each integer t ≥ 0, the ADPG iterates (5) with βt = 0 satisfy

∥x(t) − x̂∥2 ≤ νt∥x(0) − x̄∥2 +
ε

1− ν .

The proof of the theorem is standard (e.g., see [23]) and is omit-
ted due to space limitation.

4. NUMERICAL EVALUATION

First, we establish the general framework of our numerical approach.
We then specify additional implementation details (§4.1) and show-
case our algorithm on a specific numerical example (§ 4.2). Some
implementation details specific to § 4.2 were used to more rapdily
obtain a working algorithm with greater performance and robust-
ness; we expand on this below.

Our numerics were implemented in PyTorch [25]. We im-
plement the optimization of (2) via an alternating minimization
procedure, the two objectives being (3) and (4). We outline the
structure of the alternating minimization procedure in PyTorch-
flavoured pseudo-code in Algorithm 4.1. In lines 3–5, a batch
of clean and noisy data is sampled from the training distribution;
fθi is given by f and Hψi by H . Lines 7–8 give the batch
loss for the objective (4); lines 12–13 for (3). In lines 9–10, the
weights of H are frozen and .backward computes the gradient
of the loss with respect to the weights of f . Then, the optimizer
optimizer_penalty updates the weights of the penalty function

using the just-computed gradient. Similarly, in lines 14–15 the
weights of f are frozen, the gradient of the loss is computed with
respect to the weights of H , and optimizer_prox updates the

weights of H using this gradient.

1 for epoch in range(num_epochs):
2 for batch in train_distr:
3 x, y = batch
4 fx, fy, Hy = f(x), f(y), H(y)
5 fHy = f(Hy)
6 # stage 1
7 loss_penalty = mean(
8 fx - 0.5 * (fy + fHy))
9 loss_penalty.backward()

10 optimizer_penalty.step()
11 # stage 2
12 loss_prox = (
13 mse(Hy, y) + λ * mean(f(Hy)))
14 loss_prox.backward()
15 optimizer_prox.step()

Algorithm 4.1: Outline of the alternating minimization procedure in
PyTorch-flavoured pseudo-code.

4.1. Implementation details

Because (2) is a saddle point problem, we implemented the alter-
nating minimization procedure using Optimistic Adam [26, 27].
On lines 10, 15 of Algorithm 4.1, optimizer_penalty and

optimizer_prox are functions implementing an iteration of Opti-
mistic Adam for θ and ψ, respectively.

In addition to the loss computed for fθ above, we found it benefi-
cial to regularize θ to promote 1-Lipschitzness of fθ , using the spec-
tral norm regularization approach developed in [28]. We adapted
this approach to ICNNs by changing the Lipschitz target constants
forW (z)

i ,W
(x)
i from 1 to 1√

2
. Thus, to loss_penalty we added a

spectral regularization quantity, multiplied by a large regularization
constant, 104.

Since fθ is an unknown penalty function, we initialized its
weights using default PyTorch settings. However, it was helpful
to select a good initialization for ψ. To this end, we use a transfer
learning approach [29] to initialize the weights of the prox function
Hψ using the trained RealSN-DnCNN developed in [12], which
we denote by Jσ . During the alternating minimization procedure
we use the same training and validation images as [12] to form the
clean and noisy data distributions, namely the BSD500 dataset [30]
images divided into 40× 40 patches.

4.2. Compressed sensing MRI

We perform a compressed sensing magnetic resonance imaging (CS-
MRI) experiment. We use the setup of [12, Section 6] so as to be
able to draw a direct comparison with their approach. Define the
measurement process

b = Axtrue + ξ,

where xtrue ∈ Cn is the underlying image, A ∈ Cm×n is the linear
measurement model and b ∈ Cm are the measured data. Above,
ξ ∈ Cm is some unknown (possibly random) corruption. In our
experiments, xtrue will be one of two images, to which we refer as
“Brain” and “Bust”, respectively (images on GitHub).

As in [12], A is a partial Fourier operator (subsampled discrete
Fourier transform), with random, radial or Cartesian sub-sampling
at a sampling rate of 30%. See [31] for more information. Follow-
ing [12], the noise ξ was sampled from a complex normal distribu-
tion with Re(ξ), Im(ξ)

iid∼ N (0, σ), σ = 15/255.
Our aim is to solve the following minimization problem

min
x∈Rn

1

2
∥b−Ax∥22 + λfθ̂(x),

where λ := 10−2σ (unless specified otherwise). For an image y ∈
Cd×d with d2 = n, Jσ(y) outputs the “noise” in the image y, so we
initialize Hψ as Hψ(x) := x−Jσ(x), where ψ denotes the weights
of Jσ , which are tuned during training. The penalty function that we
train is an ICNN [18]. Specifically, it is an input-convex CNN with
hidden layer sizes [16, 32, 64]. In particular, all convolutions are
3×3 convolutions with stride 1 and padding 1, (W (0),W (1),W (2))

have 16, 32, 64 filters respectively, (W̃ (1), W̃ (2)) have 32, 64 filters
respectively, and the biases are given by b(i) for i = 0, 1, 2, 3. Thus,
the penalty function fθ(x) takes the form

y(1) = LReLU(mp(W (0)x+ b(0)))

y(j+1) = LReLU(mp(aap(W (j)x) + W̃ (j)y(j−1) + b(j)))

fθ(x) = ReLU(W (3) aap(y(3)) + b(3))

https://github.com/uclaopt/Provable_Plug_and_Play/tree/master/Demo_mat/CS_MRI


0 25 50 75 100
epoch

0.008

0.007

0.006

0.005

0.004
lo

ss
 (p

en
al

ty
)

0 25 50 75 100
epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lo
ss

 (p
ro

x)

(a) Validation loss for penalty (left) and prox (right).

0 20 40 60 80 100
epoch

0.2

0.4

0.6

0.8

1.0

sc
or

e

clean
noisy
recons. (clean)
recons. (noisy)
recons. (clamp)

(b) Penalty loss per image type.

0 20 40 60 80 100
epoch

10-5

10-4

10-3

10-2

sp
ec

tra
l r

eg
ul

ar
iza

tio
n

(c) Spectral regularization loss.

Fig. 1: Per-epoch validation metrics for the alternating optimization
procedure described in Algorithm 4.1.

for j = 1, 2, and where the final linear mapping W (3) denotes a
fully connected layer with scalar output. Above, LReLU denotes
the leaky ReLU function with slope 10−2, ReLU denotes the ReLU
function, mp denotes 2× 2 max pooling, and aap denotes 2D adap-
tive average pooling. Note the final adaptive average pooling has
output size 1, while the output size of the others is determined by
the spatial dimensions of y(j−1). We refer the reader to the PyTorch
documentation [25] for further implementation details pertaining to
the above functions and their optimization.

The networks were optimized with Optimistic Adam [26, Algo-
rithm 1] with learning rates 10−3, 10−4 for fθ , Hψ , respectively,
and a weight decay of 10−4 in both cases. Training was run for 100
epochs with batch size 128 and the model with greatest validation
peak signal-to-noise ratio (PSNR) was selected (epoch 87). Training
results (i.e., per-epoch validation metrics) appear in Figure 1.

Next, we run ADPG as in (5) with our trained Hψ̂ with no ac-
celeration (i.e., βt = 0) for a maximum of 25 iterations (we found
that changing βt did not significantly impact rate of convergence
or image quality). We evaluate success of recovery on the “Brain”
and “Bust” images using PSNR. We compare final PSNR values for
ADPG to subgradient descent with λ = 100σ (using ∇xfθ̂(x)) and
to PnP-FBS [12]. As a benchmark, we also compute the PSNR val-
ues for x̂FBP and Hψ̂(x̂FBP). We call Hψ̂(x̂FBP) the “denoised” im-
age, by which we mean the image recovered by a single application
of Hψ̂ to the noisy image: H(x̂FBP;ψ), where x̂FBP := A†b is the
(zero-filled) “filtered back-projection” of the noisy measurements.
The five PSNR values for each image and sampling mask appear
in Table 1. In each row, the greatest PSNR value has been bolded.
In Figure 2 we show (from left-to-right) the Brain and Bust images,
the recovered images using PnP-FBS, ADPG and Hψ̂(x̂FBP)), and
the noisy image x̂FBP when the sampling mask was Random.

Finally, in Figure 3 we plot PSNR as a function of iteration
number for both ADPG (solid line) and subgradient descent (dashed
line). For visual clarity we log-transform the horizontal axis. Each
plot corresponds to a pairing of an image and a sampling mask, as de-
termined by the row and column labels. It is easily seen that ADPG
requires substantially fewer iterations to reach its maximal PSNR, as
compared with subgradient descent.

5. CONCLUSION

In this work, we propose a nonconvex optimization program to si-
multaneously obtain parameters (θ̂, ψ̂) for an ICNN fθ , which serves

(a) Brain

(b) Bust

Fig. 2: Results on Brain and Bust images with Random sampling
mask. Left-to-right: true image, PnP-FBS [12], ADPG, Hψ̂(x̂FBP),
x̂FBP. PSNR values for latter 4 images in rows 3 and 6 of Table 1,
respectively.

x̂FBP Hψ̂ subGD ADPG PPnP

Cartesian 20.22 20.80 22.87 22.65 23.13
Brain Radial 21.74 22.45 26.33 26.16 25.93

Random 22.23 23.11 27.15 27.08 27.06

Cartesian 21.74 22.66 25.42 24.77 25.46
Bust Radial 22.76 23.89 27.77 27.34 27.40

Random 23.92 25.35 28.45 28.21 28.65

Table 1: PSNR summary for the methods considered in this
work. Columns: x̂FBP: noisy images x̂FBP; Hψ̂: denoised im-
ages Hψ̂(x̂FBP); subGD: subgradient descent with ∇xfθ̂ , α = 0.1;
ADPG: deep proximal gradient descent withHψ̂ , α = 1, λ = 100σ;
PPnP: PnP-FBS [12] with RealSN-DnCNN, α = 0.4.

21

22

23

Br
ai

n
PS

NR

22

24

26

22

24

26

100 101 102

iteration
Cartesian

22

24

Bu
st

PS
NR

100 101 102

iteration
Radial

24

26

28

100 101 102

iteration
Random

24

26

28

Fig. 3: Plot of PSNR as a function of iteration number for ADPG
(solid line) and subgradient descent with fθ̂ (dashed line).

as a penalty function for the linear inverse problem (1), and a NN
Hψ which serves as an approximation to proxf

θ̂
. We show that

our accelerated deep proximal gradient method (ADPG), being PnP-
APGM using Hψ̂ , admits provable convergence guarantees with a
regularity assumption on Hψ̂ (Theorem 3.1). We showcase how to
approximately solve (2) via Algorithm 4.1. Finally, we perform a
numerical evaluation that demonstrates competitive recovery PSNR
with PnP-FBS and subgradient descent with learned penalty fθ̂ .

In future work, we wish to quantify ε in Theorem 3.1 and εH
from § 3, both theoretically and empirically. Finally, it remains an
open question to determine conditions under which Hψ̂ is nonex-
pansive.



6. REFERENCES

[1] R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu,
E. T. Reehorst, and P. Schniter, “Plug-and-play methods for
magnetic resonance imaging: Using denoisers for image re-
covery,” IEEE Signal Processing Magazine, vol. 37, no. 1, pp.
105–116, 2020.

[2] A. Ribes and F. Schmitt, “Linear inverse problems in imaging,”
IEEE Signal Processing Magazine, vol. 25, no. 4, pp. 84–99,
2008.

[3] J. A. Tropp and S. J. Wright, “Computational methods for
sparse solution of linear inverse problems,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 948–958, 2010.

[4] H. H. Bauschke and P. L. Combettes, Convex analysis and
monotone operator theory in Hilbert spaces. Springer, 2011,
vol. 408.

[5] T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers, “Learn-
ing proximal operators: Using denoising networks for regular-
izing inverse imaging problems,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1781–
1790.

[6] Y. Romano, M. Elad, and P. Milanfar, “The little engine that
could: Regularization by denoising (RED),” SIAM Journal on
Imaging Sciences, vol. 10, no. 4, pp. 1804–1844, 2017.

[7] E. T. Reehorst and P. Schniter, “Regularization by denoising:
Clarifications and new interpretations,” IEEE Transactions on
Computational Imaging, vol. 5, no. 1, pp. 52–67, 2018.

[8] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-
and-play priors for model based reconstruction,” in 2013 IEEE
Global Conference on Signal and Information Processing.
IEEE, 2013, pp. 945–948.

[9] W. De Leeuw and R. Van Liere, “BM3D: Motion estimation
in time dependent volume data,” in IEEE Visualization, 2002.
VIS 2002. IEEE, 2002, pp. 427–433.

[10] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond
a Gaussian denoiser: Residual learning of deep CNN for image
denoising,” IEEE Transactions on Image Processing, vol. 26,
no. 7, pp. 3142–3155, 2017.

[11] M. Terris, A. Repetti, J.-C. Pesquet, and Y. Wiaux, “Build-
ing firmly nonexpansive convolutional neural networks,” in
ICASSP 2020-2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 8658–8662.

[12] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-
and-play methods provably converge with properly trained de-
noisers,” in International Conference on Machine Learning.
PMLR, 2019, pp. 5546–5557.

[13] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem,
and C.-B. Schönlieb, “Learned convex regularizers for inverse
problems,” arXiv preprint arXiv:2008.02839, 2020.

[14] A. Beck, First-order methods in optimization. SIAM, 2017.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” arXiv preprint arXiv:1312.6114, 2013.

[16] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” in In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2015, pp. 234–
241.

[17] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schönlieb,
and H. Huang, “Tuning-free plug-and-play proximal algorithm
for inverse imaging problems,” in International Conference on
Machine Learning. PMLR, 2020, pp. 10 158–10 169.

[18] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural net-
works,” in International Conference on Machine Learning.
PMLR, 2017, pp. 146–155.

[19] M. Schmidt, N. Roux, and F. Bach, “Convergence rates of in-
exact proximal-gradient methods for convex optimization,” Ad-
vances in neural information processing systems, vol. 24, 2011.

[20] B. Gu, D. Wang, Z. Huo, and H. Huang, “Inexact proximal gra-
dient methods for non-convex and non-smooth optimization,”
in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32, no. 1, 2018.

[21] R. Gribonval, “Should penalized least squares regression be
interpreted as maximum a posteriori estimation?” IEEE Trans-
actions on Signal Processing, vol. 59, no. 5, pp. 2405–2410,
2011.

[22] S. Hurault, A. Leclaire, and N. Papadakis, “Proximal de-
noiser for convergent plug-and-play optimization with noncon-
vex regularization,” in International Conference on Machine
Learning. PMLR, 2022, pp. 9483–9505.

[23] J. Liu, S. Asif, B. Wohlberg, and U. Kamilov, “Recovery analy-
sis for plug-and-play priors using the restricted eigenvalue con-
dition,” Advances in Neural Information Processing Systems,
vol. 34, pp. 5921–5933, 2021.

[24] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sen-
gupta, and A. A. Bharath, “Generative adversarial networks:
An overview,” IEEE Signal Processing Magazine, vol. 35,
no. 1, pp. 53–65, 2018.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
“Pytorch: An imperative style, high-performance deep learn-
ing library,” Advances in neural information processing sys-
tems, vol. 32, pp. 8026–8037, 2019.

[26] C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, “Train-
ing GANs with optimism,” arXiv preprint arXiv:1711.00141,
2017.

[27] P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chan-
drasekhar, and G. Piliouras, “Optimistic mirror descent in
saddle-point problems: Going the extra (gradient) mile,” arXiv
preprint arXiv:1807.02629, 2018.

[28] S. Singla and S. Feizi, “Fantastic four: Differentiable and ef-
ficient bounds on singular values of convolution layers,” in In-
ternational Conference on Learning Representations, 2020.

[29] A. Ng, “Nuts and bolts of building AI applications using deep
learning,” NIPS Keynote Talk, 2016.

[30] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of
human segmented natural images and its application to evalu-
ating segmentation algorithms and measuring ecological statis-
tics,” in Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001, vol. 2. IEEE, 2001, pp. 416–
423.

[31] E. M. Eksioglu, “Decoupled algorithm for MRI reconstruction
using nonlocal block matching model: BM3D-MRI,” Journal
of Mathematical Imaging and Vision, vol. 56, no. 3, pp. 430–
440, 2016.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-032.pdf
	page 2
	page 3
	page 4
	page 5


