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Abstract
In this paper, we present a simple and efficient scheme for segmenting approximately convex
3D object in- stances in depth images in a few-shot setting via discriminatively modeling the
3D shape of the object using a neural network. Our key idea is to select pairs of 3D points
on the depth image between which we compute surface geodesics. As the number of such
geodesics is quadratic in the number of image pixels, we can create a large training set of
geodesics using only very limited ground truth instance annotations. These annotations are
used to create a binary label for each geodesic, which indicates whether or not that geodesic
belongs entirely to one instance segment. A neural network is then trained to classify the
geodesics using these labels. During inference, we create geodesics from selected seed points
in the test depth image, then produce a convex hull of the points that are classified by the
neural network as belonging to the same instance, thereby achieving instance segmentation.
We present experiments ap- plying our method to segmenting instances of food items in
real-world depth images. Our results demonstrate promising performances compared to prior
methods in accuracy and computational efficiency.
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Discriminative 3D Shape Modeling for Few-Shot Instance Segmentation

Anoop Cherian Siddarth Jain Tim K. Marks Alan Sullivan

Abstract— In this paper, we present a simple and efficient
scheme for segmenting approximately convex 3D object in-
stances in depth images in a few-shot setting via discriminatively
modeling the 3D shape of the object using a neural network.
Our key idea is to select pairs of 3D points on the depth image
between which we compute surface geodesics. As the number
of such geodesics is quadratic in the number of image pixels,
we can create a large training set of geodesics using only very
limited ground truth instance annotations. These annotations
are used to create a binary label for each geodesic, which
indicates whether or not that geodesic belongs entirely to one
instance segment. A neural network is then trained to classify
the geodesics using these labels. During inference, we create
geodesics from selected seed points in the test depth image,
then produce a convex hull of the points that are classified by
the neural network as belonging to the same instance, thereby
achieving instance segmentation. We present experiments ap-
plying our method to segmenting instances of food items in
real-world depth images. Our results demonstrate promising
performances compared to prior methods in accuracy and
computational efficiency.

I. INTRODUCTION

Segmenting nearly identical object instances in an image
is a problem that is ubiquitous in a variety of robotic bin-
picking applications. Some examples include: (i) a robotic
arm grasping products moving on a conveyor belt in a
manufacturing setting, (ii) a supermarket robot picking and
placing fruits from a bin, or (iii) a library-assistant robot
taking books from a box and handing them to a human.
Standard deep learning solutions used for instance segmen-
tation tasks, such as Mask-RCNN [1] and recent variants [2],
[3], [4], typically require large datasets for training the neural
networks, which would demand significant annotation efforts
that may not be practical in many situations; e.g., in a factory
where there could be a multitude of bins for a robotic arm
to pick instances from, and each bin containing a different
object class. The instance segmentation task could also be
addressed using region clustering and grouping methods such
as K-Means, spectral clustering, or superpixels [5], [6], [7];
however such algorithms usually make assumptions on the
object shape or would involve hyperparameters that may
need to be tuned for each image. There are also recent
approaches such as [8], [9], [10] for unsupervised instance
segmentation. However, they require large unlabelled training
sets with diversity in the instance arrangements, which may
be difficult to obtain in many real-world situations.

In this work, we consider the problem of instance seg-
mentation of approximately convex object instances in depth
images in a few-shot setting. We assume access to a minimal
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Fig. 1. Given a depth image (left) consisting of multiple instances of
an object (e.g., chicken nuggets), our goal is to segment a few prominent
instances. On the right, we show three instances segmented by our scheme.
We highlight regions selected for segmentation (red boxes), the points
classified as belonging to an instance (blue points), and the ground truth
segmentation for each respective instance (yellow).

set of annotated depth images, each having a few instances
annotated with their ground truth segments. Our key idea is
to create surface trajectories or geodesics on the 3D surface
of the depth image, to train a neural network to classify each
trajectory as being either contained within a single ground-
truth instance or across two or more ground-truth instances.
Thus, the network discriminatively learns to use the fea-
tures from the surface of the instances for classification of
the trajectories, thereby potentially learning an implicit 3D
model of a single object instance. For a depth image with n
pixels, O(n2) such geodesics are potentially possible, which,
if carefully used, could provide a significantly large dataset to
train the neural network. Leveraging this insight, we design
an instance segmentation pipeline to select seed points from
which to compute such geodesics efficiently; these geodesics
are then discretized to produce fixed-dimensional feature
vectors to train a neural network for classification. At test
time, we use the same pipeline and compute a convex hull of
all of the points whose geodesics to a seed point are classified
as within the same segment as the seed point. This yields a
segmentation of the instance containing that seed point. After
removing each segmented instance from the depth image, we
repeat the process to segment other instances.

To validate our approach, we present experiments on a new
Food-Items Instance Segmentation dataset, consisting of real-
world depth images, each with multiple instances of one of
four different food items, in a bin-picking setting. Unlike
prior datasets [4], [11], [12], that mainly use simulated
objects, we use images of real food items, and thus have
significant inter-instance diversity (e.g., see chicken nuggets
in Figure 1) with variations in their shapes, sizes, and count
in the bin. Our experimental results show that in addition
to being computationally very cheap, our approach produces
segmentations that are more accurate than prior methods.



II. RELATED WORKS

The topic of segmenting object instances for robotic bin-
picking has been widely studied. Over the years, many
different algorithms have been developed; see [13] for a
survey. Below, we briefly review the key trends.

Classic methods and variants: A popular direction is to ex-
tend image morphological and region-growing operations for
segmentation; e.g., the Watershed algorithm [14], [15], [16];
however such methods are notorious for oversegmenting the
images [17], [18], [19], [20]. In [21], a deep variant of the
Watershed transform for semantic instance segmentation is
proposed; however, it requires a large data set for training
a deep neural network. In [16], over-segmentation in the
Watershed transforms is avoided using geodesic erosion
to produce segmentation proposals, however, needs post-
processing heuristics to select useful segments from the
proposals. Watershed transforms on local distance maps is
proposed in [17], and with geodesic distance transforms
in [16], [22], however do not use any learning. Similarly,
classic methods such as active contours have been used
for medical image segmentation [23]; however, they do not
consider implicitly modeling shapes using a classifier.

Clustering-based methods. One could also consider clus-
tering algorithms to be adapted for instance segmentation
tasks. For example, classical superpixeling methods such
as [24], [5] and their modern variants such as SLIC [25]
and C2NO [26] could be used for instance segmentation.
However, such methods make strong assumptions on the
segments, such as constant point cloud size in the clusters
in [26], which may be difficult to conform to in segmenting
non-rigid objects such as the food-items dataset we use.
We also note that general approaches for few-shot instance
segmentation such as [27], [28] and variants operate in a
setting different from ours and cannot be directly used.
Compared with super-pixel representations in 2D space [25],
super-voxel representation can work better to cluster in-
stances where the instance boundaries in 3D space are more
accessible to segment based on the geometric continuity
or local convexity properties [29]. However, these methods
require parameter tuning based on the voxel size resolution
and can be difficult to generalize.

Deep Learning Approaches: As alluded to above, recent
deep learning methods for instance segmentation in a bin-
picking setting is mainly built over the Mask-RCNN pipeline,
and usually needs large training sets. Works such as [30], [4],
[31] belong to this category and often assume rigid CAD
objects or synthetic data [32], [33], [34], which is a setting
different from our goal. Few-shot instance segmentation has
been an important topic in mainstream computer vision [27],
[28], [35], however their focus is in semantically segmenting
general scenes.

To the best of our knowledge, the use of geodesic curves
for discriminatively modeling the object shapes within a
neural network setup has not been explored previously.

Fig. 2. An illustration of the depth geodesic between two points p1 and
p2 on a depth map.

III. PROPOSED METHOD

Suppose we are given a set of annotated depth images D =
{D1,D2, · · · ,DN} where each D ∈ RH×W

+ defines an image
grid of width W and height H pixels, such that Dxy holds a
non-negative value corresponding to the depth of the scene
at location (x,y) ∈ [H]× [W ], for [Z] denoting the index set
of integers {0,1, · · · ,Z −1}. For a pixel (x,y) on the image
grid, we assume it is annotated with an instance label ℓxy ∈
[LD]∪ {LB}, where LD is the number of instances in the
depth image D, and LB corresponds to a background label.
To introduce our method, we will need some background
notation, which we describe next.

A. Surface Geodesics and Assumptions

For two distinct points (x1,y1) and (x2,y2) on the image
grid, suppose γ(t) (for t ∈ [0,1]) be the directed surface curve
starting at Dx1y1 and ending at Dx2y2 . That is, γ(0) = Dx1y1 ,
and γ(1) = Dx2y2 , with all its points γ(t) ∈ D,∀t ∈ [0,1].
We define L(γ) =

∫ x2y2
x1y1

√
Dγ(t)(γ̇(t), γ̇(t))dt as the length of

this curve γ , and a geodesic g is a curve with the minimal
length connecting the two points [36], i.e., g ∈ infγ L(γ). To
derive our method, we make the following assumptions on
our problem setting.

Assumption 1 (Surface Convexity): We assume the ob-
jects used in our setup are convex and the depth patch
associated with the instances form a convex smooth surface.
By convex object surfaces, we mean that all the one-
dimensional curves γ(t) on the surface are convex with re-
spect to t, i.e., γ(t)≤ (1− t)γ(0)+ tγ(1),∀t ∈ [0,1]. Suppose
DS
ℓ ⊂ D is a patch from the depth image D where all the

elements in DS
ℓ have the same instance label ℓ. Then, for

two distinct points (x1,y1),(x2,y2) on the image grid where
both Dx1y1 ,Dx2y2 ∈ DS

ℓ , if gx2y2
x1y1(t) is a geodesic starting at

gx2y2
x1y1(0) = (x1,y1) and ending at gx2y2

x1y1(1) = (x2,y2), and if
label denotes the instance label of the point gx2y2

x1y1(t) on
the geodesic, then we have the following proposition that
is straightforward to prove using the basic properties of
convexity.

Proposition 1: If DS
ℓ is a convex depth patch from a depth

map D, and if g(t) is a geodesic from g(0) = (x1,y1) ∈ DS
ℓ

to g(1) = (x2,y2) ∈ DS
ℓ , then label(g(t)) = ℓ,∀t ∈ [0,1].



Assumption 2 (Orthogonal Projection): The camera pro-
jection plane is located suitably far from the instances, such
that the image XY -plane is approximately orthogonal to the
velocity γ̇(t) of any trajectory on the depth surface.
This assumption allows us to parameterize the geodesic
gx2y2

x1y1(t) connecting 3D points p1 = (x1,y1,g
x2y2
x1y1(0)) and

p2 = (x2,y2,g
x2y2
x1y1(1)) by the straight line ex2y2

x1y1(t) for xy(t) =
(1− t)(x1,y1)+ t(x2,y2) for t ∈ [0,1]. We will use e(xy(t)) to
denote ex2y2

x1y1(t) for simplicity, and with this parameterization,
we use points on the straight line e(xy(t)) to index the
geodesic.

B. Discriminative Shape Modeling

In Fig. 2, we show a depth image containing multiple
instances of an object, and the surface curve between two
arbitrary points p1 and p2. On the right in Fig. 2, we plot this
curve as a one-dimensional curve g(t) for varying t. Our key
insight to develop our approach is that if the two ends of this
curve belong to different instances, then this curve will be
non-convex or non-smooth at the points where the instances
overlap. Our approach attempts to leverage this insight into
learning the object shapes implicitly in the parameters of
a discriminative neural network. To set the stage for our
discussions, we will start with explaining a few ingredients
in our algorithm that are essential to derive of our pipeline.
Geodesic Discretization: From a practical sense, directly
using the geodesics for instance segmentation is problematic
as one would need their implicit paramtrization as continuous
curves, which may not have any analytical form (e.g., a
surface geodesic on a chicken nugget?). Instead, to keep
things computationally cheap, we discretize the curves using
a fixed number of steps. Specifically, for a geodesic g(t), we
represent it as an m-dimensional vector v∈Rm

+ where the k-th
dimension vk = g((k−1)/m). Such discretized geodesics can
be computed very cheaply using Assumption 2 of orthogonal
projection of the camera plane, as in that case, one just needs
to first split the Euclidean geodesic approximation ex2y2

x1y1(t) to
m parts, i.e., xy(k) = ex2y2

x1y1((k−1)/m) to obtain the (x,y) 2D
image grid location, which can then be used to directly index
the depth map to get vk = Dxy(k).
Instance Supervision: If the discontinuities of the surface
geodesics are sufficient to find the instance boundaries, then
why would one need instance annotations? This is because,
the above discretization step may skip discontinuities in the
curve; e.g., if the two instances are very close or when hole-
filling [37] is applied to the depth images. To circumvent
these issues, we assume to have access to ground truth
instance labels, training using which will make the network
to use other discrinimative features in the geodesic for
classification, thereby implicitly learning the object shape.

C. Instance Segmentation Training Pipeline

In Figure 3, we illustrate our pipeline for training a neural
network to learn the implicit shape model of a single instance
of the object using surface geodesics. For a given training
depth image D, the first step in our pipeline is to select
a random set of M points on the 2D image grid. Let us

call this set P = {(x1,y1),(x2,y2), · · · ,(xM,yM)}. Next, for
every pair of such points (xi,yi),(x j,y j) ∈ P , we compute
the Euclidean (geodesic) straight lines e

x jy j
xiyi (t) (one such

point and its straight lines to a couple of other points
are only shown in Figure 3). This step is followed by
computing the depth geodesics g

x jy j
xiyi (t) on the depth image

by projecting these Euclidean geodesics on the depth map.
Each depth geodesic is then discretized into m bins forming
the set V = {v1,v2, · · · ,vM} of M vectors as described in
the above section, each v corresponding to a discretized
depth geodesic. Suppose v := v

x jy j
xiyi ∈ V is such a discretized

vector corresponding to a depth geodesic from point (xi,yi) to
(x j,y j), then we assign a label labelg to v: labelg(v

x jy j
xiyi ) = 1,

if ℓxiyi = ℓx jy j and 0 otherwise, where ℓxy is the instance label
associated with the image point (x,y).

Our final step in the training pipeline is to use the set V
and its corresponding binary labels to train a neural network
model fθ : V → {0,1}, parametrized by θ . Specifically,
the neural network is a series of multi-layer perceptrons
(MLP), and takes as input a batch of samples from V and
predicts the label of the respective sample. This prediction
is then matched with the ground truth binary label using the
softmax-crossentropy loss, which is then used to derive a
gradient to train the network parameters.

D. Instance Segmentation Inference Pipeline

At test time, given a test depth image D, our goal is to
repeat the process during the training phase for instance seg-
mentation. As our goal is finally to produce a segmentation
for an instance in the bin that is perhaps most useful for
a robotic arm to grasp and pick, we propose to segment
instances that are at the top of the bin (i.e., those instances
closest to the camera), with the goal of generating its instance
segmentation mask first. We call such an instance as a
pickable instance.

The inference pipeline in our setup is illustrated in Fig-
ure 4. First, we select a seed point in the test depth image,
which corresponds to the tallest point on the pickable in-
stance. Let us call this point H. Next, we use an approximate
region around H where the instance could be within. We
call the radius of this region the pick radius r, where r is
decided based on the size of the annotated instances. The
region is a square box centered at H, with a size 2r. Next, we
sample m′ points {(x1,y1),(x2,y2), · · · ,(xm′ ,ym′)} uniformly
around H, and create Euclidean geodesics

{
exiyi

H

}m′

i=1. These
geodesics are then mapped to discretized depth geodesics
v and classified using pre-trained fθ to signify the other
endpoint of v (corresponding to a point (xi,yi) around H)
is within an instance segment or not. The points that are
classified as within a segment are then fed to a robust convex
hull computation algorithm [38] to produce a segmentation
of the instance. Note that the convexity of the object is thus
important for this step to work correctly.

To create a segmentation for a different instance, we select
another tall point H ′ from the depth image such that the pick
radius r around H ′ will not overlap with the pick radius
around H. That is, we search for instances whose depth
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a: Random points on 
the depth image
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between point pairs 

c: Discretized depth
geodesics

d: Neural Network

Ground truth
labels

Fig. 3. Training Pipeline for learning the discriminative shape models.

a: Select seed point H and 
define a region to segment

H

H

HH

b: Compute geodesic 
end points

c: Compute lines 
between point pairs  

d: Discretized depth 
geodesics

e: Trained neural 
network classifier

f: Compute convex hull over 
classified points

Fig. 4. A depiction of the steps involved during test time inference using a trained neural network.

geodesics will not overlap with the instance that we already
segmented. Once we find a point H ′, we apply the procedure
described above. We do this process sequentially, generating
one instance segment at a time.

E. Systematic Sampling of the Test Geodesics

In the basic inference algorithm described above, we
randomly sampled the test points around the seed point.
However, a more efficient approach would be to select the
points systematically. To this end, we propose to use the pick
radius r to define a circular region around the pick point H;
this region is then divided into equal sectors, by dividing
r into β equal parts, and dividing the circle into ζ equal
angles. This leads to βζ points to consider for generating the
surface geodesics, where these parameters can be adjusted
depending on underlying shape of the segment we ought to
learn. Figure 4 (a,b)-steps illustrates this idea.

IV. EXPERIMENTS AND RESULTS

In this section, we provide experiments demonstrating the
empirical performances of our method.
Food-Items Instance Segmentation Dataset: One key chal-
lenge to conducting experiments using our setup is the lack
of a real-world dataset that conforms to our algorithmic re-
quirements. For example, recent papers such as [4], [12], [11]
use synthetic datasets for instance segmentation evaluation –
these images may not incorporate real-world artifacts, e.g.,
sensor noise, intra-instance differences, etc. To this end, we
created a new instance segmentation dataset consisting of
four classes of food items, namely: (i) fried chicken, (ii)
fried food, (iii) cut carrots, and (iv) taros. Example grayscale
images from these classes are shown in Figure 5. We used
an Ensenso depth camera to capture these images in a real
bin. There are 20 annotated depth images for each class, of
which three images are used for training our method, one

for validation, and the rest for testing. Our training set is
minimal; thus, training deep models is infeasible, motivating
the need for a few-shot approach like ours. The number of
instances in the bin for each object class varies from 2–30.
Learning Setup: We use a 5-layer fully-connected neural
network with an architecture given by: [m,5m,m,m/2,2],
where m is the dimensionality of our geodesic feature vector
after the discretization step. We used ReLU activations
between the network layers. For training the network, we
used Adam for the optimization using a learning rate of
0.001 and other default settings. The network is trained for
a maximum of 500 epochs.
Hyperparameters: We sample 200 random points from each
training image for all the classes in our dataset and compute
pairwise geodesics. At test time, we select a maximum
of 5 tallest points in the depth point cloud to seed our
segmentations. We use 1000 endpoints around each seed and
create geodesics from the seed to these endpoints and classify
them using our trained neural network.
Evaluation: As alluded to above, our method produces
instance segmentations iteratively via selecting seed points
in the depth images. For evaluation, we compute the mean
intersection-over-union of instance masks produced by a
method against the ground truth masks for the respective
seeds. We compare our method to classic baselines such as:
(i) KMeans, (ii) spectral clustering with bandwidth selected
automatically, (iii) Gaussian mixture models (GMM) with
diagonal (diag) and full covariances, and (v) the Watershed
algorithm [14]. We also compare to more recent and pop-
ular baselines such as: (i) LCCP [29], (ii) SLIC [25], and
C2NO [26], as well as to Mask-RCNN [1], pretrained on
MSCOCO and finetuned on each of our datasets. As we
found that Mask-RCNN do not produce work at all when
using three annotated images (as in our other comparisons),
we used ten images and their ground truth for its training.
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Fig. 5. Rows: Example images from our Food-Items Instance Segmentation dataset. Columns: (a) Input depth images, (b) A few of the annotated (ground
truth) segments, (c) End-points of geodesics used at test time; points classified by the neural network as going outside an instance are blue and points
classified as within an instance are red. We use the red points for computing the convex hulls and the instance segmentations depicted in (d).

Fig. 6. Qualitative comparisons of segmentations between different approaches on Fried Food and Carrot classes. The produced segments are highlighted.

(a) (b) (c) (d)

Fig. 7. Analysis of the performance of our method against variations in the choices of the hyperparameters.



In our iterative scheme, we remove already segmented
instances from the image to avoid segmenting the same
instance again. Thus, we select a subsequent seed point
outside a box of given dimensions around a selected seed. As
a result, the segmentations produced by our method may not
be aligned with the segments produced by other methods. To
make the comparisons fair, we compare all methods only on
the ground truth segments to which our seed points belong.
Experimental Results: In Table I, we present results com-
paring our approach against other methods on our Food-
Items Dataset. We find that our simple approach leads to a
significant improvement in performance. Specifically, we find
that our scheme outperforms classical methods by nearly 20-
30% (e.g., on the Carrot dataset), while very recent methods
such as C2NO [26] was seen to underperform on our dataset,
perhaps because its constant size cluster assumption may
not hold when object shapes or sizes are changed. We find
older methods, such as Watershed transform [14], give a
promising performance, perhaps because of strong edges;
however, our performance is significantly better. Further,
we also find that Mask-RCNN (MRCNN) results are also
inferior to ours (even when it used more data for training).
When there are many annotated segments in the training
set (e.g., carrots, taro, and chicken) the MRCNN results are
reasonable, however when the number of instances are low
(e.g., FriedFood), the results are very poor.

In Figures 5 and 6, we provide several qualitative results
from our approach, as well as show intermediate outputs. In
Figure 8, we show two qualitative results using Mask-RCNN
on the carrots and taro datasets. As is clear, we find that
Mask-RCNN either hallucinates instances (Figure 8, left) or
oversegments the instances (Figure 8, right).

Ablation Studies

How many bins in Geodesic Discretization? In Figure 7(a),
we plot the segmentation performance against increasing
discretization granularity on all the four data classes. As
we anticipate, we find that a higher number of bins steadily
decrease the performance as it may capture fine-grained nu-
ances on the instances affecting the models’ generalizability.
How many images to use for training? In Figure 7(b),
we explore the influence of the number of training images,
changing from 1–5. We use 200 point pairs per image, and
thus more images lead to more training geodesic trajec-
tories. The plot shows that more training data does lead
to performance improvements, however interestingly, the
performances seem to saturate after 3 images; suggesting
that our method needs only limited training data, while
generalizing well to arbitrary number of instances.
How dense should we sample the test instances? A key
parameter during inference is the density β at which end
points are sampled around the seed (as described in Sec. III-
E) – a higher number may slow down the inference. In
Figure 7(c), we plot the performance against increasing β ,
i.e., higher β implies denser end point sampling. Our results
suggest that beyond β = 15, the performance do not increase.

Fig. 8. Mask-RCNN finetuned on carrots and taro classes.

We found a similar trend for the angular sampling parameter
ζ (and thus not shown), and used ζ = 2.
Generalization to number of instances? We answer this
question in Figure 7(d), where we find that our performance
does not change much as the number of instances being
picked is increased. Beyond 5 instances, the performances
might not be comparable since we remove previously de-
tected instances within a box, there may not be sufficient
number of instances left to be detected.
Computational Time? Training our neural network takes
less than 5 minutes on a 4-core Intel 3GHz CPU. In Table II,
we report the average time taken for segmenting an instance
(on CPU). Note that our implementation is currently in
Python, while other methods use e.g., C++ backends, and our
method is computationally similar to standard approaches.
We also compare against the time taken by Mask-RCNN
when using an Nvidia Titan RTX GPU and using the above
CPU configuration. While, the GPU setting performs slightly
better than ours, the CPU setting is very slow.

Method Carrot Taro Chicken Fried Food
Ours 0.807 0.844 0.851 0.944

KMeans 0.510 0.461 0.480 0.435
GMM (full) 0.518 0.409 0.439 0.442
GMM (diag) 0.459 0.446 0.466 0.578
Spectral [39] 0.487 0.434 0.477 0.572

Watershed [14] 0.687 0.339 0.585 0.862
LCCP [29] 0.486 0.437 0.440 0.501
SLIC [25] 0.420 0.357 0.370 0.429
C2NO [26] 0.261 0.232 0.280 0.444

Mask-RCNN 0.659 0.712 0.591 0.262

TABLE I
MEAN IOU COMPARISONS AGAINST PRIOR METHODS.

Method KMeans Spectral LCCP MRCNN Ours
time (s) 0.082 0.324 0.059 1.59 (0.135) 0.170

TABLE II
AVERAGE TIME TAKEN (IN SECONDS) FOR SEGMENTATION. FOR

MRCNN, WE SHOW TIME TAKEN USING A GPU IN BRACKETS.

V. CONCLUSIONS

We presented a simple, efficient, and few-shot approach to
instance segmentation of objects (with non-consistent geom-
etry) on depth images for a real-world robotic bin picking.
As a robot needs to pick only a single instance at a time, we
would only need to segment a few object instances for the
robot to pick from; this insight led to the derivation of our
iterative approach for classifying instance surface geodesics
using a neural network, allowing for learning in a few-shot
regime. Experimental results demonstrate empirical benefits
of our approach, including accuracy, speed, generalizability,
and scalability against prior approaches.
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