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Abstract
Humans can effortlessly perform very complex, dexterous manipulation tasks by reacting to
sensor observations. In contrast, robots can not perform reactive manipulation and they
mostly operate in open-loop while interacting with their environment. Consequently, the
current manipulation algorithms either are inefficient in performance or can only work in
highly structured environments. In this paper, we present closed-loop control of a complex
manipulation task where a robot uses a tool to interact with objects. Manipulation using
a tool leads to complex kinematics and contact constraints that need to be satisfied for
generating feasible manipulation trajectories. We first present an open-loop controller design
using Non-Linear Programming (NLP) that satisfies these constraints. In order to design a
closed-loop controller, we present a pose estimator of objects and tools using tactile sensors.
Using our tactile estimator, we design a closed-loop controller based on Model Predictive
Control (MPC). The proposed algorithm is verified using a 6 DoF manipulator on tasks
using a variety of objects and tools. We verify that our closed-loop controller can successfully
perform tool manipulation under several unexpected contacts.

IEEE International Conference on Robotics and Automation (ICRA) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Tactile Tool Manipulation
Yuki Shirai1, Devesh K. Jha2, Arvind U. Raghunathan2, and Dennis Hong1

Mechanics Offline Planning Online Estimation and Control

Tactile 
Estimator

Tactile
Controller

Unexpected Contact

Robot 
Proprioception 

Constraints 𝐱𝒌
∗ , 𝐮𝒌

∗
𝒌ୀ𝟏,…,𝑵

𝐱ො𝒕 𝐲ො𝒕

𝐮𝒌 𝒌ୀ𝒕,…,𝒕ା𝑵ି𝟏

Fig. 1: We present tactile tool manipulation where a robot uses an external tool to manipulate an external object. Usage of an external tool results in multiple
contact formations which leads to a large number of constraints that need to be satisfied during manipulation. Using the underlying frictional mechanics, we
present design of open-loop and closed-loop controllers which can successfully maintain all contact formations during manipulation. We present the design
and use of a tactile estimator which makes use of tactile sensing to estimate pose of the system. The tactile estimator is used to perform closed-loop control
in an MPC fashion. All hardware experiment videos could be found at https://youtu.be/VsClK04qDhk.

Abstract—Humans can effortlessly perform very complex,
dexterous manipulation tasks by reacting to sensor observations.
In contrast, robots can not perform reactive manipulation and
they mostly operate in open-loop while interacting with their
environment. Consequently, the current manipulation algorithms
either are inefficient in performance or can only work in highly
structured environments. In this paper, we present closed-loop
control of a complex manipulation task where a robot uses a
tool to interact with objects. Manipulation using a tool leads
to complex kinematics and contact constraints that need to be
satisfied for generating feasible manipulation trajectories. We
first present an open-loop controller design using Non-Linear
Programming (NLP) that satisfies these constraints. In order to
design a closed-loop controller, we present a pose estimator of
objects and tools using tactile sensors. Using our tactile estimator,
we design a closed-loop controller based on Model Predictive
Control (MPC). The proposed algorithm is verified using a
6 DoF manipulator on tasks using a variety of objects and
tools. We verify that our closed-loop controller can successfully
perform tool manipulation under several unexpected contacts.
Video summarizing this work and hardware experiments are
found here.

I. INTRODUCTION

Using contacts efficiently can provide additional dexterity to
robots while performing complex manipulation tasks [1], [2],
[3]. However, most robotic systems avoid making contact with
their environment. This is mainly because contact interactions
lead to complex, discontinuous dynamics and thus, planning,
estimation, and control of manipulation require careful treat-
ment of these constraints. As a result of these challenges, most
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of the classical control approaches are not applicable to control
of manipulation systems [1], [4], [5], [6]. However, closed-
loop control of manipulation tasks is imperative for design of
robust, high-performance robotic systems that can effortlessly
interact with their environments.

In this paper, we consider tool manipulation where a robot
can grasp an external tool that can be used to pivot an external
object in the environment (See Fig. 1). As could be seen in
Fig. 2, tool manipulation leads to multiple contact formations
between the robot & a tool, the tool & an object, and the
object & environment. It is easy to imagine that planning for
tool manipulation needs to incorporate all constraints imposed
by these contact formations. This makes planning for tool
manipulation extremely challenging. Furthermore, the robot
can not directly observe all the relevant contact and object
states during tool manipulation. This imposes additional com-
plexity during controller design. This makes tool manipulation
a challenging, albeit extremely rich system to study closed-
loop controller design for manipulation.

We present design of planning, estimation, and control for
tool manipulation using tactile sensing. In particular, we first
present analysis of the underlying contact mechanics which
allows us to plan feasible trajectories for manipulating an
external object. To allow robust implementation of the planned
manipulation, we design a closed-loop controller using tactile
sensors co-located at the fingers of the gripper. We present
design of a tactile estimator which estimates the pose of the
external object during manipulation. This estimator is used
to design a closed-loop controller using MPC. The proposed
planner and closed-loop controller are extensively tested with
several different tool-object pairs.

Contributions. This paper has the following contributions:

1) We present design of closed-loop controller for tool
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manipulation using tactile sensing and NLP.
2) The proposed controller is implemented and verified on

tasks using different tools and objects using a 6 DoF
manipulator equipped with GelSlim tactile sensors.

II. RELATED WORK

Our work is inspired by seminal work on manipulation
by shared grasping [7] which discusses mechanics of shared
grasping and shows impressive demonstrations. The task that
we present in this paper is a complex version of shared grasp-
ing where the robot uses a tool instead of a rigid end-effector
to manipulate objects. This variation leads to additional contact
formations. These additional constraints make the problem
more complicated to plan, control, and estimate compared to
those works.

Model-based planning for tool manipulation was earlier
presented in [8]. Learning-based algorithm of grasping for tool
manipulation is presented in [9]. In our work, we consider a
closed-loop controller and estimator in addition to planning
for tool manipulation to robustify the system.

Our work is also closely related to the remarkable previous
work on tactile estimation and reactive manipulation presented
in [10], [11], [12], [13], [14], [15], [16]. For estimators, [10]
show a pose estimator for tools with extrinsic contacts and
[11] present tactile localization. Learning-based estimator for
tool manipulation using vision is presented in [12]. In this
work, we also try to estimate a pose of an object in addition
to a tool through tactile sensors. For reactive manipulation, our
work is closely related to the seminal work presented in [14]
where slip detection is used to recompute a new controller that
can stabilize the manipulation task. [15] shows the impressive
closed-loop controller by simultaneous design of controller
and estimator. However, the task in [14] is inherently stable
as the object is always grasped by the robot. Also, the tactile
sensors can directly estimate the pose of the object, which
cannot be done for tool manipulation because tactile sensors
are not attached between the object and the end-effector.
Compared to [15], which focuses on regulation of an object
using force / torque sensors, we focus on tracking of tool
manipulation using tactile sensors. Furthermore, the current
paper considers multiple contact formations which leads to
more complex constraints.

III. MECHANICS OF TOOL MANIPULATION

In this section, we explain mechanics of tool manipu-
lation as illustrated in Fig. 2 and then discuss Trajectory
Optimization (TO) of tool manipulation for designing open-
loop trajectories. Before explaining the details, we present our
assumptions in this paper as follows:

1) The object and the tool are rigid.
2) The object and the tool always stay in quasi-static

equilibrium.
3) We consider simplified quasi-static mechanics in 2D.
4) The kinematics of the tool and the friction coefficients

for different contact formations are known.
The notation of variables are summarized in Table I. We define
the rotation matrix from frame ΣA to ΣB as A

BR. We denote

TABLE I: Notation of variables. Σ column indicates the frame of variables.
See Fig. 2 and Fig. 3 for graphical definition.

Name Description Size Σ
wE reaction wrench at point A R2 W
wO gravity of object at point O R2 W
wTO wrench from the tool to the object at point B R2 T
wT gravity of tool at point T R2 W
wG wrench from the gripper to the tool at patch C R2 G
θO orientation of object R1 W
θT orientation of tool R1 W
θG orientation of gripper R1 W
θS relative orientation of frame at center of grasp R1 S
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Fig. 2: Mechanics of tool manipulation. (a): A simplified 3D contact model
for tool manipulation highlighting the three main contact interactions during
the task. (b): Free-body diagram of a rigid body and a tool during tool
manipulation in 2D. (c): Force from a tool to an object has to lie on a cone
defined by the shape of the object.

pi as a position at contact i defined in ΣW . We denote x- and
y-axis as axes in 2D plane and z-axis is perpendicular to the
plane.

A. Quasi-Static Mechanics of Tool Manipulation

As is shown in Fig. 2, tool manipulation leads to several
contact formations at A, B, and C that would need to be
maintained during manipulation. Additionally, we need to
consider quasi-static equilibrium of the tool and the object
in the presence of these contacts. The static equilibrium of the
object is described as:

FO(wE ,wO,
W
T RwTO) = 0, (1a)

GO(wE ,wO,
W
T RwTO,pA,pB ,pO) = 0 (1b)

where FO and GO represent static equilibrium of force and
moment, respectively. The static equilibrium of the tool is:

FT (wT ,
W
G RwG,

W
T RwOT ) = 0, (2a)

GT (wT ,
W
G RwG,

W
T RwOT ,pB ,pT ,pG1,pG2) = 0 (2b)

Note that TwTO = −TwOT . In this work, we approximate
patch contact at C as two point contacts with the same force
distribution, and thus we have pC1,pC2 in (2b). In the next
section, we consider contact formations at A, B, and C while
making necessary simplifications for modeling.

B. Contact Model

We first discuss the contact model in 3D then we present
the approximated contact model in 2D using Fig. 2. In a



simplified 3D setting, the different contact formations could
be best described as follows:

1) contact A: line contact.
2) contact B: line or patch contact.
3) contact C: patch contact.

For line contacts A and B, we need to consider generalized
friction cones [17] to describe sticking line contact in 3D.
However, this work considers manipulation in 2D as shown in
Fig. 2 (b) and thus we can argue that there is no moment to
break the line contact. Thus, we can approximate line contacts
as two point contacts with the same force distribution, leading
to the larger coefficients of friction effectively. Also for patch
contacts at contact C, we need to consider 4D limit surface
[18] where we have 3D force [fx, fy, fz] and 1D moment mz .
However, in practice, implementing mz is difficult, especially
for position-controlled manipulators with a force controller
with low bandwidth. Thus, this work approximates patch
contact at C as two point contacts (see Fig. 2 (b)) with
same force distribution. This approximation makes low-level
controllers track the force trajectory easily.

For point contacts A,B,C1, C2, we have the following
friction cone constraints:

−µif
i
y ≤ f i

x ≤ µif
i
y, f

i
y ≥ 0,∀i = {A,B,C1, C2} (3)

where µi is the coefficient of friction at contact i =
{A,B,C1, C2} and f i

x, f
i
y are tangential and normal forces

for each local coordinate. Note that we set µi = 2µi,point, i =
{A,B} where µi,point is the coefficient of friction between the
environment and point contact A,B to take into account line
contact effects.

Remark 1: Contact formation at B could be either patch
or line contact. To formally discuss the change of these two
different contact modes, constraints such as complementarity
constraints are required, which is out of scope in this paper.
Thus, we assume that contact B always realizes line contact.

C. Contact between Tool and Object

The line contact at B introduces an important insight. As
illustrated in Fig. 2 (b), this line contact is on a certain plane
P created by a tool. The plane P is used to discuss the friction
cone between the object and the tool since slipping can only
occur along the plane P . Thus, by changing the orientation of
the tool, the orientation of this plane also changes. This does
not have an effect on local friction cone constraints (3) but
does have an effect on the object through static equilibrium.
Furthermore, different tools have different tip shapes (see
Fig. 4). Based on kinematics of the tool, local force definition
changes, which is tricky and unique to tool manipulation. In
conclusion, the system has a preferred orientation of the plane
P for finding a feasible trajectory.

Another unique nature of this task is that we need to explic-
itly consider the feasible region of a force controller. Note that
the manipulator can only apply forces along the axes where its
motion is constrained. This constraint needs to be explicitly
enforced during optimization to generate mechanically feasible
force trajectories.

Hence, like friction cone constraints, we formulate inequal-
ity constraints in vertex frame ΣV (see Fig. 2 (c)) such that
wTO is constrained by the object:

−ρfy ≤ fx ≤ ρfy, fy ≥ 0 (4)

where [fx, fx]
⊤ = V

T RwTO. We define ΣV such that y-axis
of ΣV bisect the angle of vertex B. ρ can be determined by
the shape of the object.

D. Trajectory Optimization for Planning

We formulate TO for tool manipulation as follows:

min
x,u,f

N∑
k=1

(xk − xg)
⊤Q(xk − xg) +

N−1∑
k=0

u⊤
k Ruk (5a)

s.t. (1), (2), (3), (4), (5b)
x0 = xs,xN = xg,xk ∈ X ,uk ∈ U , fk ∈ F (5c)

where xk = [θO,k, θT,k, θG,k]
⊤, uk = wG,k, fk =

[w⊤
E,k,w

⊤
TO,k]

⊤, Q = Q⊤ ≥ 0, R = R⊤ > 0. X , U , and F
are convex polytopes, consisting of a finite number of linear
inequality constraints. pi can be calculated from kinematics
with xk since we could assume that contacts ensure sticking
contacts by satisfying (3). Based on the solution of (5), we
can calculate the pose and force trajectory of the end-effector
and we command them during implementation. The resulting
optimization in (5) is NLP, which can be solved using off-the-
shelf solvers such as IPOPT [19].

Remark 2: For nox-convex shape objects (e.g., peg in
Fig. 4), the origin of pivoting, pA, changes over the trajectory.
Thus, we cannot directly apply (5) for the non-convex objects.
Hence, we solve (5) hierarchically for them where we solve
(5) with the first contact origin and then we solve (5) with the
next contact origin and so far and so forth.

IV. TACTILE TOOL MANIPULATION

In this section, we present design of our closed-loop con-
troller which makes use of observations from tactile sensors
and robot encoders to estimate pose of the system. Most
manipulation systems are underactuated and unobservable.
The tool manipulation system falls under the same umbrella.
Thus, we present the design of a tactile estimator which can
estimate θO, θT , pA, and the length of the object, rO. Then, we
present our MPC-based controller using the estimated states
as inputs.

A. Tactile Stiffness Regression

We use tactile sensors to monitor and estimate the slip of
the tool during manipulation. Since the tactile sensors are
deformable, we need to identify their stiffness to correctly
estimate the slip of objects in grasp. We employ a simple
polynomial regression to estimate θS (see Fig. 3 (b)) given
the velocities of all markers as illustrated in Fig. 3 (a).

We explain how we train the regression model. Given two
images at t = k and t = k+n, n > 0, we compute the velocity
flow of the markers on the tactile sensors. We use the norm
of the velocity flow as input of polynomial regression. We use
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Fig. 3: Tactile estimator. (a): Given measurements of robot proprioception
and tactile sensors, our method estimates the state of the object and the tool.
(b): Schematic showing tool manipulation experiencing rotational slipping by
θS .

Apriltag [20] to obtain the ground truth values of θS and train
the regression algorithm. We observe a nonlinear trend in the
stiffness of the sensors, i.e., the sensors become more stiff as
they deform.

B. Tactile Estimator

For our estimator design, we make an assumption that
contacts at A and B are sticking. This means that pA does not
change during pivoting. Using this knowledge, the observed
pB at t = k, denoted as p̄B,k, can be represented as (see
Fig. 3 (b)):[

p̄⊤
B,k, 1

]⊤
= W

S TS
S′T (θS,k)

S
′

B T
[
0⊤, 1

]⊤
(6)

where θS,k is the relative rotation of frame at the center of
grasp at t = k (we denote this frame as ΣS′ ) with respect
to the frame at the reference center of grasp at t = 0 (we
denote this frame as ΣS). S

S′T,WS T can be obtained from the

tactile sensor and encoders, respectively. S
′

B T is obtained from
the known tool kinematics. We can represent pB at t = k,
denoted as pB,k, also as follows:[

p⊤
B,k, 1

]⊤
= W

A T (θO,k,pA)
A
BT (rO)[0

⊤, 1]⊤ (7)

Then, using (6) and (7), with time history of measurements
from t = 0 to t = m, we can do non-linear regression based
on least-squares:{

θ∗O,k

}
k=0,...,m

, r∗O,p
∗
A = argmin

m∑
k=0

∥pB,k − p̄B,k∥2 (8)

Once contact at pA,pB slip, the estimator is unable to estimate
the state of the object anymore like [11], [15].

Remark 3: Similar to [15], our estimator is able to esti-
mate θ∗O,k, r

∗
O,p

∗
A. However, similar to [15], this requires a

controller that can maintain the desired contact state during
estimation. In this work, we assume that we know the object
and tool kinematics during control. Thus, we only make use
of θ∗O,k. Controller design when the object kinematics is not
known fully is left as a future work.

Remark 4: As illustrated in Fig. 3, the tool can experience
both rotational and translational slip. In practice, we observed
that the deformation and high friction at the tactile sensors
resulted in minimum translation slip. Thus, we ignored trans-
lational slip during manipulation. However, considering the
translational slipping might improve the performance of the
estimator.

C. Tactile Controller

Our online controller based on MPC is as follows:

min
x,u,f

N+t∑
k=t+1

(θO,k − θ̄O,k)
2 +

N+t−1∑
k=t

u⊤
k Ruk (9a)

s.t. (5b), (5c) (9b)

where θ̄O,k represent the reference trajectory computed offline
using (5). We observed that slipping between the tool and
object kept happening if the controller tracks the tool state as
well. Thus, we only consider state tracking for θO so that the
system does not care if θT is tracked - it tries to find a new
θT to track θO (i.e., replanning for θT ).

V. RESULTS

In this section, we perform several different experiments to
answer the following questions:

1) How do the open-loop trajectories behave on a physical
setup?

2) How effective is the proposed closed-loop controller for
tool manipulation under different disturbances?

A. Experiment Setup

For the planner and controller, we use IPOPT [19] with
pyrobocop [21] interface to solve TO. MPC is run with a large
horizon of N = 160, and thus can only achieve a control rate
of 2 Hz. However, the control frequency can be increased by
using linearized constraints with a QP solver.

For the hardware experiments, we use a Mitsubishi Electric
Assista industrial manipulator arm equipped with a WSG-
32 gripper. For the closed-loop experiments, the gripper is
equipped with GelSlim 3.0 [22] sensors. We use a stiffness
controller to track the reference force trajectory [23], [24].
As shown in Fig. 4, we test our framework with 12 different
objects, 4 different tools, and 5 different environments (i.e.,
friction surfaces). We use an Apriltag system to obtain the
ground truth for pose of objects.

B. Open-Loop Controller

In this experiment, we show that our open-loop controller
(5) generates successful trajectories for different objects, tools,
and environments. Note that our framework works even for
non-rectangle objects as long as the shape of the object
can be approximated as a rectangle in 2D. The results are
shown in Fig. 4. More results are shown in the supplementary
video. Overall, we verified that our open-loop controller could
successfully perform tool manipulation with the carefully-
tuned parameters by the authors.

Through these experiments, we observed the following
failure cases:

1) Failure at the beginning of trajectory: We found that
the open-loop controller is most susceptible to failure at
t = 0. This is because the tool needs to make contact
with the object at B. It might happen that the contact
force at B is too little that it can not support the moment
to lift the object up or in the opposite case, it might



Fig. 4: Open-loop tool manipulation. Our controller could successfully perform tool manipulation with different object-tool-environment pairs. The bottom
right picture shows the objects and the tools we use in this paper.

be too strong so that the object slips at contact C. If
too much contact force is applied at contact B, the tool
might also rotate at the contact C.

2) Incorrect physical parameters: We observed that the
open-loop controller fails with inaccurate physical pa-
rameters such as mass.

3) Unexpected contacts: Since there is no feedback in
the open-loop controller, the manipulation fails if we
introduce unexpected contacts during the task.

Motivated by these failure cases, we discuss how the closed-
loop controller can handle them in Sec V-C2.

C. Tactile Estimator and Controller
1) Tactile Estimator Results: In this section, we discuss

the results of our tactile estimator. To test the accuracy of our
estimator, we perform three different kinds of experiments– the
open-loop controller with no external disturbance, the open-
loop controller with external disturbance, and the closed-loop
controller with external disturbance. In all these experiments,
the robot is trying to pivot the same box with the same tool.
We perform 5 trials for each experiment. All results are shown
in Fig. 5.

Our estimator works with the open-loop controller under
no disturbances as shown in Fig. 5 (a) but does not work
under disturbances as shown in Fig. 5 (b). Since our estimator
assumes that contact is always maintained, once contact is
broken (see Fig. 5 (b) around t = 110 s), the estimator
diverges. In contrast, Fig. 5 (c) shows that our estimator works
under disturbances since our MPC controller can react to the
disturbance and maintain the desired contact state.

2) Tactile Controller Results: We demonstrate the effec-
tiveness of our tactile controller to recover from different
unexpected contacts in Sec V-B.

Fig. 5: Evaluation of the tactile estimator. We show the time history of error
of θO for 5 trials (a) with the open-loop controller under no disturbance, (b)
with the open-loop controller under disturbance, and (c): with the closed-
loop controller under disturbance. The red line shows the mean of and the
blue region shows the 95% confidence interval. We added disturbance around
t = 40 s for (b) and (c) (see the blue box). For (c), we added another
disturbance around t = 150 s (see the orange box). The contact is lost around
t = 110 s for (b) (see the green box). Note that for the open-loop controller,
the trajectory runs until t = 160 s because open-loop controller is pre-defined.



TABLE II: Evaluation of the closed tactile controller with disturbances.
The number of successful pivoting attempts of the box over 5 trials for
different disturbances are summarized.

Box Disturbance 1 Disturbance 2
5◦ 10◦ 15◦ t = 40 s t = 150 s

Open-loop 4/5 0/5 0/5 0/5 N/A
Close-loop 5/5 5/5 5/5 5/5 5/5

TABLE III: Evaluation of the closed tactile controller with inaccurate
parameters. The number of successful pivoting attempts of the box over 5
trials for different mass of the object are summarized. The true value of mass
of the object is mO = 100 g.

mO [g] 15 200 1000
Open-loop 4/5 3/5 0/5
Close-loop 5/5 5/5 5/5

We first discuss recovery from slipping of the tool in the
gripper fingers, i.e., non-zero θS (see Fig. 3 for definition of
θS) at t = 0 as described in failure case #1 in Sec V-B.
We implemented the open- and closed-loop controllers with
the above disturbance at t = 0. We did this experiment for 5
trials per controller. We declare failure if the contact is broken.
The result is summarized in Table II (Disturbance 1). For
θS = 5◦, both the open- and the closed-loop controllers could
complete the task. However, for θS = 10◦, 15◦, we observed
that the open-loop controller lost the contact between the tool
and object around t = 110 s (see Fig. 5 (b)) while the closed-
loop controller could still successfully conduct the pivoting.

Next, we discuss how the closed-loop controller reacts to
different unexpected contacts during the trajectory to tackle
the failure case #3 in Sec V-B. In these experiments, we add
disturbance to the object (see blue and orange box in Fig. 5
(c)) around t = 40 s and t = 150 s. We conducted 5 trials. The
time history of the object pose θO and the gripper angle θG
is shown in Fig. 6. Fig. 6 (a) shows that the closed-controller
could successfully track the reference trajectory even under
these unexpected contacts. The reactive control efforts can be
observed around t = 40, 150 s in Fig. 6 (b). The robot changes
its gripper orientation to maintain the constraints discussed in
Sec III. The results discussed here are also summarized in
Table II (Disturbance 2).

Finally, we demonstrate the closed-loop controller with
incorrect mass (failure case #2 in Sec V-B). In these experi-
ments, we solve (5) and (9) with mass different from the true
mass of the object and use the solution for implementation.
The results are summarized in Table III. We observed that
the closed-loop controller can always successfully pivot the
object while the open-loop controller fails especially once
mO is quite different from the true value. The open-loop
controller can also work with significantly different mO as the
tactile sensors have significant compliance. This provides some
inherent stability to the system during this task. Modeling this
compliance and utilizing the model inside MPC as robust tube
MPC is an interesting direction [25].

VI. CONCLUSIONS AND FUTURE WORK

Closed-loop control of manipulation remains elusive. This
is because contacts lead to complex, discontinuous constraints
that need to be carefully handled. In this paper, we presented

(a)

(b)

Fig. 6: Evaluation of the closed tactile controller. We show time history
of (a) θO and (b) θG, with the closed-loop controller under disturbances at
t = 40, 150 s. The blue line is the reference trajectory computed offline and
the red trajectory is the mean of the 5 trajectories computed online.

tactile tool manipulation. More specifically, we presented the
design and implementation of a closed-loop controller to
control the complex mechanics of tool manipulation using
tactile sensors and NLP. Through extensive experiments, we
demonstrate that the proposed method provides robustness
against parametric uncertainties as well as unexpected contact
events during manipulation.

There are a number of limitations which we would like to
work in the future:

Accurate Mechanics of Tool Manipulation: The natural
extension of this work is to consider mechanics in 3D with
generalized friction cones [17]. Additionally, as discussed in
Sec V-C2, the system has compliance at the contact locations
and we believe that modeling the compliance would lead to a
more effective and precise closed-loop controller.

Contact-Rich Tool Manipulation: This work assumes that
contact mode (e.g., sticking-slipping, on-off contact) does
not change over the trajectory. Thus, our method works
with relatively high friction coefficients. However, during the
experiments, we observed that the tool and the object can
slip and lose contact, which makes the estimator and the
controller diverge. Thus, it would be a promising direction if
the extended framework can consider hybrid dynamics which
can allow the system to change modes during operation.

Analysis of Controllability and Observability for Dex-
terous Manipulation: One of the fundamental questions that
remains open in manipulation is that of controllability and
observability. There have been remarkable works in control-
lability and observability for manipulation [26], [27], [28].
However, the theory of controllability and observability is lim-
ited to more dexterous manipulation (e.g., tool manipulation).
This limits the generality of model-based controller design for
manipulation. Therefore, it would be useful to understand and
study controllability and observability for frictional interaction
tasks.
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