
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Fast and Accurate 3D Registration from Line Intersection
Constraints

Mateus, Andre; Ranade, Siddhant; Ramalingam, Srikumar; Miraldo, Pedro

TR2023-007 March 01, 2023

Abstract
3D Registration is a fundamental part of several robotics and automation tasks. While
classical methods predominantly exploit constraints from points or plane correspondences,
we have a dif- ferent take using line intersections. In other words, we focus on exploiting
geometric constraints arising from the intersection of two (different) 3D line segments in
two scans. In particular, we derive nine minimal solvers from various geometric constraints
arising from line intersections along with other constraints: plane correspondences, point
correspondences, and line matches. We fol- low a two-step method for 3D registration: a
coarse estimation with outlier rejection followed by refinement. In the first step, we use a
hybrid RANSAC loop that utilizes all the minimal solvers. This RANSAC outputs a rough
estimate for the 3D registration and the outlier/inlier classification for the 3D features. As
for the refinement, we offer a non-linear technique using all the inliers obtained from the
RANSAC and the coarse estimate. This method is of alternate minimization type, in which
we alternate between estimating the rotation and the translation at each step. Thorough
experiments with simulated data and two real-world datasets show that using these features
and the combined solvers improves accuracy and is faster than the baselines.

International Journal of Computer Vision 2023

This is a post-peer-review, pre-copyedit version of an article published in International Journal of Computer Vision
2023. The final authenticated version is available online at: http://dx.doi.org/.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Fast and Accurate 3D Registration from

Line Intersection Constraints
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Abstract

3D Registration is a fundamental part of several robotics and automation tasks. While classical
methods predominantly exploit constraints from points or plane correspondences, we have a dif-
ferent take using line intersections. In other words, we focus on exploiting geometric constraints
arising from the intersection of two (different) 3D line segments in two scans. In particular, we
derive nine minimal solvers from various geometric constraints arising from line intersections along
with other constraints: plane correspondences, point correspondences, and line matches. We fol-
low a two-step method for 3D registration: a coarse estimation with outlier rejection followed
by refinement. In the first step, we use a hybrid RANSAC loop that utilizes all the minimal
solvers. This RANSAC outputs a rough estimate for the 3D registration and the outlier/inlier
classification for the 3D features. As for the refinement, we offer a non-linear technique using
all the inliers obtained from the RANSAC and the coarse estimate. This method is of alternate
minimization type, in which we alternate between estimating the rotation and the translation
at each step. Thorough experiments with simulated data and two real-world datasets show that
using these features and the combined solvers improves accuracy and is faster than the baselines.
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1 Introduction

3D devices such as RGB-D and 3D LiDAR are
the primary sensors for applications such as aug-
mented reality [1, 2, 3, 4], navigation [5, 6, 7,
8], and SLAM [9, 10, 11, 12, 13], especially
because they provide 3D depth information about
the environment. One can obtain this kind of
data from different sources. For example from

rigidly mounted multiple perspective sensors, a
set of RGB cameras; from structured light [14];
from Time-of-Flight (ToF) cameras, such as [15];
or from rotating Light Detection And Ranging
(LiDAR) sensors, [16], which is a specific type
of ToF based sensor. These devices have become
more accurate and less expensive over the last few
years, mainly due to autonomous navigation needs
and robotics.
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Figure 1: Main idea: We identify pairs of 3D
lines that intersect from two scans, i.e., a line from
the first scan (image on the top left) intersects
with the line from the second (image on the bot-
tom left) in the common reference frame (image
on the right). In this paper, we jointly exploit
these novel line intersection constraints and tradi-
tional point and plane correspondence constraints
to develop a family of minimal solvers for 3D scan
registration.

3D registration is the problem of finding the
pose that aligns two 3D point cloud scans. If
we consider a mobile device moving in space,
acquiring 3D scans, this alignment is equivalent
to the visual egomotion problem using a conven-
tional monocular imaging device. A key method
for solving the 3D registration problem is the well-
known iterative closest point (ICP) [17, 18], an
iterative technique of the alternative minimization
type that alternates between estimating the 3D
point correspondence set and finding the trans-
formation that aligns the two scans. Although
the main ideas remain, ICP was improved signif-
icantly in the last decades with most advances
attempting to 1) improve robustness to outliers,
and 2) reduce the chances of getting stuck in
local minima, and reduce the problem’s computa-
tional complexity. One way of dealing with these
issues is to use RANSAC [19] and minimal solvers
[20]. We find solutions to minimal random subsets
of constraints instead of solving an optimization
problem that directly computes the transforma-
tion. The output solution is obtained by choosing
the solution that gathers the most consensus, i.e.,
the solution with the largest number of inliers.

This paper focuses on improving points 1) and 2).
Specifically, we tackle the robustness problem by
removing outliers. Then, to reduce the chances of
falling in local minima, we use a rough estimate
of the transformation obtained from RANSAC as
an initial estimate for a non-linear refinement.

Most existing methods for solving 3D registra-
tion exploit the use of points in the point cloud,
either using all points from the 3D scan (e.g., ICP
[18]) or explicitly using correspondences obtained
from 3D descriptors (such as FPFH [22]). This
work uses the latter approach with a different
descriptor. First, we focus on environments con-
taining 3D planes and straight lines, as shown
in Fig. 1. In contrast to points correspondences,
lines are one-dimensional features that are sim-
pler and more accurately computed because one
can get them from a set of points belonging to
the line (both in 2D and 3D). Moreover, these
lines are usually obtained from the intersection
of plane features, making their description eas-
ier. More accurate 3D features should yield a
more precise and robust registration. Contrary to
2D images, another significant advantage of using
lines instead of points in 3D scans is related to the
sparse nature of the data. Both RGB-D and 3D
LiDAR data are sparse, making the point matches
harder or even impossible to get. For example, if
we consider two 3D LiDAR scans, for a 3D point
obtained in the first one, we will not have a 3D
point in the point cloud of the second scan.

1.1 Contributions

In this paper we study the following questions.

RQ1: How to formulate and exploit the rich con-
straints from line intersections to improve
3D registration?

RQ2: Can we develop a robust and efficient
algorithm to exploit the line intersection
constraints?

Our contributions are:

1. Nine minimal solvers for the cases of mixing
line intersections with plane, point, and line
matches (see Tab. 1);

2. A hybrid RANSAC scheme to account for all
possible combinations of minimal sets;

3. A new and fast non-linear refinement solver
that uses all the inliers from the RANSAC
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Solver
# Intersecting

Lines (L)
Matches Total

#Features
Pre-Transformation

#Sol

#Points (Q) #Planes (P) #Lines (M) Matches #DoF (T, R)

6L[21] 6 0 0 0 6 – (3, 3) 64
3Q[20] 0 3 0 0 3 3Q (0, 0) 1

3L1P 3 0 1 0 4 1P (2, 1) 4
1L2P 1 0 2 0 3 2P (1, 0) 1
3L1Q 3 1 0 0 4 1Q (0, 3) 8
1L2Q 1 2 0 0 3 2Q (0, 1) 2
1L1Q1P 1 1 1 0 3 1Q1P (0, 1) 2
1M1Q 0 1 0 1 2 1M1Q (0, 0) 1
2M 0 0 0 2 2 2M (0, 0) 1
2L1M 2 0 0 1 3 1M (1, 1) 4
1M1P 0 0 1 1 2 1M1P (0, 0) 1

Table 1: Minimal solvers: Available and proposed solvers used/derived to compute the 3D alignment
using line intersection constraints, including the resulting maximum number of solutions each method
gives, i.e., problem complexity. Furthermore, the number of DoF (both rotation and translation) remaining
to estimate after applying the pre-transformations are also presented. In general, this number of solutions
corresponds to the degree of the polynomial equation obtained in this paper. See Sec. 5 for more detail.

loop and refines the 3D registration using an
alternating minimization method that alter-
nates between estimating the rotation and
translation;

4. Our methods were tested with simulated
data and two different available real world
datasets, SUN3D and TUM RGB-D [23, 10]
for validation and comparison with the base-
lines; and

5. We conclude that only using RANSAC and
the line intersection constraints help improve
the overall results, being faster than the base-
lines. When utilizing our non-linear refine-
ment, the accuracy improves significantly
with a negligible increment in computational
time (concerning our RANSAC), still being
substantially faster than current baselines.

1.2 Outline

We organize the paper as follows. The next section
presents the related work. Section 3 shows the
notations, and our approach is described in Sec. 4.
We also include the basic geometric constraints
used in the rest of the paper. The minimal solvers
using line intersection constraints are presented
in Sec. 5. The hybrid RANSAC loop derived for
using all the minimal solvers is presented in Sec. 6.
Section 7 derives our alternative minimization
refinement method. The experimental results are

shown in Sec. 8, and we conclude the paper in
Sec. 9.

2 Related Work

This section is divided into five subsections. We
start by discussing previous techniques in 3D
registration, focused on classical/non-data-driven
methods. Section 2.2 describes some previous
approach on robust estimation using minimal
solvers, and Sec. 2.3 focus on data-driven methods
for 3D registration. Since, in this work, we derive
an alternating minimization method for regis-
tration refinement, Sec. 2.4 offers some previous
approaches in computer vision using these kinds
of strategies. We end this section by describing the
authors’ prior methods to this work.

2.1 Traditional computer vision
methods

The gold standard method for obtaining the
3D registration from two scans without corre-
spondences is the Iterative Closest Point (ICP),
presented in [18]. Most of the proposed alterna-
tives over the years aimed at improving some of
the ICP issues, namely improving the results in
the presence of outliers and ensuring the conver-
gence to a global minimum. Some examples are
[24, 25, 26, 27, 28, 29, 30, 31, 32].
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A more recent approach in [33] derives a
branch-and-bound method with guarantees of
global optimality. KinectFusion in [1] is a well-
known method focused on getting accurate and
real-time registration in complex and arbitrary
indoor scenes and varying lighting conditions. In
[34], the authors combine geometric registration
of scene fragments with robust global optimiza-
tion, based on online processes for the robust
reconstruction of indoor scenes. Another well-
known method is the Super4PCS method [35],
which aims at getting a robust solution to the
registration. The method uses random samples
of four points with the assumption that they
verify the co-planar constraints. Super4PCS is
an extension of the 4PCS [36], aiming at fixing
the large computational complexity involved in
the prior method. While Super4PCS is of linear
time complexity, 4PCS is quadratic for the num-
ber of data points. The current state-of-the-art
non-data-driven method is the Fast Global Reg-
istration method (FGR), presented in [37]. The
authors propose a robust optimization technique
that uses a robust distance function for outlier
removal. The goal is to avoid running RANSAC
before the refinement procedure. The method gets
the registration by partially overlapping 3D sur-
faces. A more recent method in [38] optimizes joint
photometric and geometric properties to compute
the 3D registration.

The previous paragraph shows some related
work on using points for computing the 3D regis-
tration. (Although 4PCS and Super4PCS use pla-
nar constraints implicitly, explicitly they consider
points.) However, a few previous works use/com-
bine different 3D features. In [11, 39] the authors
present a method that combines points and planes,
and [6, 40] proposes methods for point cloud reg-
istration with a plane to plane match. [41] solves
the problem with curves and surfaces.

Some other authors study other research ques-
tions in large-scale 3D registration problems. One
of the critical problems for reducing drift with
estimating localization over time is to use meth-
ods like rotation/transformation averaging (see,
for example, [42, 43, 44]) or loop closure (e.g.,
[45, 46, 47, 48, 34, 20]), which require more than
two 3D scans. However, these techniques are again
iterative (latest ones rely on graph optimization
[49]), and therefore a good initialization is manda-
tory to deliver an accurate solution. In this paper,

we consider only the pairwise 3D registration
problem.

2.2 Using minimal solvers

The standard technique for obtaining a robust
estimate is RANSAC, in [19]. This technique runs
a loop for a number of iterations. In theory, this
number is selected to ensure that at least one sam-
ple set is error/outlier free with high probability.
However, in practice, one needs to know the prob-
ability of a data point being an inlier to obtain
this value, which is not known a priori in most
applications. The algorithm proceeds as follows:
each iteration computes a hypothesis based on a
randomly generated sample of minimal data; the
hypothesis is scored based on an inlier metric and;
if it outscores the previous best hypothesis, the
current estimation is updated. RANSAC’s out-
put is the best hypothesis calculated using all the
data. Besides some improvements to the original
RANSAC, which is transverse to all applications
(many works have been published to improve
RANSAC, see for example [50, 51, 52, 36, 53, 54,
55]), minimal solvers are the tools that describe
each problem.

Over the last couple of decades, authors pro-
posed many solvers for different problems. Among
many minimal solvers, we highlight some rel-
evant ones for odometry/relative camera pose,
e.g., [56, 57, 21, 58, 59], and localization/cam-
era pose, such as [60, 61, 62, 63]. Minimal solvers
and RANSAC provide efficient and robust solu-
tions to 3D registration. For example, 4PCS and
Super4PCS in [36, 35], mentioned in Sec. 2.1, use
sets of four points within a RANSAC framework
for robust estimation. A more basic and stan-
dard pipeline for 3D registration is to consider
sets of three points, for example, with the solver
in [64, 20], which is the minimum set of point
correspondences required to get the transforma-
tion. In [20], the authors derive minimal solvers
for mini loop closures in 3D scan alignment. That
paper shows that combining correspondences from
a cycle of 3D scans improves the overall accuracy
of the 3D registration.

2.3 Deep learning alternatives

We have witnessed a significant increase in pub-
lished methods for 3D registration in the last
few years. Unfortunately, it is impossible to list
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all the works; we will list some key methods.
However, most of these concentrate on data pro-
cessing (feature detection and matching) rather
than attacking the actual alignment problem, con-
sisting of finding the transformation that aligns
the data. The main reason is related to the well-
defined algebraic constraints involved in finding
the transformation parameters. There is no appar-
ent advantage in using DNN strategies for solving
a well-known and straightforward algebraic prob-
lem. Most authors rely on traditional methods for
finding this transformation, as is reflected in the
related work below.

In this work, we focus on estimating the trans-
formation parameters rather than the feature
extraction or matching.

3D registration:

In PointNetLK, [65], the authors derive an iter-
ative optimization solution for 3D registration
problem. First, they change the PointNet encoder
to match the classical Lucas-Kanade algorithm
for 2D images. Then, the source and template
point clouds are injected into the two PointNets
for feature extraction at each iteration. Using the
discrepancy in the feature space obtained from
the two point clouds and a modified inverse com-
positional Lucas-Kanade algorithm, the method
computes the alignment (exponential map of a six-
dimensional vector) for the current iteration. This
transformation is then applied to the source point
cloud in the next iteration, and the same pro-
cess is repeated until a minimum threshold for the
estimated transformation is found. This method
was extended in [66] by using analytical Jacobians
to circumvent the numerical instabilities of the
original PointNetLK.

A different alternative is proposed in [67].
The authors offer a method that estimates the
pose directly (against iterative approaches of [18,
65]). The authors derive a network for obtaining
matches between a template and a source point
cloud. The proposed architecture passes the input
point clouds through a graph convolutional net-
work, followed by a transformer, and Softmax in a
row, treating inputs as unordered sets. After get-
ting the matches, the authors run a traditional 3D
registration method to get the pose.

The work in [68] aims at solving the classical
3D registration problem from [69]; i.e., calculate

the alignment from a previously computed set of
point correspondences. The goal is to get a fast,
agnostic estimator to the feature extractor. The
authors present a DNN to classify 3D input corre-
spondences as inliers/outliers while computing the
3D registration simultaneously. A similar problem
was addressed in [70]. However, instead of having
six dimensional vectors as the stacking coordi-
nates of correspondence pairs in a PointNet style,
like [68], the authors use a high-dimensional con-
volutional network to analyze the structure and
classify the given correspondences. The authors
also derive a differentiable weighted Procrustes
solver with linear computational complexity with
respect to the number of correspondences and a
robust optimization module that fine-tunes the
computed alignment.

Feature extraction and correspondences:

Following the reasoning indicated above about
solving the alignment with traditional techniques
vs. DNN ones, most authors aim at explicitly
extracting features and descriptors from point-
clouds.

In [71], the authors start with creating super-
points from the row data. Then, they create
2D depth maps by projecting the normalized
points inside each super-point. Irrelevant super-
points are filtered out, and the remaining ones
go through a dimension reduction using an auto-
encoder. Candidates for matching and coarse and
fine estimations are computed using traditional 3D
registration methods.

PPFnet, in [72], proposes to use 4D geomet-
rical descriptors (PPF) representing the surface
from a pair of oriented 3D points. The authors
encode the local geometry from patches of points,
in which the features are obtained by stacking
PPF descriptors from the representative point
in the patch and its neighbors. These geometric
features pass independently through PointNet to
compute local features, followed by a max-pooling
to obtain the global ones. Finally, the global and
local features are concatenated and pass through a
multilayer perceptron that computes the final fea-
tures. In [73] the authors extend PPFnet to work
without supervision and pose invariants.

In [74], the authors start with sampling clus-
ters from row data. Then propose a three-branch
Siamese network structure, using anchor, positive,
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and negative point clouds as inputs. The net-
work consists of a detector network followed by
a descriptor network. Finally, the output of pos-
itive & anchors and negative & anchors features
are injected in a feature alignment proposed in [75]
and trained with the triplet loss.

The Fully Convolutional Geometric Features
(FCGF) method is presented in [76]. Instead
of using geometric patches centered in points
of interest like [72, 73], which is computation-
ally expensive and implicitly decreases resolution,
the authors use 3D convolutions on the entire
point clouds by transforming convolutions to fully-
convolutional counterparts. Another fully convo-
lutional method is derived in [77]. The authors use
Kernel Point Convolution to get local geometry
information, using kernel points carrying convo-
lution weights as the backbone network for dense
feature description extraction.

In [78], the authors changed the Robust Point
Matching of [79] by replacing the spatial distances
with learned hybrid feature distances, and letting
the network decide the softassign hyperparameter
values. The “PREDATOR” method in [80] starts
with voxelized point clouds that are injected in
an encoder-decoder scheme with shared weights
(one per 3D scan). An overlap-attention module
with a series of self- and cross-attention blocks
updates the features in the latent space before
the decoder estimates the conditioned features
and overlap scores to per-point feature descriptors,
overlap scores, and matchability scores.

2.4 Alternative minimization
methods in computer vision

Computer vision researchers have used Alternate
Minimization (AM) techniques for decades in var-
ious problems. Concerning 3D registration, ICP in
[18] is one of these. As mentioned in Sec. 2.1, it
is the gold standard method for dense point-to-
point registration, that alternates between finding
closest correspondences and computing the rigid
transformation. Another well-known method that
uses an alternative minimization method to solve
the 3D registration is the one in [37]. In this case,
the authors assume the point correspondences are
known and alternate between finding the line pro-
cess over the correspondences (robust estimation)
and finding the transformation that aligns both
scans.

Furthermore, AM and projection algo-
rithms [81, 82, 83] have been used for human pose
and other geometrical problems [84, 85, 86, 87].
In this work, we model an AM method for 3D
registration refinement, considering line inter-
section constraints. The method is iterative and
alternates between estimating the rotation and
translation parameters.

2.5 Prior work

This work follows some of the authors’ groups
prior works, namely [88, 89, 90]. In both [90, 89],
we introduce the use of line intersections for 3D
registration. In [89], we describe the 3D regis-
tration problem as an AM one, which alternates
between finding local alignments (transformations
that align a single feature) and finding the con-
sensus transformation given all the transformed
features. The work provides superior results con-
cerning the 3D alignment but with high computa-
tional costs. The method is extremely slow and not
applicable to real-time problems. In [90], we took
a different approach. We define constraints from
line intersections and then derive five new mini-
mal solvers for the 3D registration problem. Then,
we present a hybrid RANSAC loop for consider-
ing all the solvers and offer a simple non-linear
refinement strategy. However, this refinement is
computationally heavy while showing minor or
no improvements in accuracy. This is due to the
highly non-linear nature of the constraints. [90] is
the closest to work to this paper. The main differ-
ences are four new minimal solvers considering line
matches and a refinement technique that provides
a more accurate 3D alignment. This new refine-
ment technique is of the AM framework presented
in [88]. This method relaxes the non-linearities
involved in the cost function, by splitting the
problem in two: rotation only, translation only
optimization problems, fixing the translation and
rotation respectively, and solving the problem
by alternating between the two estimators. This
makes the solver converge significantly faster and
produce more accurate results.

3 Notations

Capital letter represent matrices (e.g., A ∈
RN×K), small bold letter represent column vectors
(e.g., a ∈ N), and small regular letters represent
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scalars. We use Plücker coordinates to represent

3D lines, i.e., l ∈ R6 def∼ [l l̂], where l and l̂ are
the line’s direction and moment, respectively. (See
[91] for more details.) Planes are represented by a

four dimensional vector π ∈ R4 def
= [π π̃], in which

π and π̃ represent the plane’s normal vector and
distance to the origin, respectively. 3D points are
represented by q ∈ R3. Subscripts are used to
denote the index of the feature (e.g., li denotes
the ith 3D line), and the apostrophes are used to
identify the matches of features in pairs of scans
(e.g., the tuples (l1, l

′
1) and (q1,q

′
1) represent the

pairs of 3D lines and points in the first and second
frames, respectively). The symbol ⊗ denotes the
Kronecker product. This operation is used to sim-
plify algebraic equations of the type AXB = C
by (

BT ⊗A
)
vec(X) = vec(C) (1)

where vec(.) represents the stacking of the
columns of a matrix.

4 Problem Definition and
Method Overview

We aim to estimate a rigid transformation T
def
=

(R, t) that aligns two 3D point cloud scans. R ∈
SO(3) and t ∈ R3 denote the rotation and trans-
lation unknowns. The goal is to combine the use
of 3D line intersections and 3D point, plane & line
matches.

4.1 Our approach

We follow a standard two-step procedure for
obtaining a robust estimation. First, we get a
rough estimate for the transformation and remove
outliers. Then, we use the inliers and first guess
for the 3D registration to refine the solution. As
mentioned in Sec. 1.1, we are interested in explor-
ing different kinds of features for improving speed
and accuracy.

Geometric constraints:

Before starting with the solvers, we define the
possible feature matches that may arise from line
intersection constraints. The first constraint is the
intersecting constraint from one line in the first
scan and a second line in the second scan. The
constraint arises because these two lines must
intersect in 3D.

The next set of constraints arises because these
3D lines are usually obtained from the intersection
of planar structures. This means that, in general,
we also have plane matches. The intersection point
of the lines in 3D may also be extracted from both
scans. Note that this is not necessarily a point
belonging to the 3D scans, rather a common 3D
point in both scans that results from the intersec-
tion of sets of two lines that are not necessarily
matches of lines. Therefore, although this is not
possible for every possible line intersection con-
straint, it makes sense to consider the case of point
matches in the solvers. Another kind of constraint
that can occur is the line matches. For example,
assume we have a pair of intersecting lines, and
one of them is a strong edge of a planar structure.
Then, there is a chance that this edge is present
in both scans.

A detailed geometric description of the consid-
ered constraints is shown in Sec. 4.2.

Coarse estimate:

For the first step of our solution, we propose to
use a RANSAC-based estimator that finds a set
of inliers for the kinds of features described in the
previous paragraph and outputs a rough estimate
for the transformation that aligns both scans. Our
Hybrid RANSAC loop is described in Sec. 6. The
main characteristic of our RANSAC is that it han-
dles multiple solvers representing the constraints
described in the previous paragraph.

As indicated above, the minimal solvers are
used to model the problem into the RANSAC-
based estimators. Thus, taking into account the
problem tackled in this work, i.e., the constraints
identified in the previous paragraph, in Sec. 5
we propose a set of minimal solvers that exploit
point, plane & line correspondences, and line
intersections.

Registration refinement:

Finally, in the last step of our approach, the
inlier set yielded by the RANSAC is used in a
refinement method derived in Sec. 7. The proposed
solution is of alternative minimization type, alter-
nating between estimating the rotation (having
the translation parameters fixed) and estimating
the translation (having the rotation parameters
fixed). The solvers are of the steepest descent type
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in the respective manifolds, and we formulate the
cost function of every feature mentioned in the
previous paragraphs.

4.2 Geometric constraints

This subsection describes the constraints and the
respective distances that may arise from line inter-
section features. We use these metrics for inlier
counting in our RANSAC framework and for the
formalization of our refinement technique.

Line intersection:

Consider the tuple (l,m′) representing two inter-
secting lines in 3D, in two different scans. The
constraint that ensures they intersect in the world
was derived in [92], and is given as

m′
T
[
−[t]xR R

R 0

]
l = 0. (2)

Point match:

Consider now the tuple (q,q′) representing a point
correspondence in two 3D scans. The geometrical
constraints used for this feature is the Euclidean
distance between two 3D points. It is given as

dQ = ∥Rq+ t− q′∥. (3)

Plane correspondence:

The metric considered for planes correspondences
in our prior work, [90], was an algebraic constraint;
the Euclidean norm of the difference between the
coordinates in each frame. In this work, we will
exploit a geometric constraint. To achieve this,
we sample three points in the plane of the first
frame, compute the distance to the plane in the
second frame for a given rigid transformation, and
average those distances. Let us consider the tuple
(π,π′) representing a point correspondence, the
metric is given as

dΠ =
1

3

3∑
j=1

∥(Rqj + t)Tπ′ + π̃′∥, where qj ∈ π.

(4)

Line correspondence:

Finally, we consider a constraint similar to the

one used for planes for line correspondences. Two
points are sampled from the line in the first frame;
we use the endpoints of the line segment. The rigid
transformation is applied to the sampled points,
and the distance of the points to the line in the
second frame is computed and averaged. Let the
tuple (l, l′) represent a line correspondence in two
scans. The geometric constraint is given as

dM =
1

2

2∑
j=1

∥(q′l −Rqj,l + t)× l
′∥, (5)

where q′l = l
′ × l̂′ is a point on the line l′. See [91]

for more detail.

5 Minimal Solvers

This section presents new minimal solvers for 3D
scan alignment using line intersections and plane,
line & point correspondences. First, we describe
the strategy for obtaining the solvers, and each
following subsection derives a solver in Tab. 1.

5.1 Getting the solvers

The solvers are described by a single-degree poly-
nomial equation, in which the degrees of the
polynomials get us the maximum number of solu-
tions to the problem. Instead of trying to describe
all the involved constraints and put them in an
automatic generator (such as [93]), we focus on
removing unknowns from the problem by first
looking at the geometric properties of the data and
then trying to derive the polynomial coefficients
analytically1.

The strategy followed for all the solvers is pre-
sented next. First, we split the features into two
types, line intersections constraints, and feature
matches. Since the match constraints are stronger
and easy to manipulate geometrically, we start
with these and remove as many degrees of free-
dom from the problem as possible. Then, we plug
the remaining degrees of freedom in the intersec-
tion constraints and derive the single unknown
polynomial equation using algebraic manipulation

1There are pros and cons to both approaches. Both need
to apply transformations to the data to get a single-unknown
polynomial equation. However, we understand the problem
better and its degeneracies by deriving the polynomial analyt-
ically.
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Selected Frame

Original Frame

U3L1P ∈ SO(3)
u3L1P ∈ R3

l1

l2

l3

π1

Figure 2: 3L1P: Selected frame for the 1 planes
match and 3 line intersection solver.

with the remaining degrees of freedom. From all
the nine solvers, we could get a single polyno-
mial equation for solving the problem in eight
of them by deriving the coefficients analytically.
The proposed and existing solvers are presented
in Tab. 1.

5.2 3L1P: 3 line intersections and 1
plane match

Consider three pairs of intersecting lines
{(l1,m′1), (l2,m′2), (l3,m′3)} and one pair of cor-
responding planes (π1,π

′
1). Following what we

described in the previous subsection, we start by
selecting appropriate frames for the problem, by
considering the match features.

Selected frames:

We select coordinate systems to the two 3D scans,
with planes π1 and π′1 set as the xy−plane. To
achieve this, we start by defining the third column
of U3L1P:

u3 = π1/∥π1∥. (6)

Then, we set two possible guesses for u1 (this rota-
tion can be defined up to a rotation degree of
freedom):

u−1 = [0 1 0]× u3 and u+
1 = [1 0 0]× u3, (7)

and set the first column of U3L1P as u1 = u∗1/∥u∗1∥
where u∗1 is equal to the vector in (7) with the
larger norm. Then, we define

U3L1P =
[
u1 u3 × u1 u3

]
, and (8)

u3L1P = π̃1U3L1Pπ1. (9)

A graphical representation of this selected frame
is shown in Fig. 2. With both frames associated

with the two scans verifying these specifications,
the relative transformation between both scans is
given by2

R =
1

1 + s2

[
1−s2 −2s 0
2s 1−s2 0
0 0 1+s2

]
and t =

[ tx
ty
0

]
(10)

which means that we reduced the total degrees of
freedom from six to three.

Solver:

Following what we describe in Sec. 5.1, to compute
the unknowns tx, ty, and s we use the three line
intersections. Replacing R and t in (2) by the ones
in (10) and multiplying the result by (1 + s2) we
get three constraints of the form

κ3
1[s, tx, ty] = κ3

2[s, tx, ty] = κ3
3[s, tx, ty] = 0, (11)

where κj
k[.]

3 denotes the kth polynomial with
degree j. The monomials in these polynomials are
linear in tx and ty; and quadratic in s. Taking the
first and second algebraic constraints in (11), and
solving them for tx and ty, we get

tx =
κ4
4[s]

κ4
5[s]

and ty =
κ4
6[s]

κ4
7[s]

. (12)

Now, substituting tx and ty in the third constraint
of (11) by (12) and simplifying the equation, we
get

κ4
8[s]

κ2
9[s]

= 0 =⇒ κ4
8[s] = 0. (13)

To compute the transformation between both
scans, we find the roots of the four degree poly-
nomial equation κ4

8[s], which can be computed in
closed-form, e.g., by using the Ferrari’s formula;
we get up to four solutions for s. Then, for each s,
we get solutions for tx and ty by solving (12). The
correct transformation is obtained by replacing
tx, ty, and s in (10) and reversing the predefined
transformations U3L1P and u3L1P.

2We are using Cayley’s parameterization for SO(3) matri-
ces because they allow a more compact representation and are
more suited for deriving the polynomials.

3Due to space limitations, we omit the coefficients and
monomials.
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Selected Frame

Original Frame

U1L2P ∈ SO(3)
u1L2P ∈ R3

V1L2P ∈ SO(3)
v1L2P ∈ R3

π1

π2

l1

Figure 3: 1L2P: Representation of the selected
coordinate system for the 2 planes matches and
one line intersection case.

5.3 1L2P: 1 line intersection and 2
plane matches

Consider one line intersection, (l1,m
′
1), and two

3D plane matches, {(π1,π
′
1), (π2,π

′
2)}. Again, we

follow the steps of Sec. 5.1.

Selected Frames:

As shown in Fig. 3, we transform the data in both
3D scans, to satisfy:

1. Planes π1 and π′1 are in the xy–plane;

2. The x–axis of both frames is along the inter-
section of the planes π1 and π2 in the first 3D
scan. Similarly, the x–axis is along the inter-
section of the planes π′1 and π′2 in the second
3D scan.

The transformation arising from item 1, U1L2P ∈
SO(3) and translation u1L2P ∈ R3, are obtained
in a similar fashion to U3L1P and u3L1P, as shown
in Sec. 5.2. For V1L2P ∈ SO(3) and v1L2P ∈ R3

associated with item 2, we first find the 3D line r
(in Plücker coordinates) that represents the inter-
section of the two planes π1 and π2 (see more
details in [91]):

r =
[
π1 × π2 π̃1π2 − π̃2π1

]
. (14)

Then, we define

V1L2P =

r1/
√

r21 + r22 −r2/
√

r21 + r22 0

r2/
√

r21 + r22 r1/
√

r21 + r22 0
0 0 1

 , (15)

where r1 and r2 are the 1st and 2nd elements in
vector r. Now, for the translation vector v1L2P, we
first compute the closest 3D point x ∈ R3 of line

r to the origin as

x = r̂× r, (16)

and v1L2P is given by

v1L2P = V1L2Px. (17)

After applying these predefined transforma-
tions to the two 3D scans, the relative transfor-
mation is determined up to a single translation
parameter. More specifically, the relative transfor-
mation can be expressed as

R = I and t =
[
tx 0 0

]T
. (18)

where I is the 3× 3 identity matrix.

Solver:

Since we only have one unknown tx, we only need
one intersecting line constraint. By substituting R
and t in (2) by (18) and solving for tx, we get

tx =
l
T

1 m̂
′
1 + l̂T1 m

′
1

l1,2m
′
1,3 − l1,3m

′
1,2

, (19)

where the subscript i in l1,i denotes the ith ele-
ment of the vector. Thus, we have a single solution
to the relative transformation between both scans:
we compute t as shown in (18), and revert to
the original coordinate frames by using predefined
transformations (U1L2P, u1L2P, V1L2P, and v1L2P).

5.4 3L1Q: 3 line intersections and 1
point match

Consider three pairs of intersecting lines
{(l1,m′1), (l2,m′2), (l3,m′3)}, and one point match
(q1,q

′
1).

Selected frames:

We apply predefined transformations to the both
3D scan frames, such that points q1 and q′1 are the
origin of the coordinate systems. In this case the
transformation consists only of a translation, since
we are moving the origin of the 3D data to the
point q1. Thus, the U3L1Q ∈ SO(3) and u3L1Q ∈
R3 in Fig. 4, are represented as

U3L1Q = I and u3L1Q = −q1. (20)
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Original Frame

Selected Frame q1 ∈ R3

U3L1Q ∈ SO(3)
u3L1Q ∈ R3

l1

l2

l3

Figure 4: 3L1Q: Coordinate system for the 1
point correspondence and 3 line intersection case.

Having translated both coordinate systems to q1

and q′1, respectively, the transformation between
both frames is given only by a rotation R ∈ SO(3)
(three rotational degrees of freedom), i.e., t = 0.

For parametrizing the R, we again use Cayley’s
parameterization (in this case for 3D rotation) as
follows:

R = 1
1+s21+s22+s23

R†, (21)

where

R† =

[
1+s21−s

2
2−s

2
3 2s1s2−2s3 2s2+2s1s3

2s1s2+2s3 1−s21+s22−s
2
3 2s2s3−2s1

2s1s3+2s2 2s1+2s2s3 1−s21−s
2
2+s23

]
. (22)

Solver:

To obtain the rotation matrix, the three pairs
of intersecting lines are used. Setting t = 0 in (2),
we obtain three linear independent equations of
the form4

m′i
T
R†̂li + m̂′i

T
R†li = 0, (23)

with i = 1, 2, 3. Now, by substituting R† in (23)
by (22), we get

ai,9s
2
1 + ai,8s1s2 + ai,7s1s3 + ai,6s1+

ai,5s
2
2 + ai,4s2s3 + ai,3s2+

ai,2s
2
3 + ai,1s3 + ai,0 = 0, (24)

where
ai,0 = l

T
i m̂

T
i + l̂

T
i m

T
i (25)

ai,1 = 2li,1m̂
′
i,2 − 2li,2m̂

′
i,1 + 2l̂i,1m

′
i,2 − 2l̂i,2m

′
i,1 (26)

ai,2 = −li,1m̂′
i,1 − li,2m̂

′
i,2 + li,3m̂

′
i,3−

4Notice we have simplified the constraint by pre-multiplying
1 + s21 + s22 + s23

l̂i,1m
′
i,1 − l̂i,2m

′
i,2 + l̂i,3m

′
i,3 (27)

ai,3 = −2li,1m̂′
i,3 + 2li,3m̂

′
i,1 − 2l̂i,1m

′
i,3 + 2l̂i,3m

′
i,1 (28)

ai,4 = 2li,2m̂
′
i,3 + 2li,3m̂

′
i,2 + 2l̂i,2m

′
i,3 + 2l̂i,3m

′
i,2 (29)

ai,5 = −li,1m̂′
i,1 + li,2m̂

′
i,2 − li,3m̂

′
i,3−

l̂i,1m
′
i,1 + l̂i,2m

′
i,2 − l̂i,3m

′
i,3 (30)

ai,6 = 2li,2m̂
′
i,3 − 2li,3m̂

′
i,2 + 2l̂i,2m

′
i,3 − 2l̂i,3m

′
i,2 (31)

ai,7 = 2li,1m̂
′
i,3 + 2li,3m̂

′
i,1 + 2l̂i,1m

′
i,3 + 2l̂i,3m

′
i,1 (32)

ai,8 = 2li,1m̂
′
i,2 + 2li,2m̂

′
i,1 + 2l̂i,1m

′
i,2 + 2l̂i,2m

′
i,1 (33)

ai,9 = li,1m̂
′
i,1 − li,2m̂

′
i,2 − li,3m̂

′
i,3+

l̂i,1m
′
i,1 − l̂i,2m

′
i,2 − l̂i,3m

′
i,3. (34)

Now, if we have three line intersection con-
straints {(l1,m′1), (l2,m′2), (l3,m′3)}, we get three
algebraic constraints of type (24); three 2-degree
polynomial equations with three unknowns. Geo-
metrically, solving these three constraints for s1,
s2, and s3 corresponds to finding the intersection
points of three 3D quadrics. It is also known that,
in general, this problem has up to 8 solutions. In
fact, the work in [94] proposes a set of derivations
for getting an efficient solution to this problem.
Following [94]5, we algebraically derive a single
variable 8-degree polynomial equation as a func-
tion of s1. After getting the solutions6 (up to eight
like the solution in the first draft), we compute s2
and s3 analytically by back-substituting s1 in the
derived equations.

5.5 1L2Q: 1 line intersection and 2
point matches

Consider one pair of intersecting lines
(l1,m

′
1, ) and 2 pairs of point correspondences

{(q1,q
′
1), (q2,q

′
2)}.

Selected Frames:

For obtaining a suitable frame, we consider prede-
fined transformations U1L2Q, V1L2Q ∈ SO(3) and
u1L2Q ∈ R3, such that:

1. Points q1 and q′1 are the origin of the coor-
dinate systems; and

2. The z–axis points towards points q2 and q′2
respectively.

From item 1, the first transformation consists in
a pure translation to the point q1, which can be

5We do not show all these derivations for space purposes.
6We solved the polynomial using the Eigen’s library

PolynomialSolver class.
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Selected Frame

Original Frame

q2 ∈ R3U1L2Q ∈ SO(3)
u1L2Q ∈ R3

V1L2Q ∈ SO(3)

l1
q1 ∈ R3

Figure 5: 1L2Q: Representation of the selected
coordinate system for the 2 point matches and 1
line intersection case.

written as

U1L2Q = I, and u1L2Q = −q1, (35)

similar to the predefined transformation in
Sec. 5.4. The item 2 consists in a pure rotation
V3L1Q, which can be obtained in a similar fashion
to the matrix U1L2P in Sec. 5.3. Both cases can be
seen as aligning the z−axis with either the plane
normal in Sec. 5.3 or the direction from q1 to q2.
A graphical representation of these transforma-
tions is presented in Fig. 5. With these settings, we
are left with a single rotational degree-of-freedom
(t = 0), which corresponds to the rotation about
the z–axis. Then, R can be written as

R =
1

1 + s2

1− s2 −2s 0
2s 1− s2 0
0 0 1 + s2

 . (36)

Solver:

By setting t = 0 and R as defined in (36) into the
single constraint (2), and multiplying both sides
by (1 + s2), we obtain a second order polynomial
in s as

µ2s
2 + µ1s+ µ0 = 0, (37)

where

µ0 = l
T

1 m̂
′
1 + l̂T1 m

′
1 (38)

µ1 = 2l1,1m̂
′
1,2 − 2l1,2m̂

′
1,1 + 2l̂1,1m

′
1,2 − 2l̂1,2m

′
1,1

(39)

µ2 = l1,3m̂
′
1,3 − l̂1,1m

′
1,1 − l1,2m̂

′
1,2−

l̂1,2m
′
1,2 − l1,1m̂

′
1,1 + l̂1,3m

′
1,3.

(40)

Selected Frame

Original Frame

q1 ∈ R3

U1L1Q1P ∈ SO(3)
u1L1Q1P ∈ R3

V1L1Q1P ∈ SO(3)
v1L1Q1P ∈ R3

l1

π1

Figure 6: 1L1Q1P: Selected frame for the 1
point and 1 plane matches, and 1 line intersection
case.

The polynomial (37) can be solved in closed-form
with the quadratic formula, yielding two solu-
tions for parameter s. Both values of s are then
replaced in (36) to retrieve the relative rotation
between the two frames. The final transformation
is obtained by reverting the predefined transfor-
mations U1L2Q, V1L2Q, and u1L2Q.

5.6 1L1Q1P: 1 line intersection and
1 point & plane matches

Consider the scenario where one pair of intersec-
tion lines (l1,m

′
1, ), one pair of plane correspon-

dences (π1,π
′
1), and one pair of point correspon-

dences (q1,q
′
1) are available.

Selected Frames:

Consider predefined transformations U1L1Q1P ∈
SO(3) & u1L1Q1P ∈ R3 and V1L1Q1P ∈ SO(3) &
v1L1Q1P ∈ R3 such that:

1. The orthogonal projection of points q1 and
q′1 to the planes π1 and π′1 (i.e., the pro-
jection through the normal direction of the
planes) are the origin of the coordinate sys-
tems; and

2. The planes π1 and π′1 match the xy–plane.

The transformation associated to item 1 consists
in a pure translation to the projection of point q1

to π1. This projection can be obtained by com-
puting the signed distance dq1π1

of the point to
the plane, and then subtracting the plane normal
vector scaled by the distance to the point. The
signed distance can be obtained by inputting the
point in the plane equation as

dq1π1
= πTq+ π̃. (41)
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Original Frame

Selected

FrameU1M1Q ∈ SO(3)
u1M1Q ∈ R3

V1M1Q ∈ SO(3)
v1M1Q ∈ R3

q1 ∈ R3

l1

Figure 7: 1M1Q:Graphical representation of the
selected coordinate system for the case of 1 point
match and 1 line correspondence.

The point qπ in the plane corresponding to the
projection of q to π is obtain by

qπ = q− dq1π1
π. (42)

The first transformation is thus given by

U1L1Q1P = I, and u1L1Q1P = −qπ, (43)

The second step, corresponding to item 2, con-
sists in a pure rotation V1L1Q1P, which can be
obtained in a similar fashion to the matrix U1L2P

in Sec. 5.3. The result is shown in Fig. 6.
After applying the predefined transformations

to both reference frames, the relative pose is given
by a single rotation parameter, similar to (36) and
t = 0.

Solver:

The missing parameter from the previous para-
graph corresponds to a rotation around the z–axis,
which align both frames. To compute this rotation
the procedure of Sec. 5.5 was used. Once again the
solver yields two solutions.

5.7 1M1Q: 1 line correspondence
and 1 point match

In this scenario, consider one pair of correspon-
dent lines (l1, l

′
1, ), and one pair of point matches

(q1,q
′
1). Given those features, the pose can be

retrieved directly from the selected frame as fol-
lows.

Selected Frames:

Consider predefined transformations U1M1Q ∈

SO(3) & u1M1Q ∈ R3 and V1M1Q ∈ SO(3) &
v1M1Q ∈ R3 such that:

1. The origin of the reference frame is a point
in the line l1, with the z−axis parallel to the
line direction; and

2. The origin of the reference frame is moved to
the projection of q1 onto l1, with the x−axis
pointing towards the point.

A graphical representation of these transforma-
tions is presented in Fig. 7. The transformation
associated to item 1 is obtained as follows. The
rotation matrix U1M1Q can be obtained in a sim-
ilar fashion to U3L1P, from Sec. 5.2, but defining
the third column to be the normalized direction of
l1. The translation vector u1M1Q is defined as

u1M1Q = x− λ1l1, (44)

with x being the closest point to the origin in the
line l1 as defined in (16), and λ1 = xT l1. Concern-
ing item 2, the translation vector v1M1Q is given
as

v1M1Q = −λ2l1, (45)

where λ2 = qT
1 l1. The rotation V1M1Q is a rotation

around the z−axis which aligns the x−axis with
the line l1 joining q1 with its projection on the
line. This is defined as

V1M1Q =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (46)

where θ is the the angle between the direction of
l1 and the x−axis. Notice that, in this case there
are no remaining degrees-of-freedom to estimate.
Thus, no line intersections are used.

Solver:

To compute the poses, we just have to revert the
predefined transformations, by taking the inverse
of those in the second scan and applying them to
the ones in the first scan. We get a single solution
to the problem.

5.8 2M: 2 line correspondence

Consider two pairs of lines matches (l1, l
′
1, ), and

(l2, l
′
2, ). Given those features, the transformation

can be obtained directly from the selected frame
as follows.
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Original Frame

Frame
Selected

U2M ∈ SO(3)
u2M ∈ R3

V2M ∈ SO(3)
v2M ∈ R3

l2

l1

Figure 8: 2M: Depiction of the selected frames
for the case of 2 line matches.

Selected Frames:

Consider predefined transformations U2M ∈
SO(3) & u2M ∈ R3 and V2M ∈ SO(3) & v2M ∈ R3

such that:

1. The origin of the reference frame is a point in
the line l1, with z−axis is parallel to the line
direction; and

2. The origin of the reference frame is moved to
the projection of closest point in l1 to l2, with
the x−axis pointing towards that point.

All transformations involved in items 1 and 2 are
obtained in a similar fashion to Sec. 5.7. The
difference lies in instead of projecting a point cor-
respondence to l1, we need to find the closest
points in each line to the other. Let us consider q1

and q2 to be points in lines l1 and l2, respectively,
n = l1 × l2, n1 = l1 × n, and n2 = l2 × n. Then,
the nearest points q̂1 and q̂2 in line l1 closer to
line l2, and vice-versa, are given as

q̂1 = q1 +
(q2 − q1)

Tn2

l
T

1 n2

l1 (47)

q̂2 = q2 +
(q1 − q2)

Tn1

l
T

2 n1

l2. (48)

A graphical representation of these transforma-
tions is presented in Fig. 8. Similar to the previous
solver, there are no remaining degrees-of-freedom
left to estimate.

Solver:

The solver for this case follows the one in Sec. 5.7.

Selected Frame

Original Frame

U2L1M ∈ SO(3)
u2L1M ∈ R3

l1
l2

l3

Figure 9: 2L1M: Coordinate systems for the 1
line match and 2 line intersections.

5.9 2L1M: 2 line intersections and 1
line correspondence

Now, consider one pair of correspondent lines
(l1, l

′
1, ), and two pairs of intersecting lines

(l2,m
′
2, ) and (l3,m

′
3, ). Given those features the

pose can be retrieved as follows.

Selected Frames:

Consider predefined transformations U2L1M ∈
SO(3) & u2L1M ∈ R3 such that the origin of
the reference frame is a point in the line l1, with
z−axis parallel to the line’s direction. These trans-
formations are obtained in a similar fashion to
Sec. 5.7. Given this setup, there are two degrees-of-
freedom to compute, a rotation and a translation
on the z−axis:

R =
1

1 + s2

[
1−s2 −2s 0
2s 1−s2 0
0 0 1+s2

]
and t =

[
0
0
tz

]
. (49)

A graphical representation of these transforma-
tions is presented in Fig. 9.

Solver:

The two remaining unknowns s and tz can be
computed by using the two line intersection con-
straints. Replacing (49) in (2), we get the following
two constraints:

k310[s, tz] = k311[s, tz] = 0. (50)

Solving the first for tz (which is linear in tz), we
get

tz =
k212[s]

k213[s]
. (51)
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Then, substituting (51) in the second constraint
in (50), and simplifying the equation yields

k414[s]

k215[s]
= 0 =⇒ k414[s] = 0. (52)

To compute s, we find the root of the four
degree polynomial k414[s], which can be obtained
in closed-form, yielding up to four solutions. These
solutions are injected in (51) to obtain the solu-
tions of the translation parameter. The final trans-
formation is obtained by reversing the pre-defined
transformations.

5.10 1M1P: 1 line correspondence
and 1 plane match

Now, consider one pair of line matches (l1, l
′
1, ),

and one pair of plane matches (π1,π
′
1).

Selected Frames:

Let us consider the predefined transformations
U1M1P ∈ SO(3) & u1M1P ∈ R3 and V1M1P ∈
SO(3) such that:

1. The origin of the reference frame is the inter-
section point between the line l1 and the
plane π1, with the latter being the xy−plane;
and

2. The x−axis pointing towards the projection
of l1 onto plane π1.

The rotation matrix U1M1P in item 1 can be
obtained in a similar fashion to U3L1P, in Sec. 5.2.
The translation vector u1M1P is defined as

u1M1P = −π1 × l̂1 − π̃1l1

πT
1 l1

. (53)

The transformation in item 2 consists of a rotation
around the z−axis, which aligns the x−axis with
the projection of l1 onto plane π1. This projection
is defined as

v = l1 − (l
T

1 π1)π1. (54)

Then, the rotation V1M1P is given as

V1M1P =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (55)

Selected Frame

Original Frame

U1M1P ∈ SO(3)
u1M1P ∈ R3

V1M1P ∈ SO(3)

l1

π1

Figure 10: 1M1P: Selected frame for the 1 line
match and 1 plane correspondence case.

where θ is the the angle between v and the x−axis.
A graphical representation of these transforma-
tions is presented in Fig. 10. In this case, as for
the solvers exploiting only correspondences, it is
possible to obtain all degrees-of-freedom directly
from the predefined transformations.

Solver:

To compute the poses, we only have to revert the
predefined transformations, by taking the inverse
of those in the second scan and applying them to
the ones in the first scan. We have a single solution
to this problem.

6 Hybrid RANSAC

Typical RANSAC loops rely on a single solver to
obtain the model. For instance, we would use each
solver in Tab. 1 in a separate RANSAC loop and
assess which solver provided the best pose esti-
mation. However, in this work, we argue that the
solvers should not be made to compete but to com-
plete each other. Given this insight and the recent
results on Hybrid Pose Estimation presented in
[63] and in 3D Registration in [90], we propose a
RANSAC loop, which in each iteration selects the
solver to use, see Alg. 1.

The goal is to select a solver given the inlier
ratios of the different features, the minimal set,
i.e., the number of features the minimal solver
uses, the number of iterations the solver was
selected, and a prior. In a noisy data set, it is not
possible to know a priori the actual inlier ratios,
so we use the inlier information from previous runs
of the algorithm in a sequence. The minimal sets
of each solver are presented in Tab. 1. The pri-
ors are defined based on each solver’s stability,
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Algorithm 1 Hybric RANSAC loop for 3D scan
alignment using points and plane correspondences
and line intersections.
Input: Transformation that aligns both Point Clouds
Data: Sets L,Π, Q, M, S, lg, pg, qg, mg, δL, δΠ, δQ,
δM, priors pp(g), and maximum # iterations ν

1: ∀g ∈ G Initialize p(g) = 1
2: while

∑
g jg < ν do

3: Sample a solver g with probability p(g)pp(g)
4: Increment jg
5: Sample lg line intersections from L
6: Sample pg plane correspondences from Π
7: Sample qg point correspondences from Q
8: Sample mg line correspondences from M
9: Compute T using solver g

10: Compute number of inliers ι(T ) = ιL(T, δL) +
ιΠ(T, δΠ) + ιQ(T, δQ) + ιM(T, δM)

11: Compute ϵL, ϵΠ, ϵQ, and ϵM
12: if ι(T ) > ι(T ∗) then
13: T ∗ = T
14: for each g ∈ G do
15: Update p(g) with (56)
16: Update γ(g) with (57)
17: end for
18: end if
19: if jg > γ(g) then
20: return T ∗

21: end if
22: end while

runtime, and the number of solutions obtained in
Fig. 11 and Tab. 2. If a solver has a high prior or a
small minimal set, it will be chosen more often. To
prevent this and allow for exploration of other fea-
ture combinations, we penalize the probability of
selecting a solver the more it has been selected. We
define the probability of a solver g being selected
as

p(g) =
(
ϵ
lg
L ϵ

pg

Π ϵ
qg
Q ϵ

mg

M (1− ϵ
lg
L ϵ

pg

Π ϵ
qg
Q ϵ

mg

M )jg−1
)
pp(g),

(56)
where ϵL, ϵΠ, ϵQ, and ϵM are the current inlier
ratios of line intersections, and point, plane and
line correspondences, respectively; lg, pg, qg, and
mg are the minimal sets of each feature (presented
in the same order as the inlier ratios); jg is the
number of RANSAC iterations where solver g was
selected; and pp(g) is the solver prior.

The Hybrid RANSAC in each iteration selects
a solver g with a sampling probability p(g). Then,
the minimal sets of each feature are chosen ran-
domly. Finally, solver g is run. For each solution,
the number of inliers of each feature is computed.

For point correspondences, the metric used was
the geometric distance in (3). A point correspon-
dences is consider to be an inlier if dQi

< δQ,
with δQ being the point inlier threshold. For
planes, we used the geometric constraint in (4).
If dΠi

< δΠ, the correspondence is considered
to be an inlier, with δΠ being the plane inlier
threshold. The metric for line correspondences is
the geometric constraint in (5), and δM is the
line correspondence inlier threshold. Finally, for
line intersections, the metric used was (2). The
total score (number of inliers) of each solution is
given by a weighted sum of the number of inliers
of each feature. Each feature’s weight is related
to the amount of information it provides. Recall
that a point and plane correspondences allow to
fix three degrees of freedom each, a line corre-
spondence restricts four, and a line intersection
allows to solve for a single degree of freedom. If
the model’s score is higher than the current best,
the model and the inlier ratios are updated.

The stopping condition is defined as the num-
ber of iterations we need to perform to obtain a
good solution with probability p. This condition
is defined for each solver since it depends on the
minimal set and the inlier ratios. The maximum
number iterations of each solver g is given as

γ(g) = max( log(1−p)
log(1−ϵlgL ϵ

pg
Π ϵ

qg
Q ϵ

mg
M )

, ν). (57)

The probability p was set to 0.99 in the experi-
mental results. Notice that, in the presence of a
high percentage of outliers, the inlier ratios are
low and thus can lead the maximum number of
iterations per solver, i.e., γ(g) to be high. To pre-
vent the RANSAC loop from running for a long
time, we introduce an upper bound to the maxi-
mum iterations of RANSAC denoted by ν. Similar
to (56), the true inlier ratios are unknown. Thus
the ratios used correspond to the current best
model. When a new best model is found, the max-
imum number of iterations is also updated using
(57). The Hybrid RANSAC is stopped as soon as
a solver hits the maximum iterations to prevent
higher runtimes.
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Algorithm 2 AM algorithm for 3D registration
refinement
Input: Initial guesses for R and t
Data: Feature correspondences/intersections

1: t0 ← initial guess; ▷ Sets an initial guess for the
translation

2: R0 ← initial guess; ▷ Sets an initial guess for the
rotation

3: δ ← 1 ▷ Defines an initial value for the error
4: k ← 1 ▷ Variable identifying the iterations
5: τ ← tol ▷ Sets the limit tolerance
6: kmax ← max iter ▷ Maximum # iterations
7: while δ > τ and k < kmax do
8: Rk ← argminX∈SO(3)f (X, tk−1) ▷ New rotation

9: tk ← argminx∈R3f (Rk,x) ▷ New translation

10: δ = ∥f (Rk, tk)− f (Rk−1, tk−1) ∥ ▷ Updates error
11: k = k + 1 ▷ Adds one iteration
12: end while
13: R = Rk and t = tk ▷ Sets the output estimation

Algorithm 3 Solver for the rotation matrix.
Although g(R) depends on the translation, this
variable remains constant during the algorithm,
so it is omitted. ∇g (R) stands for the calculated
Euclidean gradient of the objective function.

Input: Initial guesses for R and t
Data: Feature correspondences/intersections

1: X0 ∈ SO(3)← initial guess;
2: µ1 ← 1 ▷ Initial deviation angle in the SO(3)
3: δ ← 1 ▷ Sets an initial value for the error
4: τ ← tol ▷ Sets a limit for the tolerance
5: k ← 0 ▷ Initiates the number of iterations
6: while δ > τ do ▷ Optimization cycle

7: Zk ← ∇g(Xk)X
T
k −Xk∇g(Xk)

T ▷ Gradient

8: zk ← 0.5 trace(ZkZ
T
k ) ▷ Rate of rotation step

9: Pk ← I + sin (µk)Z
T
k + (1− cos (µk))

(
ZT

k

)2
▷ Step

10: Qk ← PkPk ▷ Initial hypothesis
11: while g(Xk)− g(QkXk) ≥ µkzk do ▷ Updates
12: Pk ← Qk ▷ Updates iterative step
13: Qk ← PkPk ▷ Computes new hypothesis
14: µk ← 2µk ▷ Updates step
15: end while
16: while g(Xk)− g(QkXk) < 0.5µkzk do ▷ Updates step

17: Pk ← I + sin (µk)Z
T
k + (1− cos (µk))

(
ZT

k

)2
▷

Step
18: µk ← 0.5µk ▷ Updates rotation angle
19: end while
20: Xk+1 ← PkXk ▷ Computes new estimate
21: δ ← ∥Xk+1 −Xk∥frob ▷ Sets new error
22: k ← k + 1 ▷ Updates iterative counter
23: end while
24: R← Xk ▷ Returns best estimate

7 Alternating Minimization
for Registration Refinement

Although it sometimes obtains a good enough esti-
mate, RANSAC’s main goal is not to estimate an
accurate solution. The main goal of a RANSAC is
to reject the feature outliers by finding the model
which gathers the most consensus, i.e., with higher

Algorithm 4 Solver for the translation vector.
h (t) and ∇h (t) represent the objective func-
tion and calculated gradient to the translation’s
elements
Input: Initial guesses for R and t
Data: Feature correspondences/intersections

1: x0 ∈ R3 ← initial guess
2: δ ← 1 ▷ Initial value for the error
3: α← step ▷ Chooses a step
4: τ ← tol ▷ Sets a limit for the tolerance
5: k ← 0 ▷ Initiates the number of iterations
6: while δ > τ do ▷ Optimization cycle
7: xk+1 ← xk − α ∇h (xk) ▷ Updates the guess

8: α =
(xk+1−xk)

T (∇h(xk+1)−∇h(xk))

∥∇h(xk+1)−∇h(xk)∥2
▷ Updates α

9: if h (xk+1) > h (xk) then ▷ Checks if value increased
10: break ▷ If it is, stop the cycle
11: end if
12: δ ← ∥h (xk+1)− h (xk)∥frob ▷ Updates the error
13: k ← k + 1 ▷ Updates the iterative counter
14: end while
15: t← xk; ▷ Returns the best estimate

number of inliers, and get a good first guess for the
pose estimation. Since the model is obtained with
a small fraction of all inliers (minimal set), the
model may not be the optimal one. In this section,
we propose a refinement method for improving
the solution obtained by the Hybrid RANSAC
of Sec. 6. The refinement consists of minimiz-
ing a cost function applied to only the inliers
found by the Hybrid RANSAC. The next sub-
sections present an overview of the optimization
framework, the cost functions and their respective
gradients.

7.1 Proposed refinement

The refinement scheme we exploit uses the
POSEAMM framework proposed in the group’s
previous work, [88]. This framework allows solving
pose estimation problems by alternating between
two solvers, one for rotation and one for transla-
tion. The detailed algorithm is shown in Alg. 2.
The main idea is to fix the translation at each iter-
ation and solve for the rotation first, then fix the
newly estimated rotation and solve for the transla-
tion. Formally, given an objective function f(R, t),
with the goal of finding R and t that minimizes
f(R, t), the kth iteration will find Rk and tk by
solving the two following problems in a row

Rk = argmin
R∈SO(3)

f (R, tk−1) , (58)

tk = argmin
t∈R3

f (Rk, t) . (59)
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This process is repeated until the decrease in the
cost function is smaller than a given tolerance or
until a maximum number of iterations is reached.
To have a general framework for pose problems,
the only thing missing is to derive solvers for the
problems in (58) and (59). In fact, as noted in
[88], all pose estimators have some properties that
we can use here. Namely, we always find a func-
tion that depends only on g(R) = f (R, tk−1),
which makes (58) an optimization problem in the
rotation matrix manifold, and h(t) = f (Rk, t),
turning (59) a simple optimization problem in a
R3 space. In [88], we derive algorithms of the
steepest descent type for both problems in Alg. 2,
namely Algs. 3 and 4. The POSEAMM frame-
work is quite general and proved useful in many
pose estimation problems. To exploit this frame-
work in our line intersection constraints, we only
need to define a cost function and its gradients
with respect to the rotation and translation, i.e.
g(R), h(t),∇g(R), and∇h(t). Notice that∇g(R),
and ∇h(t) are a matrix and a vector, respectively.
Below, we define these functions and respective
gradients for each considered type of feature.

7.2 Cost functions

We start our derivations by getting the cost func-
tions for each feature type, point, line, plane
match, and line intersection. To simplify the cal-
culations, i.e., avoid going through all the data at
each iteration, we fix all the coefficients that only
depend on the data and model the problem with
matrix polynomial equations with rotation and
translation parameters as unknowns. This turned
out to be a simple process, with high compu-
tational efficiency gains given the nature of the
Algs. 3 and 4.

The full cost function in the alternating mini-
mization is

f(R, t) = η1fQ(R, t) + η2fΠ(R, t)+

η3fM(R, t) + η4fL(R, t), (60)

where ηi with i = 1, 2, 3, 4 are the weights of each
cost function associated with each feature type.
Subscripts Q, Π, M, and L are used to distinguish
the objective functions for point, plane, and line
matches, and line intersections respectively.

Defining objective functions g(R) and h(t)
from f(R, t) by fixing t and R respectively, the

gradients with respect to the rotation matrix and
the translation vector are

∇g(R) = η1∇gQ(R) + η2∇gΠ(R)+

η3gM(R) + η4gL(R), (61)

and

∇h(t) = η1∇hQ(t) + η2∇hΠ(t)+

η3hM(t) + η4hL(t). (62)

Next, we present the derivation of each cost func-
tions and their respective gradients with respect
to the rotation matrix and the translation vector.

Point matches:

The cost function used for point correspondences
is the square of (3), summed for all inlier point
correspondences, which is obtained as

fQ(R, t) =

nQ∑
i=1

∥Rqi + t− q′i∥2, (63)

where nQ is the number of elements in Q. For
simplicity, we use Q here also to denote the set of
inlier point correspondences. By expanding (63)
and writing it in matrix form, we have

fQ(R, t) = rTMQ,1r+ nQt
T t+

2tTMQ,2r− 2mT
Q,3r− 2mT

Q,4t+mQ,5, (64)

where

MQ,1 =

nQ∑
i=1

(
qT
i ⊗ I3

)T (
qT
i ⊗ I3

)
(65)

MQ,2 =

Q∑
i=1

qT
i ⊗ I3 (66)

mQ,3 =

nQ∑
i=1

qi ⊗ q′i (67)

mQ,4 =

nQ∑
i=1

q′i (68)

mQ,5 =

nQ∑
i=1

q′i
T
q′i. (69)

and r = vec(R). Objective functions gQ(R) and
hQ(t) are derived directly from fQ(R, t).
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Now computing the gradients of (64) with
respect to R and t, using matrix computations,
we obtain

∇gQ(R) = 2MQ,1r+ 2MT
Q,2t− 2mQ,3, (70)

and

∇hQ(t) = 2t+ 2MQ,2r− 2mQ,4, (71)

respectively.

Plane correspondences:

For plane correspondences the cost function used
was the square of (4), summed for all inlier planes
set (here denoted as Π), it can be written as

fΠ(R, t) =

nΠ∑
i=1

[
1

3

3∑
j=1

∥(Rqj + t)Tπ′i + π̃′i∥2
]
,

(72)
where nΠ is the number of elements of Π. Again
expanding and writing this equation matrix form,
we obtain

fΠ(R, t) = rTMΠ,1r+ tTMΠ,2t+

2

3
tTMΠ,3r+

2

3
mT

Π,4r+ 2mT
Π,5t+mΠ,6, (73)

where

MΠ,1 =

nΠ∑
i=1

(qT
1 ⊗ π

′T
i )T (qT

1 ⊗ π
′T
i )+

(qT
2 ⊗ π

′T
i )T (qT

2 ⊗ π
′T
i )+

(qT
3 ⊗ π

′T
i )T (qT

3 ⊗ π
′T
i ) (74)

MΠ,2 =

nΠ∑
i=1

π′iπ
′T
i (75)

MΠ,3 =

nΠ∑
i=1

(
3∑

j=1

qj

)T

⊗ (π′iπ
′T
i ) (76)

mΠ,4 =

nΠ∑
i=1

(
3∑

j=1

qj

)
⊗ (π̃′iπ

′
i) (77)

mΠ,5 =

nΠ∑
i=1

π̃′iπ
′
i (78)

mΠ,6 =

nΠ∑
i=1

π̃′iπ̃
′
i. (79)

Now, taking the matrix derivations, the gradi-
ents ∇gΠ(R) and ∇gΠ(t) are given by

∇gΠ(R) = 2MΠ,1r+
2

3
MΠ,3t+

2

3
mΠ,4, (80)

and

∇hΠ(t) = 2MΠ,2t+
2

3
MΠ,3r+ 2mΠ,5. (81)

Line matches:

The cost function of line correspondences is
defined as the mean of the distance of two points
of the line in the first frame to the correspond-
ing line in the second (target) frame. See (5). The
function is given as

fM(R, t) =
1

2

nM∑
i=0

∥(q′li −Rq1,li + t)× l
′
i∥2+

∥(q′li −Rq2,li + t)× l
′
i∥2, (82)

where q′li is a point in the corresponding line in
the target frame, which can be obtained from the
Plücker coordinates with (16), ∥li∥ = 1, and nM
is the number of elements in M. Expanding this
equation and writing it in matrix form yields

fM(R, t) = rTMM,1r+ tTMM,2t+

tTMM,3r+mT
M,4r+ 2mT

M,5t+mM,6, (83)

where

MM,1 =

nM∑
i=0

(qT
1,li ⊗ [li]x)

T (qT
1,li ⊗ [li]x)+

(qT
2,li ⊗ [li]x)

T (qT
2,li ⊗ [li]x) (84)

MM,2 =

nM∑
i=0

[li]x[li]x (85)

MM,3 =

nM∑
i=0

(q1,li + q2,li)
T ⊗ [li]x[li]x (86)

mM,4 =

nM∑
i=0

(q1,li + q2,li)⊗
(
q

′T
li [li]x[li]x

)
(87)

mM,5 =

nM∑
i=0

[li]x[li]xq
′
li (88)
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mM,6 =

nM∑
i=0

q
′T
li [li]x[li]xq

′
li . (89)

Again, by considering matrix calculus, we get
the gradients by derivation of (83) as

∇gM(R) = 2MM,1r+MM,3t+mM,4, (90)

and

∇hM(t) = MM,3r+ 2MM,2t+ 2mM,5. (91)

Line intersections:

The geometric distance between two intersecting
lines cannot be computed trivially like the dis-
tances in the previous subsections. Then, in this
case, we use an algebraic distance to make sure
our solver is fast. The cost function for line inter-
sections used is the one presented in [88] for the
Generalized Relative Pose Problem, with deriva-
tions in the paper’s supplementary materials.

8 Experiments

This section presents the results of our method.
Section 8.1 gives the numerical stability of each
solver in Tab. 1, namely the solvers’ runtime,
number of solutions, and numerical stability. The
entire pipeline, i.e., the Hybrid RANSAC using
different combinations of the minimal solvers,
followed by the our refinement technique is eval-
uated in two real-world datasets, in Sec. 8.2. For
both experiments we consider the following error
metrics.

Error metrics:

Rotation and translation errors, eR(R) and et(t),
respectively, are set with the following metrics

eR (R) = acos

(
trace(R−1RGT)−1

2

)
(92)

et (t) = ∥t− tGT∥, (93)

where RGT and tGT are the ground-truth rotation
and translation respectively.

8.1 Minimal solvers stability

Being one of the paper’s main contributions, we
start the experiments with the stability analysis of

Figure 11: Solvers’ Numerical Analysis:
Cumulative density plots of translation and rota-
tion errors of the solvers presented in this paper,
compared to the 6L and 3Q.

minimal solvers. The solvers in Tab. 1 were imple-
mented in C++. Each was evaluated 106 times
on synthetic data without noise, and the runtine,
rotation error and translation error are computed.
For solvers with multiple solutions only the cor-
rect one was evaluated. In these conditions, the
solver stability corresponds to the ability of the
solver to yield the correct solution, given differ-
ent sets of noiseless data. Furthermore, noiseless
data allows to evaluate the solvers’ runtime and
the number of real solutions. Both the solver run-
time and its number of solutions affect the total
runtime of the Hybrid RANSAC in Sec. 6, since
each of them must be evaluated multiple times for
computing the inliers, which is a time-consuming
step, especially for large amounts of data.

Data generation:

First, a rigid transformation (rotation and trans-
lation) is selected randomly. The rotation is
obtained by sampling three Euler angles and
converting them into matrix notation. The trans-
lation was obtained by sampling each axis from
−10 to 10 units. The features are created from
points sampled from a 40 unit side cube. Point
correspondences are obtained directly. Lines and
planes are obtained from two and three points,
respectively.

Numerical analysis:

The rotation and translation errors of all solvers
in Tab. 1 are presented in Fig. 11. The plots show
the cumulative density of the errors, i.e., the area
under the curve gives us the probability of the
solver yielding a solution with an error smaller
than some value. For example, the probability of
solver 2M yielding an error under 10−2 is approx-
imately one. As far as stability is concerned, the
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Solver
Runtime [µs] #Solutions

Mean Median Mean Median

6L[21] 2757.8 2747.5 20.4 20
3Q[20] 0.72 0.71 2 2

3L1Q 26.83 24.56 5.46 6
1L2Q 1.20 1.20 2 2
3L1P 5.07 5.14 3.10 4
1L2P 0.99 0.99 1 1
1L1Q1P 1.45 1.45 2 2
2L1M 2.24 2.27 3.53 4
1M1P 1.54 1.53 1 1
1M1Q 1.29 1.29 1 1
2M 1.64 1.63 1 1

Table 2: Solvers’ Runtime: Mean and median
runtime in microseconds, and number of real val-
ued solutions for each solver in Tab. 1 for 106

runs.

faster the curve reaches one, the more stable the
solver is. For both errors, the same behavior is
observed. The least stable solver is 6L, which is
expected since it requires solving high degree poly-
nomial equations7. It is followed by the solvers
that use Ferrari’s formula (3L1P and 2L1M). The
solver 3L1Q is the fourth-best in terms of stability.
Even though it has up to eight solutions – while
3L1P and 2L1M have four – it is more stable due
to the efficient solver used to solve the eight-degree
polynomial. The remaining solvers present similar
performance.

Runtimes:

Table 2 shows the mean and median for the
runtimes and number of real valued solutions of
each solver. As expected, the solvers with higher
runtimes are the ones that yield more solutions,
particularly the solvers 6L and 3L1Q, because
they are associated with the higher degree poly-
nomial equations that need to be solved. The
remaining solvers output four or fewer solutions
and can be computed in closed-form.

7The solver was derived using the Gröbner basis, which
requires performing Gauss-Jordan elimination on big matrices
as shown in [21]. This process can be numerically unstable,
especially if the matrices are ill-conditioned [95].

8.2 Results on real data

We use two RGB-D datasets, SUN3D [23], and
TUM RGB-D [10]. For the methods tests, we con-
sider the following baselines and variations of our
two-step approach.

Methods:

We use the following baselines for comparison:

– ICP: Iterative Closest Point; [25];

– GR: Global Registration [34];

– FGR: Fast Global Registration [37];

– TEASER++: Fast and Certifiable Point
Cloud Registration [96]; and

– DGR: Deep Global Registration [70].

For the method proposed in this work, we con-
sidered several alternatives. Namely, we consider
RANSAC with the following solvers:

– RANSAC 6L: six intersecting lines;

– RANSAC 3Q: three corresponding points;

– RANSAC Corrs: feature matches only;

– RANSAC Ours: solvers in Sec. 5; and

– RANSAC All: all solvers in Tab. 1.

All the above-listed methods are tested with and
without the refinement technique proposed in
Sec. 7. We include Ref after the methods listed
above to tell that the refinement followed it. For
example, the method RANSAC All Ref denotes
the RANSAC All followed by the refinement pro-
posed in Sec. 7. Notice that, only the constraints
associated with point and line matches were used
in the refinement step.

We implemented the RANSAC loop in C++.
Regarding the AM refinement, we use the code
in [88], also implemented in C++. For the base-
lines, the available C++ implementations were
used: ICP, GR, and FGR from Open3D [97]. For
TEASER++, the C++ implementation released
by the authors8 was used. For DGR, the python
code9 and weights10 provided by the authors were
used. We tested the Super4PCS from OpenGR in
[98], but the results were significantly worse than
GR and FGR, as shown in [90]. We decided to
omit these from the tables below.

8https://github.com/MIT-SPARK/TEASER-plusplus
9https://github.com/chrischoy/DeepGlobalRegistration
10We use the version trained on 3DMatch
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Method
SUN Sequences [23] TUM Sequences [10]

#1 #2 #3 #4 #5 #6 #7 Avg #1 #2 #3 #4 #5 #6 #7 Avg

Rotation Errors [deg]: Baselines
ICP[25] 0.95 3.35 4.11 2.73 4.41 2.10 1.20 2.69 8.22 1.17 1.74 5.71 3.40 0.75 7.24 4.03
GR[34] 1.20 1.44 1.92 1.54 1.14 1.14 1.45 1.40 2.55 1.36 2.01 3.35 3.01 1.14 2.92 2.33
FGR[37] 1.05 1.81 1.26 1.74 1.64 1.16 1.32 1.43 2.03 1.03 1.63 2.84 2.77 0.70 4.31 2.19
TEASER++[96] 1.60 2.26 2.07 2.84 2.21 2.13 2.05 2.17 2.22 1.14 1.64 2.23 3.40 0.88 5.47 2.43
DGR[70] — — — — — – – — 1.86 0.88 1.43 2.18 2.91 0.66 1.78 1.67

Rotation Errors [deg]: Ours without Refinement
RANSAC 6L 0.79 1.17 1.46 1.48 1.30 1.18 0.86 1.18 1.78 1.09 1.54 2.09 2.83 0.84 1.97 1.73
RANSAC 3Q 1.10 1.76 1.97 1.68 1.85 1.63 1.24 1.60 2.34 1.41 1.90 2.89 4.36 1.10 3.47 2.50
RANSAC Corrs 1.13 1.81 2.05 1.65 1.75 1.64 1.15 1.60 2.50 1.46 1.84 3.38 3.25 1.06 3.96 2.49
RANSAC Ours 0.92 1.36 1.64 1.33 1.29 1.34 1.08 1.28 1.83 1.14 1.63 2.38 2.59 0.84 2.22 1.80
RANSAC All 0.92 1.34 1.61 1.31 1.53 1.20 0.94 1.26 1.84 1.10 1.46 2.29 2.90 0.91 2.03 1.79

Rotation Errors [deg]: Ours with Refinement
RANSAC 6L Ref 0.54 1.00 1.01 1.21 1.07 1.03 0.81 0.95 1.40 0.62 1.15 1.70 2.09 0.54 1.62 1.30
RANSAC 3Q Ref 0.63 1.53 1.23 1.37 1.61 1.33 0.96 1.24 1.59 0.65 1.36 2.28 3.25 0.64 3.61 1.91
RANSAC Corrs Ref 0.64 1.61 1.28 1.29 1.49 1.37 0.95 1.23 1.77 0.68 1.39 2.25 3.11 0.67 3.02 1.84
RANSAC Ours Ref 0.57 1.01 1.11 1.02 1.02 1.06 0.77 0.94 1.46 0.63 1.03 1.85 2.24 0.61 2.00 1.40
RANSAC All Ref 0.59 1.08 1.09 1.06 1.24 1.10 0.82 1.00 1.39 0.66 0.96 1.80 1.95 0.64 1.89 1.33

Translation Errors [cm]: Baselines
ICP[25] 4.14 15.45 10.0 19.6 10.7 11.5 7.63 11.29 13.79 3.19 4.96 11.52 8.00 1.46 18.63 8.79
GR[34] 4.79 6.73 6.15 7.87 6.45 5.93 5.92 6.26 5.51 3.78 3.77 5.18 6.84 3.39 13.33 5.97
FGR[37] 3.15 6.95 3.51 9.75 6.87 4.78 4.51 5.65 3.60 2.41 2.23 4.34 5.19 1.43 14.62 4.83
TEASER++[96] 4.63 9.41 4.70 17.70 9.02 7.07 7.01 8.51 3.28 2.99 1.84 3.15 6.22 1.95 18.97 5.49
DGR[70] — — — — — — — — 3.15 2.05 2.12 3.69 6.02 1.48 10.19 4.10

Translation Errors [cm]: Ours without Refinement
RANSAC 6L 3.13 5.17 3.42 7.16 6.49 4.87 3.38 4.80 3.47 2.53 2.39 3.25 6.87 3.07 8.88 4.35
RANSAC 3Q 3.62 7.52 4.83 7.69 8.14 6.35 5.20 6.19 4.71 3.37 3.21 4.99 8.41 3.61 12.16 5.78
RANSAC Corrs 3.66 7.57 4.70 7.60 8.31 6.20 5.04 5.24 4.61 3.42 3.31 4.64 7.59 3.59 14.51 5.95
RANSAC Ours 3.38 6.27 4.28 6.46 7.58 6.34 4.49 5.54 3.67 2.66 2.13 3.19 6.41 2.58 9.24 4.27
RANSAC All 3.24 5.81 3.96 6.33 8.55 5.53 4.03 5.35 3.85 2.65 2.07 3.00 6.74 2.78 8.47 4.22

Translation Errors [cm]: Our with Refinement
RANSAC 6L Ref 2.16 5.39 2.69 6.27 5.49 4.31 3.20 4.24 3.30 1.42 2.14 3.25 5.57 1.87 8.11 3.67
RANSAC 3Q Ref 2.46 7.41 3.13 6.92 7.58 5.28 4.09 5.27 3.62 1.49 2.44 3.56 7.33 2.04 11.91 4.63
RANSAC Corrs Ref 2.40 7.30 3.25 6.71 7.17 5.73 4.10 5.24 3.15 1.67 2.92 4.07 7.58 2.17 14.26 5.12
RANSAC Ours Ref 2.23 5.93 3.03 5.89 6.16 4.63 3.70 4.51 3.31 1.52 1.70 3.04 5.34 2.03 9.25 3.74
RANSAC All Ref 2.31 5.62 2.88 5.90 6.84 4.47 3.41 4.49 3.15 1.42 1.64 2.60 4.55 2.02 7.70 3.30

Table 3: Results: Median rotation and translation errors of our method against the baselines, with and
without refinement. Two datasets are used, the SUN3D and TUM RGB-D. Sequences #1 to #7 denote
the mit 32, brown cogsci, hotel nips, brown cs 3, harvard c5, mit 76 studyroom, and mit lab h

sequences in the SUN3D data-set, respectively. TUM sequences #1 to #7 denote the fr1 room, fr2 desk,
fr1 xyz, fr1 desk, fr3 cabinet, fr3 sitting, and fr2 pioneer, respectively. Purple and teal colors
indicate the best and second best results in both the translation and rotation errors. Sequences in the
training set of DGR were not tested and are indicated by —.

Setup:

To obtain the features required by our solvers
in Tab. 1, we exploit the RGB image to get
line correspondences. The method used is based
on Line-Junction-Line Structure Descriptor and
Local Homography Estimation presented in [99,

100]. For each pair of correspondences, we com-
pute their respective 3D counterparts in the
respective camera frame. Then, we check for line
intersections in each frame. Let us consider two
lines in the first frame, if they intersect, i.e., their
distance is smaller than a threshold (7[mm]), and
their correspondences in the second frame also
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intersect, we define a correspondence of intersect-
ing lines. Notice that, our method does not require
line intersection points to be present in either of
the point-clouds. Nevertheless, we search for cor-
responding line intersections, since from those we
can compute all the other features. After obtain-
ing the line intersection correspondences, we can
obtain point matches by computing the intersec-
tion point of the lines in both frames. Since the
lines do not intersect exactly, we use the mid-
dle point of the closest points of each line to the
other. Finally, plane correspondences are obtained
by fitting a plane to the 3D points in each line.

Both datasets were acquired with a 30 frame-
per-second RGB-D camera, with small displace-
ments between consecutive frames, which, as
observed in practice, leads to the identity matrix
providing smaller errors than the outputs of
each method. Therefore, comparing the different
approaches using such a small baseline will not
assess the benefits of using one over the other.
To prevent configurations in which the identity
matrix provides a better solution than the esti-
mated ones, we assume pairs with 10 frames
apart. The Hybrid RANSAC parameters for both
datasets were δL = 9.6 × 10−5, δΠ = 4.5 × 10−4,
δQ = 1.3× 10−3, δM = 4.2× 10−4. These param-
eters were obtained by running the tool presented
in [101] on an additional sequence, which was not
included in Tab. 3. The PoseAMM parameters
used were α = 0.05, τ = 1 × 10−9, η1 = 0.43,
η2 = 0, η3 = 0.57, and η4 = 0 (see Alg. 4 and
(60)).

Results:

For the results, we compare the different versions
of our method with the baselines using 14 com-
plete sequences of the two real-world datasets,
SUN3D and TUM RGB-D. We compute the
median of the pairwise rotation and translation
errors for all the method and sequences. Table 3
shows these results.

Another relevant evaluation criterion for
assessing the merits of 3D registration algorithms
is the computational time. Then, we take pairs
of scans in three sequences of each dataset used.
In addition to the accuracy, we compute the
computational time obtained for estimating the
transformations that align the scans. Results are
shown in Fig. 12. Notice that, these computational

Figure 12: Run time of each method in Tab. 3 in
milliseconds. The runtimes considered were from
the fr1 room, fr2 desk and fr1 xyz sequences
of the TUM RGB-D data-set, and the mit 32,
brown cogsci and mit 76 studyroom from the
SUN3D data-set. Given the high runtime of the
RANSAC 6L, RANSAC 6L Ref and TEASER++,
the median is not displayed in the figure. The
median runtime of those methods were 1653.5,
1677.5 and 4481.5 [ms], respectively.

times correspond to running the method used in
Tab. 3, i.e., no change in the hyperparameters was
done.

To conclude these results, we show some val-
idation plots. We take two sequences of each
dataset and run the algorithms for 30 scans. All
three baselines were used. Concerning our two-
step method, given limitations in space and from
Tab. 3 and Fig. 12, we only utilize alternatives
RANSAC Ours and the RANSAC Ours Ref (i.e.,
with and without refinement). Figure 13 shows
the final 3D registration results compared to the
ground truth. Specifically, we show a single point
cloud obtained by transforming all the 30 scans
to the frame of the first one using the estimated
transformations. Since 3D scans are starting to
be the primary perception sensor for agent local-
ization, we also want to evaluate the obtained
trajectory of our method against the ground truth
and the baselines ones. Therefore, in Fig. 14 we
compare the obtained 3D trajectories of each of
the methods for sequences of 60 scans. The point
clouds shown are obtained from the ground truth
pairwise transformations.
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Figure 13: Results of the registration of 30 point clouds. We use mit 32, brown cogsci sequences of
the SUN3D dataset and fr2 desk, fr1 xyz sequences of the TUM data-set [10]. Recall that each point
cloud is sampled sample at 3 frames per second, i.e., each pair is 10 frames apart. The results consist of
applying the methods directly without transformation averaging.

SUN Sequences [23] TUM Sequences [10]

freiburg1 desk freiburg2 desk mit 32 brown cogsci

Figure 14: Lines describing the estimated trajectories for the camera motion from RANSAC Ours,
RASNAC Ours Ref, FGR. The ground-truth for comparison is shown green. We are plotting a sequence
of up to 60 camera positions estimates; the 3D registration of the point cloud was obtained with the
ground-truth localization. Sometimes, when the translation is small, FGR fails in estimating the pose.
This happens a couple of times in each scan. We replaced these failing estimates with the ground-truth
ones to have a continuous trajectory. Notice again that we are only showing results by integrating pairwise
estimates.

Discussion:

We end these experiments by discussing the
results. We start with accuracy shown in Tab. 3
and with the motivation for the use of line inter-
section constraints. Comparing the RANSAC 6L

approach to the baselines, we see that the pro-
posed method has lower rotation and translation
errors. Although it is close, there are only two
sequences in which FGR outperforms RANSAC
6L. The average performance in the TUM RGB-
D dataset is also better than DGR’s. Notice



Fast and Accurate 3D Registration from Line Intersections Constraints 25

that our method is motivated/requires a predom-
inantly manufactured environment that may not
always be the case. On the other hand, if we
look at the run times in Fig. 12, we can conclude
that this RANSAC 6L approach is computational
deficient, limiting its applications to real-time sce-
narios. With this, we can answer one of the paper’s
research questions. Line intersection constraints
help get a more accurate 3D registration in a
human-made environment. See research question
number 1.

Although the 6L solver is able to get good
results, the fact that it is slow limits the appli-
cations and motivates the second researcher ques-
tions; the other predominant constraints in 3D line
intersections and how can they be useful in 3D reg-
istration. See research question number 2. From
Tab. 3, we see that if we only take the solvers
derived in this paper that combine line intersec-
tions with plane, point, and line matches, the
accuracy is still very competitive to RANSAC 6L.
In some sequences, RANSAC Ours outperforms
RANSAC 6L. RANSAC Ours is better than the
baselines in six out of the 14 sequences and better
than RANSAC 6L in six sequences. The main gain
is, however, computational efficiency. Figure 12
shows that RANSAC Ours reduces the computa-
tion time significantly compared to RANSAC 6L,
it is slightly slower than FGR, but significantly
faster than DGR. It can therefore meet real-time
requirements of applications such as SLAM and
SfM11. Other combinations of solvers were consid-
ered in the tests, showing additional advantages
of using different solvers in RANSAC concerning
accuracy vs. computational time.

Our two-step method is a coarse and fine
estimation approach. While the coarse estimate
already provides good results, from Tab. 3 we
see that our AM refinement approach, in gen-
eral, is able to improve the accuracy significantly.
For example, RANSAC Ours Ref is outperformed
by the baselines in only two of the 14 sequences.
More critical than that12, when our two-step
approach using line intersections is better than the
baselines, the refinement can improve the results
significantly with respect to the coarse approach

11We note that comparisons in this paper are focusing only
on the alignment, not in the feature extraction and matching

12Although we never lose much when compared to the
baselines, we know that not every sequence have the perfect
conditions for the line intersection constraints.

obtained from RANSAC. For example, when com-
pared to the baselines, we have improvements of
around 48% in rotation and 31% in translation for
the TUM sequence #7; 42% in rotation and 24%
in translation in SUN sequence #1. When looking
to Fig. 12, we see that the proposed refinement
technique has a minor impact on the computation
time. The conclusions outlined for our strategy
without refinement are kept for our approach with
refinement. For example, RANSAC Ours Ref is
only slightly slower than FGR, and about three
times faster than DGR.

With respect to visualization, from Fig. 13
we can see that FGR produces good 3D registra-
tion results. However, in all the cases shown, our
strategy performs even better in the details, both
with and without refinement. Note, for example,
the teddy bear head in fr2 desk of our solu-
tion compared to FGR. Figure 14 shows that the
trajectories obtained from our methods obtained
the best trajectories and, therefore, the best 3D
registration.

9 Conclusion

This paper aims to assess the use of 3D line
intersection constraints in 3D registration. This
is addressed utilizing a two-step technique. First,
we run a robust estimator, namely RANSAC. For
that purpose, we proposed nine novel minimal
solvers with a set of line intersection constraints
and developed a hybrid RANSAC that can use
all the solvers for that purpose. The second step
of our method runs a non-linear optimization
solver that takes all the inliers from step one
and refines the solution. For this, we derive an
alternative minimization method that alternates
between finding the rotation and then the trans-
lation at each iteration step. Compared to our
previous work, this paper introduces four new
minimal solvers (out of nine total) that exploit
line matches. Furthermore, this work replaced the
non-linear refinement, which consisted of using the
Levenberg-Marquardt, by the alternate minimiza-
tion method described above.

Results with real data show that line inter-
sections improve the 3D registration accuracy.
Even before running the refinement, in general,
our coarse estimate from RANSAC already per-
forms on par with the baselines. On the other
hand, the improvements made by the non-linear
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refinement are significant, proving that the use
of line intersection constraints improves the accu-
racy of the registration in human-made scenarios
significantly.

For the future, to achieve a complete
SLAM/SfM pipeline, we envision the incorpora-
tion of motion averaging and loop closure tech-
niques that will minimize the accumulated drift
by using multiple 3D scans.
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