H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding Object Articulations from Interactions

Ota, Kei; Tung, Hsiao-Yu; Smith, Kevin; Cherian, Anoop; Marks, Tim K.; Sullivan, Alan; Kanezaki, Asako; Tenenbaum, Joshua B.

TR2023-009  March 07, 2023

Abstract

The world is filled with articulated objects that are difficult to determine how to use from vision alone, e.g., a door might open inwards or outwards. Humans handle these objects with strategic trial-and-error: first pushing a door then pulling if that doesn’t work. We enable these capabilities in autonomous agents by proposing “Hypothesize, Simulate, Act, Update, and Repeat” (H-SAUR), a probabilistic generative framework that simultaneously generates a distribution of hypotheses about how objects articulate given input observations, captures certainty over hypotheses over time, and infer plausible actions for exploration and goal-conditioned manipulation. We compare our model with existing work in manipulating objects after a handful of exploration actions, on the PartNet-Mobility dataset. We further propose a novel PuzzleBoxes benchmark that contains locked boxes that require multiple steps to solve. We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework, despite using zero training data. We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.

IEEE International Conference on Robotics and Automation (ICRA) 2023
H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding Object Articulations from Interactions

Kei Ota\textsuperscript{1,2}, Hsiao-Yu Tung\textsuperscript{3}, Kevin A. Smith\textsuperscript{3}, Anoop Cherian\textsuperscript{4}, Tim K. Marks\textsuperscript{4}, Alan Sullivan\textsuperscript{4}, Asako Kanezaki\textsuperscript{2}, and Joshua B. Tenenbaum\textsuperscript{3}

\textbf{Abstract}—The world is filled with articulated objects that are difficult to determine how to use from vision alone, e.g., a door might open inwards or outwards. Humans handle these objects with strategic trial-and-error: first pushing a door then pulling if that doesn’t work. We enable these capabilities in autonomous agents by proposing “Hypothesize, Simulate, Act, Update, and Repeat” (H-SAUR), a probabilistic generative framework that simultaneously generates a distribution of hypotheses about how objects articulate given input observations, captures certainty over hypotheses over time, and infer plausible actions for exploration and goal-conditioned manipulation. We compare our model with existing work in manipulating objects after a handful of exploration actions, on the PartNet-Mobility dataset. We further propose a novel PuzzleBoxes benchmark that contains locked boxes that require multiple steps to solve. We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework, despite using zero training data. We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.

\textsuperscript{1}Kei Ota is with Information Technology R&D Center, Mitsubishi Electric Corporation, Japan. Ota.Kei@ds.MitsubishiElectric.co.jp
\textsuperscript{2}Kei Ota and Asako Kanezaki are with Tokyo Institute of Technology, Japan.
\textsuperscript{3}Hsiao-Yu Tung, Kevin A. Smith, and Joshua B. Tenenbaum are with Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
\textsuperscript{4}Anoop Cherian, Tim K. Marks, and Alan Sullivan are with Mitsubishi Electric Research Labs, Cambridge, MA, USA.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Overview of our “Hypothesize, Simulate, Act, Update, and Repeat” (H-SAUR) framework. We consider the task of estimating the kinematic structure of an unknown articulated object and use that structure for efficiently manipulating the object. \textbf{Left}: A generative model produces several hypothetical configurations given point cloud segments and simulates possible actions that maximally deform a sampled configuration. \textbf{Right}: By applying an action and observing the outcome, the posterior inference is performed using the same generative model by simulating and updating the posterior distribution. We repeat the process until the convergence.}
\end{figure}

I. \textbf{Introduction}

Every day we are surrounded by a number of articulated objects that require specific interactions to use: our laptops can be opened or shut, windows can be raised or lowered, and drawers can be pulled out or pushed back in. A robot designed to function in real-world contexts should thus be able to understand and interact with these articulated objects.

Recent advances in deep reinforcement learning (RL) have focused on this problem and enabled robots to manipulate articulated objects such as drawers and doors \cite{1, 2, 3, 4}. However, these systems typically produce fixed actions based on observations of a scene, and thus, when the articulated joint is ambiguous (e.g., a door that slides or swings), they cannot adapt their policies in response to failed actions. While some systems attempt to adjust policies during test-time exploration to recover from failure modes \cite{5, 6}, they only propose local action adjustments (pull harder or run faster) and so are insufficient in cases where dramatically different strategies need to be applied, e.g., from “sliding the window” to “pushing the window outward from the bottom.”

In contrast, humans and many other animals can quickly figure out how to manipulate complex articulated man-made objects, e.g., puzzle boxes, with very little training \cite{7, 8, 9}. These capabilities are thought to be supported by rapid, strategic trial-and-error learning — interacting with objects in
an intelligent way, but learning when actions lead to failures and updating mental representations of the world to reflect this information [10]. We argue that robotic systems that can learn how to manipulate articulated objects should be designed using similar principles.

In this work, we propose “Hypothesize, Simulate, Act, Update, and Repeat” (H-SAUR), an exploration strategy that allows an agent to figure out the underlying articulation mechanism of man-made objects from a handful of actions. At the core of our model is a probabilistic generative model that generates hypotheses of how articulated objects might deform given an action. Given a kinematic object, our model first generates several hypothetical articulation configurations of the object from 3D point clouds segmented by object parts. Our model then evaluates the likelihood of each hypothesis through analysis-by-synthesis – the proposed model simulates objects representative of each hypothetical configuration, using a physics engine to predict likely outcomes given an action. The virtual simulation helps resolve three critical components in this interactive perception setup: (1) deciding real-world exploratory actions that might produce meaningful outcomes, (2) reducing uncertainty over beliefs after observing the action-outcome pairs from real-world interactions, (3) generating actions that will lead to successful execution of a given task after fully figuring out the articulation mechanism. The contributions of this paper can be summarized as follows:

1) We propose a novel exploration algorithm for efficient exploration and manipulation of puzzle boxes and articulated objects, by integrating the power of probabilistic generative models and forward simulation. Our model explicitly captures the uncertainty over articulation hypotheses.
2) We compare H-SAUR against existing state-of-the-art methods, and show it outperforms them in operating unknown articulated object, despite requiring many fewer interactions with the object of interest.
3) We propose a new manipulation benchmark – Puzzle-Boxes – which consists of locked boxes that require multi-step sequential actions to unlock and open, in order to test the ability to explore and manipulate complex articulated objects.

II. RELATED WORK

Kinematic Structure Estimation. A natural first step to manipulate an object is to predict the articulation mechanism of the object. Li et al. [11] and Wang et al. [12] proposed models to segment object point clouds into independently moving parts and articulated joints. However, this requires part and articulation annotations, and thus does not generalize to unexpected articulation mechanisms. Previous work address this by proposing to visually parse articulated objects under motion [13], [14], [15], [16], [17], [18]. Yet, most work assumes the objects are manually articulated by humans or scripted actions from the robot. In this paper, we study how an agent can jointly infer articulation mechanism and exploratory actions that helps to reveal the articulation of an object, i.e., in an interactive perception setup [19]. Niekum et al. [20] addresses a similar setup, but only handles articulated objects with a single joint and assumes the robot knows where to apply forces. Kulick et al. [21] and Baum et al. [22] handle dependency joints but assume each joint is either locked or unlocked, which is ambiguous for general kinematic objects. H-SAUR takes raw point clouds and part segmentations as inputs, and infers both the joint structure of the object and how to act. This model can handle articulated objects with an arbitrary number of joints and joint dependencies by leveraging off-the-shelf physics simulation for general physical constraint reasoning.

Model-free approaches for manipulating articulated objects. Instead of explicitly inferring the articulation mechanism, recent works in deep RL learn to generate plausible object manipulation actions from pointclouds [23], [3], [5], RGB-D images [4], [1], [2], or the full 3D state of the objects and their segments [24], [25], [26]. While most of these RL approaches learn through explicit rewards, recent approaches have learned to manipulate objects in a self-supervised manner, through self-driven goals or imitation learning [27], [28]. However, all of these systems require a large number of interactions during training and cannot discover hidden mechanisms that are only revealed through test-time exploratory behaviors. Furthermore, while they focus on training-time exploration, our work focuses on testing-time exploration where only a small number of interactions is permitted.

III. METHOD

We consider a task of estimating kinematic structure of an unknown articulated object and use the estimation for efficient manipulation. We are particularly interested in manipulating a visually ambiguous object, e.g., a closed door that can be opened by pulling, pushing, sliding, etc. In such a situation, the agent needs to estimate its underlying kinematic configuration, and update its beliefs over different configurations based on the outcome of past failed actions.

We propose “Hypothesize, Simulate, Act, Update, and Repeat” (H-SAUR), a physics-aware generative model that represents an articulated object manipulation scene in terms of 3D shapes of object parts, articulation joint types and positions of each part, actions to apply on the object, and the change to the object after applying the actions. In this work, we assume to have access to a physics engine that can take as input 3D meshes (estimated from a point cloud) of a target unknown object with an estimated kinematic configuration, and produce hypothetical simulated articulations of this object when kinematically acted upon. The method consists of three parts. First, we initiate a number of hypothetical configurations that imitate a target object by sampling articulation structures from a prior distribution. The prior distribution can be uniform or from learned vision models. Second, we sample one of the hypotheses to generate an action that is expected to provide evidence for or against that hypothesis. Finally, we apply the optimal action to the target object and update beliefs about object joints based on the outcome.
A. Generating Hypothetical Articulated Objects

Given the observed pointcloud $O$ of a target object along with its part segmentation, $m$, we generate a number of kinematic replicas of the object. Since the true articulation mechanism is initially unknown, we generate these replicas by sampling different kinematic structures from uniform prior distributions over joint types and parameters.

Object Parts. From the observed pointcloud $O$ and segmentation masks, $m_1, m_2, \ldots, m_N$, where $N$ is number of available views, we can break the pointcloud into part-centric pointcloud $O^1, O^2, \ldots, O^{N_p}$ where $N_p$ is the total number of object parts.

Articulation Joints. Each object part is attached to a base of object and the direction as particle to make a noisy approximation of the optimal action. A reasonable time. We address this by using only a single hypothesis. Yet, computing the optimal action that maximizes the limits as how much the joint can be deformed. We denote the limits of how much the joint can be deformed. We denote possible joint axes and positions, using the tight bounding boxes fitted to the part-centric pointcloud to obtain a total of $J$ possible joints. The $j$th joint is denoted as $\theta^{(j)} = (c, d)$ where $c \in \{r, p, f\}$ is the joint type and $d \in \mathbb{R}^6$ is the 6-DoF pose of the joint axis. The prior distribution $p(\theta^{(j)})$ for the joint type is assumed to be uniform at $\theta^{(j)}$. One can also use learned prior from vision models that predict joint types.

In addition, most articulated joints have lower and upper limits of how much the joint can be deformed. We denote the limits as $\theta^{\text{low}}$ and $\theta^{\text{high}}$. The prior distribution is sampled uniformly from $[-\theta^{\text{MAX}}, 0]$ and $[0, \theta^{\text{MAX}}]$, respectively. The full state of the joint for object part $O^i$ is $s^i = (\theta^{(i)}, \theta^{\text{low}}, \theta^{\text{high}}, \theta^{\text{cur}})$, where $\sigma(i) \in \{1, 2, \ldots, J\}$ is the joint configuration for the $i$th object part, and $\theta^{\text{cur}}$ is the joint position at the current time step. The prior over all the latent variables is:

$$p(s^1:N_p) = \prod_{i=1}^{N_p} p(\theta^{(i)}) p_{\text{unif}}[-\theta^{\text{MAX}}, 0] (\theta^{\text{low}}) p_{\text{unif}}[0, \theta^{\text{MAX}}] (\theta^{\text{high}}).$$

We approximate the distribution by maintaining a particle pool, $S$, where each particle in the pool represents a particular setup for the articulation configurations.

B. Simulating and Selecting Informative Action

We utilize virtual simulations to generate an optimal action that reduces the uncertainty of joint configuration hypotheses. Yet, computing the optimal action that maximizes the information gain involves integral over all latent variables, which is intractable. One can approximate this by a sampling-based method [19]. However, the high computational requirements still prohibit the agent from solving the task within a reasonable time. We address this by using only a single particle to make a noisy approximation of the optimal action.

We sample a joint configuration from the set of particles $s^{(k)} \sim S$ and obtain the optimal action by simulating different actions on the object with the physics simulation. The action $a_t = (p, r) \in \mathbb{R}^6$ is represented as a 3D point $p_t \in \mathbb{R}^3$ on the object and the direction $r_t \in \mathbb{R}^3$ to apply force. The optimal action is defined as the action that can maximally deform the object or a target object part over a single step. For multi-part objects, we maintain a list of parts-of-interest, which we will introduce shortly, and we sample a target part from the list to act on. We measure how much an object part $i$ deforms by $d_i = \| \theta_{t+1}^{\text{cur}} - \theta_t^{\text{cur}} \|$. Although one can naively sample a huge number of actions and pick the best action through simulation, we found this can be extremely inefficient with large object parts. To improve inference speed, we instead treat the action inference as a particle filtering problem: we initialize a number of action proposals by randomly sampling 3D locations on the target point cloud and assign random directions to apply force, then we use the measured distance $d_j$ as the likelihood to update the posterior distribution of the particles. We add noise to the action while reproducing the particles from previous iterations. We continue this process three times and finally sample a particle from the pool to obtain the action $a^*$. We found the inferred action $a^*$ is often close to the oracle optimal action that maximizes $d_i$.

The probabilistic formulation of an articulation mechanism given past observation and action is:

$$p(s_t|O_{1:t-1}, a_{1:t-1}) = \int p(s_t|s_{t-1}|O_{1:t-1}, a_{1:t-1}) p(s_{t-1}|O_{1:t-1}, a_{1:t-1}) \, \text{d}s_{t-1}$$

where the first term is handled by the physics engine by forward simulation, and the second is initialized with the prior defined in Eq. (1) and can be obtained through recursion.

C. Updating hypotheses through analysis-by-synthesis

We apply the inferred action $a^*$ on the target object $O_t$ to observe outcome $O_{t+1}$. We then update the probability of each hypothesis through analysis-by-synthesis: we first apply the same action $a^*$ on all the "imagined" objects, $s \in S$ in the physics engine. After applying the action, we obtain $O_{t+1}^{(k)}$ for each particle $s^{(k)}$. We define the likelihood of the particle $s^{(k)}$ as $w_k = \frac{1}{\|O_{t+1}^{(k)} - O_{t+1}\|}$, where $\|O_{t+1}^{(k)} - O_{t+1}\|_2$ is the chamfer distance between two point cloud $O_t$ and $O_{t+1}$. The overall updated posterior is:

$$p(s_t|O_{1:t}, a_{1:t-1}) \propto p(O_t|s_t) p(s_t|O_{1:t-1}, a_{1:t-1}) \sum_{k=1}^{K} w_k p(s_t|O_{1:t-1}, a_{1:t-1}),$$

where the second term can be computed from Eq. (2), and the whole inference is implemented through particle filtering with weighted sampling.

D. Handling Joints with Dependency in Goal-Conditioned Manipulation

A real puzzle box often consists of joints with dependencies, e.g., a lock needs to be open first in order to operate on another lock. Randomly selecting a part to act on is ineffective and
may not be sufficient to solve the problem since (1) the agent can act on a segment that is irrelevant to the task, e.g., a decoration on the box, and (2) the agent can underestimate the joint limit by ignoring the possibility that another part is blocking the current joint. To resolve this issue, we propose to keep track of the relevant parts and gradually grow a dependency tree throughout the exploration process.

Given goals in the form of “moving part X towards Y”, we maintain a parts-of-interest list \( q_{\text{POI}} \) to keep track of task-relevant object parts and their desired position. For example, consider a door with a few locks, whose goal is to pull open the door. Thus, we initialize \( q_{\text{POI}} \) by adding the “door” part, \( O_d \), and the desirable moving direction \( d_d \). When selecting an action (see section III-B), we always act on the most recently added object part. In the first run, we select the door since it is the only part in the list.

Using the physics engine, we not only infer the optimal action that would cause desirable changes to the target part, but also detect object parts, e.g., locks on the PuzzleBoxes. We introduce shortly, that will collide with it. We can further infer the desirable change direction \( d_i \) for each of these collided parts \( O_i \) that would unblock the current part. Then, we add the part along with the desired changing direction to \( q_{\text{POI}} \). Sometimes multiple directions might lead to a successful unblock, in this case, we randomly select one direction to be put in the list. We expect the pool of particles to keep track of different sampling outcomes. We can keep adding “unsolved” parts with dependencies to the current parts to the list. A part is marked as “solved” and removed from the list if it can be and has been changed to a desired configuration that unblocks its parent node in the dependency tree.

\[
\begin{array}{cccccc}
\text{Box} & \text{Door} & \text{Microwave} & \text{Fridge} & \text{Cabinet} & \text{Mean} \\
\text{PN2} & 100.0 & 43.3 & 97.4 & 72.9 & 69.2 & 76.5 & 55.7 & 56.5 & 45.2 & 54.0 \\
\text{Closed} & 100.0 & 85.4 & 97.4 & 96.7 & 96.1 & 98.7 & 98.7 & 100.0 & 96.1 \\
\text{Ours} & 100.0 & 80.5 & 90.8 & 98.6 & 97.7 & 95.4 & 96.6 & 99.3 & 94.8 & 96.5 \\
\text{PN2+Ours} & 92.3 & 90.2 & 100.0 & 98.6 & 98.6 & 96.0 & 100.0 & 93.4 & 93.8 & 95.7 \\
\end{array}
\]

\textbf{TABLE I: Joint type estimation accuracy [%].}

The PartNet-Mobility dataset provides a wide variety of synthetic articulated objects. We specifically use 8 different categories as shown in Fig. 5 with two different settings: In the \textit{closed} setting, all movable joints are shut, which is often the most visually ambiguous setup for an object. In the \textit{half-opened} setting, all joints are initialized at the midway point between the joint limits.

The PuzzleBoxes dataset has more challenging configurations and joint dependency. Inspired by the puzzle box experiment by Thorndike [7], we manually design PuzzleBoxes with different levels with different number of \textit{locks} (\( N_{\text{locks}} \)) and dependency \textit{chains} (\( N_{\text{chain}} \)). As shown in Fig. 3, we prepared five different settings: (\( N_{\text{chain}}, N_{\text{locks}} \)) \( \sim \{ (1, 1), (2, 1), (3, 1), (1, 2), (1, 3) \} \), where each setting has 10 different configurations (joint type, axis, and position).

In both dataset, the 6-DoF action is implemented in the simulator by simulating a directed force on a 3D point, imitating actions from a suction gripper.

\textbf{IV. EXPERIMENTS}

We evaluate H-SAUR on both the PartNet-Mobility dataset and PuzzleBoxes dataset on SAPIEN [29] physics engine. The PartNet-Mobility dataset provides a wide variety of synthetic articulated objects. We specifically use 8 different categories as shown in Fig. 5 with two different settings: In the \textit{closed} setting, all movable joints are shut, which is often the most visually ambiguous setup for an object. In the \textit{half-opened} setting, all joints are initialized at the midway point between the joint limits.

The PuzzleBoxes dataset has more challenging configurations and joint dependency. Inspired by the puzzle box experiment by Thorndike [7], we manually design PuzzleBoxes with different levels with different number of \textit{locks} (\( N_{\text{locks}} \)) and dependency \textit{chains} (\( N_{\text{chain}} \)). As shown in Fig. 3, we prepared five different settings: (\( N_{\text{chain}}, N_{\text{locks}} \)) \( \sim \{ (1, 1), (2, 1), (3, 1), (1, 2), (1, 3) \} \), where each setting has 10 different configurations (joint type, axis, and position).

In both dataset, the 6-DoF action is implemented in the simulator by simulating a directed force on a 3D point, imitating actions from a suction gripper.

\textbf{A. Joint type estimation}

We first evaluate how well H-SAUR can estimate the type, location, and limits of joints on an articulated object.

\textbf{Settings.} We test joint estimation using the PartNet-Mobility dataset with both the \textit{closed} and \textit{half-opened} settings. To measure the performance, we cast the problem into an eight-way classification problem where the model classifies the target joint as one of the followings: four different revolute joints attached to the right, left, top, or bottom of the 3D bounding boxes for the object part, three different prismatic joints that moves along each of the X, Y, and Z axes, or a fixed joint (see Fig. 2).

\textbf{Models.} We initialize a uniform prior for H-SAUR with the eight possible joints, using 110 particles. The algorithm stops if one of the following conditions is satisfied: (1) the model has good confidence with more than 90% of the particles belong to a single class, or (2) the model interacts with the object 10 times. We compare our algorithm to a supervised
Pull will be effective on the PartNet-Mobility dataset.

TABLE III: Joint type estimation accuracy on noisy dynamics [%].

<table>
<thead>
<tr>
<th>Method</th>
<th>Box</th>
<th>Door</th>
<th>Microwave</th>
<th>Fridge</th>
<th>Cabinet</th>
<th>Mean</th>
<th>Safe</th>
<th>Table</th>
<th>Washing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2A (10K)</td>
<td>68.6</td>
<td>59.7</td>
<td>70.6</td>
<td>70.1</td>
<td>69.7</td>
<td>67.7</td>
<td>68.5</td>
<td>63.9</td>
<td>60.3</td>
<td>64.2</td>
</tr>
<tr>
<td>W2A (100K)</td>
<td>75.9</td>
<td>60.2</td>
<td>81.1</td>
<td>71.3</td>
<td>70.0</td>
<td>71.7</td>
<td>74.1</td>
<td>53.5</td>
<td>66.1</td>
<td>64.6</td>
</tr>
<tr>
<td>Ours (0.1K)</td>
<td>96.4</td>
<td>79.5</td>
<td>97.8</td>
<td>93.0</td>
<td>93.0</td>
<td>91.9</td>
<td>93.3</td>
<td>97.4</td>
<td>91.3</td>
<td>94.0</td>
</tr>
</tbody>
</table>

Distance prediction error ↓

<table>
<thead>
<tr>
<th>Method</th>
<th>0.053</th>
<th>0.074</th>
<th>0.040</th>
<th>0.069</th>
<th>0.062</th>
<th>0.059</th>
<th>0.057</th>
<th>0.063</th>
<th>0.079</th>
<th>0.062</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2A (10K)</td>
<td>0.049</td>
<td>0.072</td>
<td>0.032</td>
<td>0.063</td>
<td>0.057</td>
<td>0.055</td>
<td>0.051</td>
<td>0.061</td>
<td>0.067</td>
<td>0.059</td>
</tr>
<tr>
<td>W2A (100K)</td>
<td>0.009</td>
<td>0.036</td>
<td>0.013</td>
<td>0.040</td>
<td>0.026</td>
<td>0.025</td>
<td>0.055</td>
<td>0.016</td>
<td>0.029</td>
<td>0.033</td>
</tr>
<tr>
<td>Ours (0.1K)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II: Affordance prediction performance.

<table>
<thead>
<tr>
<th>σ</th>
<th>Box</th>
<th>Door</th>
<th>Microwave</th>
<th>Fridge</th>
<th>Cabinet</th>
<th>Safe</th>
<th>Table</th>
<th>Washing</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>100.0</td>
<td>85.4</td>
<td>100.0</td>
<td>98.6</td>
<td>96.7</td>
<td>97.7</td>
<td>98.7</td>
<td>100.0</td>
<td>96.1</td>
</tr>
<tr>
<td>0.1</td>
<td>96.1</td>
<td>94.8</td>
<td>100.0</td>
<td>87.8</td>
<td>90.9</td>
<td>95.9</td>
<td>96.6</td>
<td>95.8</td>
<td>93.6</td>
</tr>
<tr>
<td>0.2</td>
<td>95.4</td>
<td>92.8</td>
<td>100.0</td>
<td>82.9</td>
<td>100.0</td>
<td>95.9</td>
<td>82.8</td>
<td>87.5</td>
<td>92.2</td>
</tr>
<tr>
<td>0.3</td>
<td>95.2</td>
<td>92.8</td>
<td>100.0</td>
<td>85.4</td>
<td>100.0</td>
<td>93.2</td>
<td>96.6</td>
<td>93.8</td>
<td>94.6</td>
</tr>
</tbody>
</table>

Learning baseline PN2 [11], which uses PointNet++ [30] as a feature extraction backbone to predict joint types given an input point cloud and segmentation masks of the object parts connected to the joint. We train the model to classify the link as one of the eight joint types described above. We also test the combination of H-SAUR and PointNet++, which we denote Ours + PN2, where we use the trained PointNet++ model as a prior when initializing particles.

**Results and analysis.** Table I shows the joint type estimation accuracy. Our model performs comparably with PN2 in the half-opened setting and significantly outperforms PN2 on the closed setting where joint type is mostly ambiguous from vision alone. We also show, by visualizing the link, that our model can improve in cases where visual prior helps significantly, e.g., half-opened Microwave. We visualize the posterior over hypotheses in Fig. 4. We can see our model performs better than Where2Act+HP in most settings except for boxes.

**B. Joint type estimation under stochastic dynamics.**

**Settings.** We further evaluate the performance of H-SAUR under stochastic dynamics by adding noise to action to imitate a stochastic dynamics. The action noise $\epsilon$ is uniformly sampled from $\epsilon \sim [-\sigma, \sigma]^{\sigma}$ thus the action on the stochastic dynamics will be $a_{\text{noise}} = a_{t} + \epsilon$. We evaluate H-SAUR with $\sigma \in \{0, 0.1, 0.2, 0.3\}$, where $\sigma = 0$ corresponds to Ours in Table I.

**Results and analysis.** Table III shows the results on different noise levels. At its most extreme, the noise is sampled from a uniform range of width 0.6 meters, which is the equivalent to the size of the articulated part in many cases, yet adding this noise has little effect on joint estimation performance. This is partly because our method is a probabilistic framework, thus it can handle any uncertainty including stochastic dynamics, part segmentation, action noises, etc.

**C. Action Proposal and Affordance Map**

We next measure how well the H-SAUR model can use its estimates of joint properties to estimate whether an action will be effective on the PartNet-Mobility dataset.

**Settings.** To evaluate all models, we collect 10,000 interactions on the closed setting by randomly sampling a point belonging on a movable part and applying a force with a uniformly distributed direction on the surface of the 3-d unit sphere. An action is labeled as "success" if it causes the joint to move more than 5% of its full range. We counterbalance "success" and "failure" interactions in the final test set. We use two metrics to evaluate the models: (1) **Binary classification Accuracy** which is the proportion of actions correctly predicted as success or failure, and (2) **Distance Prediction** which measure the $\ell_1$ distance between the predicted point translation and the ground truth.

**Baseline.** We compare our model with the state-of-the-art articulated object manipulation algorithm, Where2Act (W2A) [23], which takes the pointcloud of an articulated object as input to predict an effectiveness score for all points. To train the model, we collect $\{10K, 100K\}$ number of counter-balanced interactions using the same procedure as above. For a fair comparison, we collect both the testing and training data from only movable links by applying a segmentation mask when sampling the position to interact as our method assumes segmentation of the parts is given.

**Results and analysis.** We show the results in Table II. Our method significantly outperforms the baseline, despite being 1000 times more sample efficient. We show qualitative results of distance prediction by H-SAUR in Fig. 4.

**D. Manipulation**

Next we evaluate the estimated joints for manipulation task on the PartNet-Mobility Dataset.

**Settings.** The task is to open the movable parts as much as possible from completely closed setting within $N_{\text{max}} = 15$ interactions. Our method uses first $N_{\text{init}} = 10$ interactions to estimate the joint type, and the rest to manipulate the object while the baseline models use all $N_{\text{max}}$ interactions to open the movable parts. For evaluation, we measure the proportion of the part opened $r = \max_{t \in \{1, ..., N_{\text{max}}\}} \left( \theta_{t} - \theta_{\text{init}} \right) / \left( \theta_{\text{max}} - \theta_{\text{init}} \right)$, where $r = 1$ means fully opened target part.

**Baselines.** We again use Where2Act as the baseline for this experiment. We also add Where2Act + HP, which employs an additional heuristic that filters out actions that has a larger than 90 deg angle with last-step action as done in [4]. This heuristic helps to avoid sequences of back-and-forth actions.

**Results and analysis.** Table IV shows our method significantly outperforms Where2Act in all categories and performs better than Where2Act+HP in most settings except for boxes.

![Fig. 4: Visualizations of distance prediction. The warmer color shows larger deformations.](image-url)
We can see that the RL baseline trained with 10K timesteps, which corresponds to 100x more timesteps than ours, performs a policy that selects an action in the same way as Random: PuzzleBoxes are designed to look similar but have (drawn from a fixed distribution) given similar observations. Random.

E. PuzzleBoxes

Finally, we evaluate H-SAUR on a novel benchmark PuzzleBoxes. The task is to open a door outward more than 60° within 100 interactions. However, opening this door requires first moving other “locks” that restrict the door’s range of motion as shown in Fig. 5.

Baselines. To the best of our knowledge, none of the prior learning-based approaches can solve this long-term manipulation problem without exhaustively interacting with the objects before deployment time. To show this, we train an RL agent with CURL [31], a state-of-the-art image-based RL algorithm. We feed the model with RGBD images as inputs and train the agent with 10K interactions. We also compare our algorithm to two learning-free baselines: (1) Random: a policy that uniformly sample a movable link and apply randomly sampled action on it at each time step, (2) Heuristic: a policy that selects an action in the same way as Random, but keeps applying the same action if the object moves at the previous step.

Results and analysis. We show the results in Table IV. We note that more work is needed to extend H-SAUR to manipulate arbitrary real-world articulated objects. First, our current model cannot handle articulated joints with arbitrary joint axis, e.g., a door that rotates with a tilted joint, or joint types that have not been prespecified in its hypothesis space. This problem can potentially be addressed using motion-based kinematic prediction [13] to propose new hypothesis to include in the prior. Second, we assume part segments are given. In ongoing work, we are investigating models that jointly infers object parts and their articulations. Third, we assume a force can be applied to any point on an object from any direction in order to separate reasoning about joints from manipulating them. While this is roughly similar to using a suction gripper as in [4], [32], we plan to explore practical constraints imposed by a real robot’s geometry, gripper, etc. in future work.

Nonetheless, H-SAUR demonstrates a promising avenue for systems that can reason about articulated objects, manipulate them, and update beliefs in real time.

<table>
<thead>
<tr>
<th>Testing categories</th>
<th>Novel instances in training categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box</td>
<td>Door</td>
</tr>
<tr>
<td>W2A (100K)</td>
<td>65.0</td>
</tr>
<tr>
<td>W2A+HP (100K)</td>
<td>96.2</td>
</tr>
<tr>
<td>Ours (0.01K)</td>
<td>82.9</td>
</tr>
<tr>
<td>Ours + PN2</td>
<td>87.2</td>
</tr>
</tbody>
</table>

TABLE IV: The proportion of the part opened [%] with fifteen testing-time interactions.

<table>
<thead>
<tr>
<th>Setting</th>
<th>1-chain</th>
<th>2-chain</th>
<th>3-chain</th>
<th>1-chain 2-locks</th>
<th>1-chain 3-locks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>23.3</td>
<td>6.7</td>
<td>0.0</td>
<td>13.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Heuristic</td>
<td>36.7</td>
<td>13.3</td>
<td>0.0</td>
<td>23.3</td>
<td>10.0</td>
</tr>
<tr>
<td>CURL</td>
<td>33.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Ours</td>
<td>96.7</td>
<td>86.7</td>
<td>80.0</td>
<td>93.3</td>
<td>86.7</td>
</tr>
</tbody>
</table>

TABLE V: Manipulation performance (%) for solving PuzzleBoxes averaged from 3 runs.

Fig. 5: Top Examples from the PuzzleBoxes Benchmark. Bottom Visualizations of how the puzzle boxes will be opened by unlocking keys in 3-chain puzzle boxes.
REFERENCES


