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Abstract
Motor current signature analysis (MCSA) has been widely used in motor fault diagnosis
by extracting characteristic frequency components in the spectrum of the stator current.
However, fault signatures in the motor current are generally weak and easily influenced by
noise and spectrum distortion caused by varying loads, especially in the early stage of motor
faults. In this paper, we develop a sparsity- driven joint blind deconvolution-demodulation
approach to extract small fault signatures of motors operating at a varying load. Results
on experimental data demonstrate that our approach can effectively extract fault signatures
from real noisy measurements of different load variation patterns.
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ABSTRACT

Motor current signature analysis (MCSA) has been widely used in

motor fault diagnosis by extracting characteristic frequency compo-

nents in the spectrum of the stator current. However, fault signatures

in the motor current are generally weak and easily influenced by

noise and spectrum distortion caused by varying loads, especially in

the early stage of motor faults. In this paper, we develop a sparsity-

driven joint blind deconvolution-demodulation approach to extract

small fault signatures of motors operating at a varying load. Results

on experimental data demonstrate that our approach can effectively

extract fault signatures from real noisy measurements of different

load variation patterns.

Index Terms— Blind deconvolution, sparse signal, small signal

extraction, motor fault

1. INTRODUCTION

Motor faults such as bearing fault, eccentricity fault, and broken-

bar fault, etc., cause asymmetric rotating flux in the air gap between

the stator and the rotor, and consequently induce extra frequency

components in the stator current. Therefore, when there exists a

motor fault, the frequency spectrum of the motor current includes not

only the operating frequency component, but also the fault signature

frequency component. Depending on the fault type, different faults

exhibit different signatures. For instance, for eccentricity fault, the

frequency components can be expressed as fs ± mfr , where fs is

the frequency of the power supply, fr is a rotor frequency related to

the rotational speed, and m = 0, 1, 2, .... [1].

Motor current signature analysis (MCSA), which aims to ex-

tract fault signatures in the frequency domain, has been widely used

in motor fault detection. In the past decades, various MCSA-based

methods have been developed to detection different types of faults in

motors[2, 3, 4, 5]. MCSA-based methods work well in general for

motors operating at steady status with a constant load and a constant

rotating speed.

However, when the motor under test is operating at varying

conditions such as a fluctuating load, the motor current magnitude

will vary adaptively to provide enough torque to drive the load. In

such a situation, the fault signature, whose magnitude is generally

much smaller than the operating frequency component, may be cor-

rupted by the distorted frequency spectrum of the motor current due

to varying operations or submerged by noise and other systematic

perturbations. This issue becomes more evident when the fault is

developing at its early stage. Therefore, it is desirable to develop

advanced methods to recover the fault signature from varying motor

This work was finished when Varun A. Kelkar was an intern at MERL.

current [4, 6, 7]. Recent studies have considered specific models

of load variations, such as phase modulation due to a sinusoidally

varying load [8, 9]. For conditions when the load is varying with

a specific pattern, time-frequency analysis methods may be used

by analyzing multiple time-domain segments[4, 10]. However,

time-frequency analysis methods suffer from an inherent tradeoff

between time and frequency resolution [4]. Recently, minimum vari-

ance (MV) beamforming-based denoising approach is introduced in

this motor fault detection area to extract small fault signature under

varying load conditions[11, 12]. MV beamforming-based denoising

is good at removing random noise, but not capable of removing

structured load fluctuations.

In this work, we propose a sparsity-driven method to extract

small-magnitude fault signatures from a distorted time-domain stator

current signal of a motor under varying load operations by solving

a joint blind deconvolution and demodulation problem. The main

contribution of our paper lies in the following three aspects. First,

we build a physical model of the stator current by simplifying a set

of differential equations that relate the stator current to the operat-

ing condition in a complicated, nonlinear way. Second, we cast the

problem of recovering the steady-state stator signal with fault sig-

natures as a joint deconvolution-demodulation problem with proper

assumptions. Third, we develop a proximal alternating linearized

minimization-type method to solve the problem, assuming that the

spectrum of the sought-after signal is sparse. We demonstrate the

utility of our approach on signals collected from a real two-pole in-

duction motor under varying load conditions.

The manuscript is organized as follows. Sec. 2 describes our

physical model of the stator current under slowly varying loads. In

Sec. 3 we formulate the fault signal extraction problem as a con-

strained optimization problem, and propose an approach to solving

it. Results on experimental data are provided in Sec. 4, with conclu-

sion drawn in Sec. 5.

2. MODEL OF MOTOR STATOR CURRENT

2.1. Physical model

Without loss of generality, we consider a three-phase motor operat-

ing at an open-loop condition, driving a slowly varying load. For

time t ∈ R, let is(t) and ir(t) be the time-domain stator and ro-

tor currents respectively, and us(t) and ur(t) denote the stator and

the rotor voltages respectively, all in the space vector representation

[13, 14]. The relationships between is, ir , us, and ur is given by

[14]:

u = Zi+ L
di

dt
, (1)



where i(t) = [is(t) ir(t)]
⊤, u(t) = [us(t) ur(t)]

⊤, and Z =
[

Rs 0
−jΩM Rr − jΩLr

]

and L =

[

Ls M
M Lr

]

are impedance and

inductance matrices respectively with parameters defined as follows.

Rs andRr represent stator and rotor resistance respectively, Ls, Lr ,

and M denote the stator, rotor, and mutual inductance respectively,

and Ω is the mechanical angular velocity of the rotor. In the fre-

quency domain, motor currents can be formulated according to (1)

as
[

Is(ω)
Ir(ω)

]

= (Z+ jωL)−1

[

Us(ω)
Ur(ω)

]

, (2)

where ω = 2πf is the angular frequency. Therefore, the transfer

function corresponding to the stator and rotor currents can be ex-

pressed in the frequency domain as

H(ω) ,
Is(ω)

Ir(ω)
=
a+ jbω

c+ jdω
, (3)

where a, b, c, and d are complex numbers related to the motor param-

eters and its rotational angular speed Ω. When the motor is operating

at a steady state, meaning the angular speed Ω is a constant, H(ω)
is characterized by motor parameters, which could be different for

different motors. When the motor is operating at a varying speed or

a transient state, H(ω) is also related to the rotational speed Ω.

On the other hand, since the load is varying slowly, we assume

that the motor can track the load change and provide enough electro-

magnetic torque to drive the load. Let τ(t) be the electromagnetic

torque as a function of time, iss(t) be the steady-state stator cur-

rent under constant load in noiseless conditions.The electromagnetic

torque can be approximated by the stator current and the rotor cur-

rent using space vectors as [14]

τ(t) = κis(t)
∗ir(t) ≈ κiss(t)

∗ir(t), (4)

where κ is a proportionality constant, the superscript ∗ represents

the hermitian transpose. This implies

ir(t) =
τ(t)

κ‖iss(t)‖2
iss(t) , m(t)x(t), (5)

where m(t) , τ(t)

κ‖iss(t)‖2
is a modulation signal related to the elec-

tromagnetic torque (or approximate load) and x(t) is the underlying

steady-state stator current to be explored. Combining (3) and (5), we

have

is(t) = h(t)⊗ ir(t) = h(t)⊗ [m(t)x(t)], (6)

where ⊗ represents the convolution operation.

Let y(t) denote the measured stator current with additive noise.

Therefore, the measured stator current with varying operating con-

ditions can be modeled as

y(t) = h(t)⊗ [m(t)x(t)] + n(t), (7)

where n(t) represents the measured noise. Equivalently we have the

stator current model in frequency domain

Y (ω) = H(ω)[M(ω)⊗X(ω)] +N(ω). (8)

To rewrite our measurement model in discrete-time (DT) domain, we

define s = [s[t0], s[t1], . . . , s[tN−1]]
⊤ as a vector of samplings of

a time-domain signal s(t) with sampling frequency Fs, where t ∈
{tn = n/Fs, n = 0, . . . , N − 1}. Let S[f ] denote the frequency-

domain vector of the discrete-time Fourier transform (DTFT) of s,

i.e. S[f ] = Fs, where F ∈ C
N×N denotes the DTFT operation.

Following the above notation, we use x,y,m,h,n ∈ C
N to

represent the vectors of samplings from x(t), y(t),m(t), h(t), and

n(t) respectively. Thus, the time-domain signal model described in

(7) can be rewritten as follows:

y = h⊗ (m⊙ x) + n, (9)

where ⊙ represents the element-wise product of two vectors.

2.2. Prior assumptions

Obtaining an estimate of x,m, and h from y amounts to solving

a joint blind deconvolution-demodulation problem. This is an ill-

posed inverse problem and requires prior knowledge about the nature

of x,m, and h. Based on the physical model of the stator current in

the presence of load, the following assumptions about the nature of

x, m, and h are made.

First, we know that x contains a strong operating frequency sig-

nal, its harmonics, and other periodic signals that correspond to the

motor fault. In the frequency domain, x is typically of the form

X[f ] =

nS
∑

i=1

Aiδ[f − fi], (10)

where Ai is the amplitude of frequency component presented at fi.
Therefore, we assume that Fx is a sparse vector.

Second, we assume that the random load is slowly varying in

time. This translates to the assumption that m(t) is band limited

with half-bandwidth fm, i.e.,

supp(m) = [−fm, fm]. (11)

Lastly, based on the nature of the motor impulse response dis-

cussed in Section 2.1, we assume that the form of the magnitude

frequency response h(t) is of the form

|H[f ]| = Hα,β[f ] =

√

1 + 4πα1β1f + 4π2β2
1f

2

1 + 4πα2β2f + 4π2β2
2f

2
, (12)

where α = [α1 α2]
⊤, β = [β1 β2]

⊤, related to a, b, c, and d in (3),

α,β ∈ R
2, |α1|, |α2| < 1 (i.e. ‖α‖∞ < 1), and the phase ∠H[f ]

needs to be estimated from the measured data.

3. PROPOSED APPROACH

Based on the prior assumptions described in Sec. 2.2, the problem of

MCSA fault detection under varying operating conditions can be cast

as the following generalized optimization problem to jointly estimate

h, x, and m,

{ĥ, m̂, x̂} = argmin
{h,m,x}

L(h,m,x) + λxψx(x)

= argmin
{h,m,x}

‖y − h⊗ (m⊙ x)‖22 + λx ‖σ ⊙ Fx‖1

s.t. supp(m) = [−fm, fm], |H[f ]| = Hα,β[f ], (13)

where ψx(x) = ‖σ ⊙ Fx‖1 is a weighted ℓ1 penalty with weights σ
to promote sparsity in Fx. Although a similar optimization problem

arises in traditional compressive sensing and blind demodulation, the

problem at hand presents significant challenges unique to the phys-

ical measurement system. First, the signal x is affected by both an

unknown modulating signal and an unknown filter. Second, x may

contain very weak periodic signatures of the motor fault, which are



typically 40dB to 60dB lower in power than the main operating fre-

quency component at fs. Moreover, similar to blind deconvolution

or demodulation, this is a non-convex optimization problem. There-

fore, in order to find a suitable solution, a good initialization of x,m
and h is necessary. Our approach to solving this problem is inspired

by the proximal alternating linearized minimization (PALM) [15]

framework, with careful initialization heuristics and regularization

that are described below.

3.1. Initialization heuristics for the optimization variables

In order to make our approach robust to noise, we preprocess the

measurements using denoising via minimum-variance (MV) beam-

forming [11, 12]. Next, since it is known that x is sparse in the

frequency domain and contains the fundamental frequency and har-

monics of the operating frequency fs, we initialize x as a linear

combination of 2ns harmonics of fs, with the amplitude of each har-

monic being equal to the amplitude of that harmonic in the measured

data.

Xinit[f ] =

ns
∑

k=−ns

Y [f ] · δ[f − fs,k], (14)

where fs,k is the kth harmonic frequency.

Next, we initialize ∠H[f ] = 0, and |H[f ]| = Hα,β[f ], where

α,β are to be estimated from the measured data. Considering that

X[f ] is a sparse weighted sum of delta functions, the forward pro-

cess in (8) results in M [f ] being mirrored onto the peak locations

fs,k in the measured data, and further distorted by H[f ]. Therefore,

templates ofM [f ] can in-principle be obtained from the data by win-

dowing the data around fs,k and correcting for the distortion due to

H[f ]. Since |H[f ]| is of the form described in (12), these distortion-

corrected templates of M [f ] depend upon the choice of α,β used

to correct for the H[f ]-distortion. The H[f ]-distorted template of

M [f ] at location fs,k can be obtained from the measured data as:

M(k)[f ] =
Y [f + fs,k]

Xinit[fs,k]
=
Y [f + fs,k]

Y [fs,k]
, (15)

for |f | < fb according to (11).

Now, for the true value of α,β, the magnitudes of the distortion-

corrected templates
|M(k)[f ]|

Hα,β [f+fs,k]
must be close to each other, as

well as to the true value of |M [f ]|. Therefore, the optimal value of

α,β and the initial estimate ofM [f ] are computed via the following

optimization problem:

{α̂, β̂,Minit} = argmin
α,β,M

L′(α,β,M)

= argmin
α,β,M

∑

k

ς2k

∥

∥

∥

∥

M [f ]−
|M(k)[f ]|

Hα,β[f + fs,k]

∥

∥

∥

∥

2

2

,

(16)

where ςk is the signal-to-noise ratio (SNR) at the kth harmonic.

We adopt an alternating minimization scheme to solve this prob-

lem until convergence. For any feasible value of α,β, minimizing

L′(α,β,M) with respect to M alone is straightforward, and the

minimizer is given by

M̃α,β[f ] =
1

∑

l
ς2l

∑

l

ς2l
|M(l)[f ]|

Hα,β[f + fs,l]
. (17)

Given the solution of Minit in (17), the values of α and β

are then obtained by solving (16) using a blackbox nonlinear least-

squares solver. The schematic diagram of estimating α, β, and

Minit is shown in Fig. 1.

3.2. Modified PALM method for joint blind deconvolution-

demodulation

Using the initialization of the optimization variables obtained in

Sec. 3.1, the estimates of the variables are obtained via optimization

problem (13) representing joint blind deconvolution and demodula-

tion.

Similar problems have been solved using alternating minimiza-

tion approaches in the context of blind deconvolution [15, 16, 17].

These approaches alternately minimize the objective with respect to

m and x iteratively. Although simple to describe, it has been shown

that the alternating minimization approach is highly sensitive to ini-

tialization, and convergence can only be obtained under restrictive

conditions. A proximal alternating linearized minimization (PALM)

scheme addresses some of these issues by replacing the alternating

minimization steps by proximal/projected gradient steps [15]:

xk+1 = prox[(λx/2)ψx](xk − ηx∇xL(xk,mk)), (18)

mk+1 = proj{m|supp(m)=[−fm,fm]}(mk − ηm∇mL(xk+1,mk)),

(19)

where for a function ψ : C
N → R and v ∈ C

N , the proximal

operator is defined as

prox[ψ](v) = argmin
w

ψ(w) +
1

2
‖v −w‖22 , (20)

and for a set S, projS(v) is the projection of v onto S. In our

approach, the proximal-gradient steps for x and m are interspersed

with updates to h. Also, from (7), it is clear that once x̂ is recovered,

the stator current without varying load can be obtained by

ŝ = ĥ⊗ x̂, (21)

where ĥ and x̂ are outputs of the optimization problem defined in

(13). The entire proposed procedure is summarized in Alg. 1.

Frequency (Hz)
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Fig. 1. Schematic diagram for estimating α,β and Minit. As de-

scribed in Sec. 3.1, templates of M [f ] distorted by H[f ] are first

extracted from the measured data. They are fed into the optimiza-

tion problem (16) which finds α,β such that the weighted variance

between the distortion-corrected templatesM(k)[f ]/Hα,β[f+fs,k]
is minimized.

4. EXPERIMENTAL RESULTS

To examine our approach, we consider stator current data collected

from a motor with eccentricity fault. The motor is operating at



Algorithm 1 Proposed algorithm for blind signal recovery

1: Input : y← ybf (MV beamformed measurements)

2: Set k = 0 and initialize x0 = F−1(Xinit[f ]) according to (14).

3: Compute α̂, and β̂, initialize m0 = minit = F−1(M̃α̂,β̂[f ]),
as described in Section 3.1.

4: while xk is not converged do

5: ∠Hk+1[f ]← ∠
Y [f ](Mk⊗Xk)

∗[f ]

Hα,β [f ]|(Mk⊗Xk)[f ]|
2+ǫ

, |Hk+1| = Hα,β

6: hk+1 = F−1(Hk+1[f ])
7: xk ← xk − ηx∇xk

‖y − hk+1 ⊗ (mk ⊙ xk)‖
2
2

8: xk+1 ← prox[λx‖σ ⊙ Fxk‖1](xk)
9: mk+1 ←mk − ηm∇mk

‖y − hk+1 ⊗ (mk ⊙ xk+1)‖
2
2

10: k ← k + 1
11: end while

12: Output : ŝ = hk ⊗ xk.

fs = 60Hz with either a periodically varying load or a randomly

varying load. In the case of the periodically varying load, two varia-

tion patterns are considered: a sinusoidal and a rectangular variations

with a frequency of 2Hz. In our approach, we set the half-bandwidth

of m to be fm = 26Hz. The sparsity weight σ[f ] is set to e−ε[f ],

where ε[f ] is the smooth envelope of log |Y [f ]| computed using the

procedure described in [18]. The signal-to-noise ratio (SNR) at peak

location fs,k is computed as ςk = |Y [fs,k]|/η, with η being the av-

erage noise level in a 1 Hz window on either side of the template

support [fs,k − fm, fs,k + fm]. We compare our approach to the

MV-beamforming method [11, 12], which is effective at reducing

the noise in the measured current signal, but unable to remove struc-

tured artifacts due to the varying load.

4.1. Stator current with periodically modulated load

Figures 2(a) shows the time-domain stator signal for the sinusoidally

and rectangularly modulated load respectively, each with measured

data and processed data. It can be seen that for both cases, the pro-

posed approach significantly reduced the impact of modulation due

to the varying load. Since only the dominant fs = 60Hz mode

can be clearly observed in the time-domain, we further compare the

frequency-domain signals for details.

Figures 2(b) and 2(c) show the frequency domain stator signal

for the sinusoidally and rectangularly modulated load respectively,

along with the stator signal recovered using the MV beamforming

approach, and the proposed approach. These plots show that as

expected, MV beamforming is successful in denoising the signal,

because it effectively destroys the noise by averaging over the ran-

dom phase components of the noise, while adding structured peri-

odic signal sections constructively. However, MV beamforming is

unable to remove the artifacts due to load variation, since these ar-

tifacts are structured. It can be seen that the proposed approach is

effective in removing the effects of load variation. The eccentricity

fault signatures can be clearly seen around 30Hz and 90Hz while the

corresponding rotor frequency fr = 30Hz, which agrees with the

MSCA-based fault detection model.

4.2. Stator current with randomly modulated load

Next, signal recovery in the case of the more realistic scenario of

randomly varying load was examined. The time- and frequency-

domain representations of the measured and the recovered signals

can be seen in Fig. 3 and Fig. 4 respectively. From the time-domain

plot, it can be seen that the impacts of modulation are reduced by

the proposed algorithm. In the frequency-domain plot, it can be seen

(b)

(c)

(a)

5 10
Time (sec)

Sinusoidal modulation Rectangular modulation

Fig. 2. (a) The blue and the orange curves represent measured and

recovered stator signals in the time domain for sinusoidal and rect-

angular load modulation, respectively. (b) & (c) Measured and re-

covered stator signals in the frequency domain for sinusoidal and

rectangular load modulation respectively.

that the proposed approach is effective in reducing the noise as well

as the effects of the random convolution and modulation, and is able

to retain the eccentricity fault signatures at around 30Hz and 90Hz

respectively.

Fig. 3. Measured and recovered stator currents in the time domain

for random load

Fig. 4. Measured and recovered stator currents in the frequency do-

main for random load

5. CONCLUSION

In this work, we proposed an approach for sparsity-driven joint blind

demodulation and deconvolution of stator signals containing eccen-

tricity fault signatures. We showed that our approach successfully

suppress noise and remove the unknown modulating effects of a ran-

domly varying load. Since our approach does not depend specifically

upon an assumed model of the types of faults, it can be extended to

detecting other types of faults in a motor. Future work could also in-

volve a detection task-based assessment of the proposed algorithm.
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