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Abstract

Reference governors (RGs) provide an effective method for ensuring safety via constraint enforcement in closed-loop
nonlinear control systems. When the system parameters are uncertain but constant, robust formulations of RGs that
consider only the worst-case effect may be overly conservative and exhibit poor performance. This paper proposes a
parameter-adaptive reference governor (PARG) architecture that is capable of generating safe trajectories in spite of
parameter uncertainties, without being as conservative as robust RGs. The proposed approach employs machine learning
on a combination of off-line simulations and on-line measurements to estimate parameter-robust constraint-admissible
sets (PRCASs) that can be leveraged by the PARG. We illustrate the robust set learning and constraint enforcement
qualities of the PARG using a two-dimensional electromagnetic actuator example, and further demonstrate the potential
of the PARG on a vehicle case study for preventing rollover despite aggressive maneuvering.
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1. Introduction

Reference governors (RGs) are add-on schemes for en-
forcing pointwise-in-time input and output constraints by
modifying the reference input to closed-loop controlled
systems [1]. For ensuring repeated constraint satisfac-
tion, RGs leverage particular invariant sets known as con-
straint admissible sets [2]. Due to their ability of enforcing
constraints without requiring a full re-design, and with a
relatively low runtime computational burden, RGs have
proven useful in multiple application domains; see [3] for
an extensive survey.

In particular, reference governance has been applied to
the management of large-scale water networks [4], missile
guidance [5], and safe handling of vehicles [6], and has been
reported to demonstrated excellent performance. The ma-
jority of the RG literature focuses on the case where the
system dynamics are known, although possibly subject to
set-bounded disturbances, but the design of RGs with un-
certain system dynamics has been gaining attention. Some
recent approaches focus on completely unknown system
dynamics, and hence apply black-box safe learning meth-
ods [7]. While of very general applicability, black-box ap-
proaches often require a significantly larger amount of data
than gray-box approaches that estimate specific unknown
parameters of structurally known models. When the pa-
rameters of the underlying systems are uncertain, robust
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formulations of RG may be applied based on robust set in-
variance [8, 9]. On the other hand, such robust designs are
made to tackle any uncertainty within an admissible set
of uncertain parameters, and as such, if the unknown pa-
rameters are constant, these robust designs may be overly
conservative.

In spite of many real-world applications comprising
piece-wise constant unknown parameters, there are few
designs for RGs tailored specifically to this case. To the
best of our knowledge, the load governor approach [10]
and the neuro-dynamic programming RG [11] are the only
RG formulations in the literature that are capable of han-
dling uncertain parameters. However, both those works
focus on a single system and are not demonstrated to be
general methods for a wide class of methods, which is a
distinction from our work. A major reason for the dearth
of PARG frameworks is that the computation of robust
constraint admissible sets under parameter uncertainty is
difficult (even for linear systems) due to complex set ge-
ometries and inherent non-convexity of PARG optimiza-
tion problems. Although these challenges can be some-
what circumvented by local linearization [10], such an ap-
proximation may still be conservative and requires online
simulation and constraint satisfaction checking of multiple
trajectories for various references and unknown parameter
values, all of which lead to a possibly significant increase
in computational load [12].

Recently proposed sampling-driven supervised machine
learning tools can be exploited to efficiently estimate ro-
bust constraint admissible sets on-line [13] by off-loading
simulation and trajectory generation off-line. However,
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for constructing robust constraint admissible sets, besides
the parameter estimate, the region of the parameter space
where the true parameter lies with high probability is also
needed. For linear systems with unknown parameters,
Kalman filter approaches have been widely reported to
be effective [14, 15, 16]. For general nonlinear systems,
particle filtering provides an effective solution [17] for this
task. Concretely, the state is estimated by predicting state
trajectories via particles and weighing them according to
the likelihood of the measurements: this has also been
extended to parameter estimation [18, 19]. A further ex-
tension to the case of dependency between process and
measurement noise is discussed in [19]. When recursive pa-
rameter estimators are employed, the confidence region of
the parameters is time-varying, and hence the robust con-
straint admissible set needs to be determined by solving
a dynamic supervised learning problem. Specifically, for a
fixed set of samples, the time-varying confidence intervals
result in time-varying labeled/target sets for the learner.
Hence, the learner needs to be updated on-line in order to
provide improved estimates of the robust constraint admis-
sible sets based on the time-varying confidence intervals.

In this paper, we describe a learning-based PARG that
enforces constraints in parameter-uncertain closed-loop sys-
tems. Our proposed PARG leverages sampling-based ap-
proaches to generate features and labels off-line, and uses
these features/labels, along with on-line data used to im-
prove our estimates of the unknown parameters, in order
to iteratively update the robust constraint admissible sets
on-line. Consequently, these updated sets are used to com-
pute feasible reference inputs. For on-line execution of our
PARG, we employ two additional components over a stan-
dard RG. The first is a statistical parameter estimator for
generating confidence intervals around a point estimate of
the unknown parameter. The second is a classifier that dy-
namically learns constraint admissible sets by combining
off-line sampled trajectory data with on-line data provided
by the parameter estimator. In particular, classifiers like
deep neural networks and kernel classifiers exhibit good
approximation properties that can be employed to effi-
ciently represent highly non-convex robust constraint ad-
missible sets for black-box systems using simulations and
systematic sampling, which would be extremely challeng-
ing for analytical methods [20].

While adaptive or learning-based RGs have been con-
sidered in the literature [21, 22, 23], there are some ma-
jor differences with these prior works from our proposed
PARG. In [21], the RG strategy allows violation of con-
straints before a robust constraint-admissible set is com-
puted. Since the application is engine control where allow-
ing constraint violations (e.g., misfires) is not catastrophic,
this is a viable approach for a non-safety-critical appli-
cation. However, our proposed PARG can be designed
to have a small probability of failure with sufficient data.
In [22], an L1 adaptive controller is cascaded to an RG:
this combination is referred to as an ‘adaptive RG’. The
cascade approaches aim to use RGs as a layer of safety

during adaptive control, which is fundamentally different
from our method because we are adapting the RG itself,
not an exogenous component. Finally, in the paper [23],
the authors propose a learning RG, but the fundamental
assumptions are different: the proposed approach is black-
box rather than our grey-box PARG, and relies directly on
output trajectories rather than models. Furthermore, the
approach is deterministic; therefore, they do not utilize
statistical learning.

The key features and novel contributions of our PARG
approach are: (i) combining on-line and off-line learning
enabling the application to general nonlinear systems with
uncertain parameters; (ii) leveraging confidence intervals
around parameter estimates rather than point estimates2

for generating constraint admissible sets; (iii) providing
probabilistic guarantees on the constraint satisfaction of
the closed-loop system under PARG operation.

This paper is an extension of the preliminary study [24].
Novel extensions include: (i) a more detailed description
of the algorithm, (ii) addition of theoretical guarantees of
the components of the PARG algorithm, with extended
and modified proofs and (iii) an extended and improved
application to a detailed case study on vehicle dynamics,
briefly presented in [25]. The rest of the paper is organized
as follows. In Section 2, we provide the notation used in
the ensuing discussion. In Section 3, we motivate the prob-
lem considered in the paper, and describe our proposed
method of solving this problem. In Section 4, we present
the data generation, estimation, and learning algorithms
used in the PARG architecture. Theoretical guarantees
are provided in Section 5 and the potential of the approach
via a simulation example and a vehicle control case study
is demonstrated in Section 6. These examples illustrate
that the robust sets we estimate become less conserva-
tive with on-line learning and availability of more data,
and that our proposed method performs well despite pa-
rameter estimation with model mismatch and piece-wise
constant command inputs. We present our conclusions in
Section 7.

2. Notation

The symbols R, Z, Z+, and N denote the set of reals,
integers, non-negative integers, and natural numbers, re-
spectively. We denote the norm ball of center c and radius
ρ by B(c, ρ) := {x : ∥x− c∥ ≤ ρ}, where unless explicitly
said differently, the 2-norm is used. We denote the trans-
pose of a vector/matrix a by a⊤. Given two vectors a, b we
denote the “stacking” of the vectors by (a, b) = [a⊤ b⊤]⊤.
The diagonal and anti-diagonal of a square m×m matrix
M are denoted by diag(M) and antidiag(M), respectively.
The probability of an event E is denoted by Pr(E); note

2An advantage of using confidence intervals rather than relying
solely on point estimates of the parameter is that the intervals can
exhibit certain properties such as monotonicity that are crucial to
ensure performance guarantees on the PARG.
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that we also abuse notation and use Pr to denote the outer
measure. We denote a normal distribution with mean m
and covariance Σ as N(m,Σ). For sets A and B, the no-
tation A ⊆ B (A ⊂ B) indicates that A is (strictly) con-
tained in B, and |A| denotes the cardinality of A. The
notation grid A describes a grid of samples drawn from a
set A.

3. Motivation

3.1. Problem Statement

We consider the class of parametric discrete-time non-
linear systems

xt+1 = f(xt, vt) + θ⊤g(xt, vt), (1a)

yt = h(xt, vt), (1b)

where t ∈ Z+ denotes the time-index, xt ∈ X ⊂ Rnx is the
measured system state, vt ∈ V ⊂ R is the reference input,
yt ∈ R is the output that should track a desired reference,
and f , g, h are nonlinearities that represent the model and
output dynamics. The vector θ ∈ Θ ⊂ Rnθ models a set of
system parameters. The output yt must satisfy constraints
described by the set Y ⊂ R for each instant of time, that
is, we require

yt ∈ Y for every t ≥ 0. (2)

Assumption 1. The sets X, V, Y and Θ are compact and
known. The sets X, V, and Y contain the origin in their
interiors, and V is convex.

Assumption 1 is fairly mild. Although the classical ref-
erence governor literature does not always require bound-
edness of X, we make this an explicit assumption because
we will use sampling-based methods to characterize robust
constraint admissible sets. In order to determine where the
set needs to be approximated most precisely, the domain
over which the samples are drawn must be known and
bounded. Furthermore, the reference v is assumed to be
scalar, which is the standard formulation for the reference
governor. The results of this manuscript can be extended
almost directly to vector-valued v, which is the case for
vector reference governor and command governor[3].

A common assumption for reference governors is that,
in the absence of constraints, (1) exhibits good tracking
performance, possibly because it models the actual plant
already in closed-loop with a stabilizing controller.

Assumption 2. When Y = R, (1) is asymptotically stable
in X. Furthermore, for any r ∈ V, if vt = rt ≡ r for all
t ≥ 0, then yt → r as t→∞.

The objective of a reference governor is to select vt as
close as possible to rt, while ensuring that (2) is enforced.
In the literature [3], the commonly studied cases are when
θ is known or when it is unknown and constantly vary-
ing within a given range. In this paper, we consider the

case when the parameter vector θ ∈ Θ ⊂ Rnθ is unknown,
but constant or at most piece-wise constant. In many ap-
plications such as industrial motors [26], autonomous ve-
hicles [27], and buildings [28], exact values of the model
parameters are often not known, but they are basically
fixed, or are slowly drifting due to aging or environmen-
tal effects. However, the set Θ is generally known from
experience and statistical data.

Our proposed PARG is given by the control law

vt = Ḡ
(
vt−1, xt, rt, O(Θ̂t)

)
= vt−1 + G

(
vt−1, xt, rt, O(Θ̂t)

)
(rt − vt−1) , (3a)

where Θ̂t ⊂ Θ is a bounded interval of parameter values,
computed by a parameter estimator with the functional
form

Θ̂t = E
(
vt−1, xt, Θ̂t−1

)
, (3b)

and
O(Θ̂t) = Ψ

(
Θ̂t, xt, vt−1

)
, (3c)

is a robust constraint-admissible set (which we define for-
mally in the following subsection) that is estimated using
a machine learning algorithm Ψ by combining data gen-
erated both from offline simulations and online parameter
estimates.

Our objective is to design G, Ψ, and E such that the
closed-loop system (1) with (3) satisfies constraints (2) in
spite of parametric uncertainty and, when possible, tracks
the desired reference rt. A schematic diagram representa-
tion of the proposed PARG architecture is shown in Fig-
ure 1.

3.2. Proposed Solution

Constructing a PARG for the uncertain system (1)
poses two major difficulties. First, parameter estimators
generally converge asymptotically to the true parameters,
implying that the current estimate of the parameter at any
arbitrary finite time t is not necessarily correct, and in
fact, could be quite far from the true value. Thus, design-
ing references by trusting point estimates θ̂t ̸= θt at each
time instant t could result in constraint violations. Second,
model-based analytical methods for estimating parameter-
robust invariant sets on-line for employment in a reference
governor is computationally expensive because the under-
lying constraint admissible invariant sets are typically non-
convex with respect to the parameters; analytical methods
are often limited to simplified dynamics, and commonly
employed for systems with low-dimensional state-spaces.

In order to address the first difficulty, we propose us-
ing parameter estimators that generate not only a point-
estimate θ̂t, but also an interval Θ̂t which contains the true
θ with certainty (e.g., using deterministic interval estima-
tors) or with high probability (e.g., using Bayesian estima-
tors). The advantage of using confidence intervals instead
of point estimates is that they can be made to exhibit
certain useful properties such as non-expansivity as more
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Figure 1: Block diagram representation of the parameter-adaptive reference governor (PARG) added-on to the unconstrained system.

measured data becomes available on-line. Unlike point
estimates, which can be time-varying and unpredictable,
confidence intervals can be designed to exhibit more pre-
dictable dynamics, making them effective for constraint
enforcement. Unfortunately, replacing a point-estimate
with a confidence interval exacerbates the second difficulty
as one now needs to estimate constraint-admissible or in-
variant sets that are robust to not only to parameter val-
ues, but ranges of parameter values. One of the key contri-
butions of this paper is to estimate these parameter-robust
constraint-admissible sets (PRCAS) in a computationally
efficient manner by exploiting sampling and classification.
Let H = {(x, v) ∈ X × V : h(x, v) ∈ Y} denote the set of
state and reference inputs for which the output y satisfies
the constraint (2).

Definition 1 (PRCAS). The set O(Θ̂) ⊂ H is a parameter-
robust constraint-admissible set for (1) if, for every initial
condition (x, v) ∈ O(Θ̂), when x0 = x and vt = v for all
t ≥ 0, (xt, vt) ∈ H for every θ ∈ Θ̂, for all t > 0.

Since the set O(Θ̂) is invariant, we use the terminology
parameter-robust invariant sets interchangeably.

In order to generate estimates of PRCASs, we will sam-
ple trajectories of the closed-loop system off-line and use
the collected data to construct a dataset for a classifier
that can learn these sets on-line. Such an approximation
of a PRCAS can subsequently be used to evaluate the con-
trol law (3a) by solving at each time instant t the following

optimization problem:

G(vt−1, xt, Θ̂t, rt) := argmin
γt

(vt − rt)2 (4a)

subject to:

(vt, xt) ∈ O(Θ̂t), (4b)

vt = vt−1 + γt(rt − vt−1), (4c)

0 ≤ γt ≤ 1, (4d)

vt ∈ Vε(Θ̂t) (4e)

where Vε(Θ̂t) denotes the set of references v such that a
ball of radius ε > 0 centered at the corresponding steady
state xss(v, θ) and v lies inside H, that is,

Vε(Θ̂t) :=
{
v ∈ V : Bε(h(xss(v, θ), v)) ⊂ H,∀ θ ∈ Θ̂

}
.

4. Design of Parameter Adaptive Reference Gov-
ernor

In this section, we discuss the off-line dataset construc-
tion phase, the on-line parameter estimation phase, and
how the two can be combined to estimate PRCASs re-
quired to compute feasible reference inputs using our pro-
posed PARG.

4.1. Data generation

We begin by simulating trajectories of the closed loop
system (1) off-line, from different initial states sampled
from X, reference inputs sampled from V, and parameters
in Θ. At the end of each off-line simulation, if an initial
condition xi ∈ X tracks a desired reference input vi ∈ V
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without violating the constraint (2) at any time in the
simulation, for a parameter θi sampled within Θ, the com-
bination (xi, vi) is labeled ‘+1’ to indicate it resides within
the PRCAS O({θi}). Conversely, if the constraint is vio-
lated at any time point within the simulation, the feature
(xi, vi) is labeled ‘−1’ to indicate it resides outside O(θi).
In this way, we can construct a dataset consisting of states,
reference inputs, parameters, and labels (±1) that can be
used by a classifier to estimate constraint-admissible sets.

Formally, we extract Nx unique samples from X and
construct grids (not necessarily equidistantly spaced) on
V and Θ with Nv and Nθ nodes, respectively. Let xi
denote the i-th sampled state, vj the j-th reference in-
put grid node, and θk the k-th parameter grid node. For
each (xi, vj , θk) ∈ gridX× gridV× gridΘ, we simulate the
model (1) forward in time over a finite horizon Ts with a
constant reference vj and parameter θk. The horizon Ts
is chosen long enough that the final tracking error can be
smaller than a threshold (for example, < 10−6) by the end
of the simulation, for a feasible combination of (xi, vj , θk).
For each simulation, we check whether yt ∈ Y for every
time instant. We set the corresponding label

ℓj,ki =

{
+1, if yt ∈ Y for every t ∈ {0, 1, . . . , Ts},
−1, otherwise.

(5)

At the end of such off-line data generation procedure, we
have a dataset comprising initial conditions {xi}Nxi=1, and
each initial condition xi has a corresponding matrix of
labels ℓi ∈ {−1,+1}Nv×Nθ described by

ℓi =

 ℓ1,1i · · · ℓ1,Nθi
...

. . .
...

ℓNv,1i · · · ℓNv,Nθi

 ,
from which a classification problem can be cast on-line to
determine a PRCAS. See Algorithm 1 for the pseudocode.

Remark 1. Note that for this sampling and data collection
step, we do not need a causal, closed-form representation
of the system (1). Even if one has a black-box representa-
tion of the dynamics (such as a software simulator), such
a simulator can be used for generating closed-loop trajec-
tories from, and therefore, sampling xi and computing ℓi.

4.2. Confidence intervals from parameter estimator E
Our proposed PARG utilizes confidence intervals around

parameter estimates to learn PRCASs. While one may use
any deterministic interval observer or stochastic estimator
for this purpose, in this paper we demonstrate the per-
formance using both Kalman filters and adaptive particle
filters [18], which have demonstrated effectiveness on pa-
rameter estimation problems for nonlinear systems. We
reformulate (1) in a probabilistic framework where θ is
treated as an unknown disturbance with stochastic prop-
erties.

Algorithm 1 PARG Data Collection (Offline)

Require: Samples {xi}Nxi=1 on state-space X
Require: Grid {vj}Nvk=1 on reference inputs V
Require: Grid {θk}Nθk=1 on parameter set Θ
Require: Constraint set Y
Require: Simulation model M of closed-loop dynam-

ics (1) for time-horizon Ts (black-box)
1: for each (xi, vj , θk) do

2: {yt}Tst=0 ← simulate M with initial condition xi,
fixed vj and θk

3: ℓj,ki ← obtain label using (5) using {yt}
4: end for

return data tuples (x, v, θ), label matrix ℓi

If xt is known, we can exploit the linearity of the sys-
tem (1) with respect to θ and use a Kalman filter for es-
timating θ and its confidence interval Θt. The approach
can be extended to the case when the state vector is not
completely known and has to be estimated together with
the parameter[27]. Specifically, we can reformulate (1a) as

θt = θt−1 + wθ,t, (6a)

ȳt = g(xt−1, vt−1)
⊤θt + et, (6b)

where ȳt = x⊤t − f⊤(xt−1, vt−1), that is, the dynamical
system (1a) for xt now plays the role of the measurement
(output) equation in the Kalman filter, wθ,t ∼ N (0, Qθ,t)
and et ∼ N (0, R) are Gaussian noise variables.

Eq. 6 is an estimation model applicable to many ap-
plications. However, for some applications a linear-in-
parameter model does not sufficiently represent true un-
derlying system. The estimator estimates θ based on knowl-
edge of the estimated state xe which does not need to be
equal to the state x in the PARG. Sometimes, not only
is θ unknown but also the state xe is unknown and only
implicitly measured. Hence, the estimator needs to resolve
θ from the hidden state xe. In a Bayesian framework the
estimation model for a generic system can be written as

θt+1 = θt + wθ,t, (7a)

xet+1 = fe(xet , θt, vt) + wxe,t, (7b)

ȳt = ge(xet ) + et, (7c)

where wxe,t ∼ N (0, Qxe) and et ∼ N (0, R) are zero-mean
Gaussian distributed with covariance Qxe and R, respec-
tively.

The reason to address the parameter estimation prob-
lem in a Bayesian framework is that, even if the state xet is
known, for instance from measurements ȳt, such knowledge
is typically imperfect due to inherent noise in the sensors
measuring the state. Furthermore, a Bayesian framework
provides a systematic approach to work with confidence in-
tervals in recursive estimators. We address the parameter
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estimation problem by recursively estimating the posterior
density function of the parameter θt, given by

p(θt|ȳ0:t) =
∫
p(θt, x

e
0:t|ȳ0:t) dxe0:t

=

∫
p(θt|xe0:t, ȳ0:t)p(xe0:t|ȳ0:t) dxe0:t. (8)

using the measurement history ȳ0:T = {ȳ0, · · · , ȳT }.
The Bayesian updates for solving (8) can be summa-

rized in the prediction and update equations

p(θt|ȳ0:t−1) =

∫
p(θt|θt−1)p(θt−1|ȳ0:t−1) dθt−1, (9a)

p(θt|ȳ0:t) =
p(ȳt|θt)p(θt|ȳ0:t−1)

p(ȳt|ȳ0:t−1)
, (9b)

where p(ȳt|ȳ0:t−1) is a normalization constant. If the pro-
cess noise wt and measurement noise et are Gaussian dis-
tributed and if fe and ge are linear, the Bayesian update
recursions (9) result in the Kalman filter equations that

estimate the parameter mean θ̂t and associated covariance
Pt. However, in other cases nonlinear filters, such as par-
ticle filters or linear-regression Kalman filters, need to be
employed. Using the covariance, we estimate the confi-
dence interval Θ̃t+1 as

Θ̃jt+1 = [θ̂jt − βP
j,j
t , θ̂jt + βP j,jt ] (10)

for each element j in the parameter vector θt and β > 0.
In order to provide theoretical guarantees on the PARG,

we need to ensure that our confidence intervals do not ex-
pand over time, when more data becomes available, that is,
Θ̂t+1 ⊆ Θ̂t. While this is a natural consequence of apply-
ing Kalman filters to linear-in-parameter systems[29] such
as (6), in general, exploration using nonlinear filters such
as in particle filters could result in a violation of this con-
dition. In such scenarios, we explicitly enforce contraction
of confidence intervals. Specifically, if the filter computes
an updated confidence interval Θ̃t+1, we set

Θ̂t+1 :=

{
Θ̂t ∩ Θ̃t+1 if Θ̃t+1 ∩ Θ̂t ̸= ∅
Θ̂t, otherwise.

(11)

This forces non-expansion of Θ̂t for all t ≥ 0.

Remark 2. If the state vector is available at every time
instant t, a linear estimator can provide the confidence
intervals, and, therefore, a more general approach using
Bayesian recursions (9) is not needed. However, if the
state is unavailable, the updates (9) can be employed to
generate joint estimates of states and parameters via non-
linear recursive estimators. In Section 6.2, we give an ex-
ample of how our approach applies to a realistic vehicle
rollover-avoidance example.

4.3. Learning PRCAS using Ψ

We efficiently, albeit approximately, solve the prob-
lem (4b) by using machine learning and gridding V. Grid-
ding V and considering only the nodes, and taking into
account the constraints (4c) and (4d), we deduce that the
solution to (4) must be restricted to the sub-grid

Ṽt :=
[
min{rt,k, vt,k},max{rt,k, vt,k}

]
. (12)

Therefore, we can recast the problem (4) as a grid search,

vt := argmin
v∈Ṽt

(v − rt)2 (13a)

subject to: (v, xt) ∈ O(Θ̂t), (13b)

v ∈ Vε(Θ̂t). (13c)

In order to solve (13), we require an estimate of the set
O(Θ̂t). To this end, we formulate a time-varying binary
classification problem where the inputs to the learner re-
main constant, but the labels change with time3, as more
data become available. Specifically, the PRCAS changes
with time because the confidence interval Θ̂t is time-varying;
this implies that a state x that was infeasible for Θ̂t may
become feasible in a shrunken set Θ̂t+1, even if vt is fixed.

We set up the classification problem as follows. At time
instant t, suppose the confidence interval Θ̂t is provided
by the parameter estimator. Let

Ii,j(Θ̂t) :=
{
s : θs ∈ Θ̂t ∩ gridΘ

}
be the index set of parameters contained in the current
confidence interval Θ̂t and the grid nodes {θj}Nθj=1. Then,

for each vj ∈ Ṽt described in (12), and each xi ∈ {xi}Nxi=1

sampled off-line, we assign the label

zi,j(Θ̂t) = min
k∈Ii,j(Θ̂t)

ℓj,ki . (14)

Taking the minimum in (14) ensures that the estimated set
is robust to all parameters within Θ̂t. That is, if even one
θt is infeasible for the particular vj and xi, then xi does

not belong to the PRCAS corresponding to Θ̂t. With the
dataset D = {(xi, vj), zi,j}, we can construct classifiers ψj ,

where j = 1, . . . , |Ṽt|. For each vj , a classifier is trained on
inputs {xi} and their corresponding target labels {zi,j}.

While any nonlinear classifier can be used here, as an
example, we consider a 1-norm soft margin support vector
machine (SVM) classifier in order to exploit generaliza-
tion error bounds to provide theoretical guarantees on the
PARG performance. A typical 1-norm SVM is trained on
the dataset (xi, zi,j), for a given j, by solving the opti-

3In the machine learning literature, this is referred to learning
with concept drift [30].
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mization problem

(w⋆j , b
⋆
j ) := argmin

w,b,ξ≥0
w⊤w + c ∥ξ∥1 (15a)

subject to: zi,j (w
⊤φ(xi) + b) ≥ 1− ξi, ∀ i = 1, . . . , Nx.

(15b)

Here, c > 0 is a regularization constant, w quantifies the
margin of separation, b is a bias term, ξ are slack variables,
and φ is a continuous feature map into a reproducing ker-
nel Hilbert space (RKHS) on which a kernel function K is
defined. The decision function of the 1-norm SVM, whose
zero level set describes the boundary of the PRCAS, is
given by

ψj(x) = sgn
(
(w⋆j )

⊤φ(x) + b⋆j
)
. (16)

Since the classifier may not estimate a true inner ap-
proximation of the set with finite data, one may select
sub-level sets of the decision boundaries of the classifier
until no infeasible sample is contained in the interior of
the sub-level set [20]. A specific heuristic that can be em-
ployed to ensure constraint satisfaction is by choosing a
small ε > 0 and checking that ψj⋆(xt) > ε rather than
ψj⋆(xt) > 0. This forces the state to lie in the interior of
the set rather than on the boundary. In this way, the hy-
perparameter ε trades-off safety and performance. In the
PARG context, this is the equivalent of the inner approx-
imation of the PRCAS to achieve finite determination, in
the standard reference governor [3].

Once these classifiers are trained, solving (13) becomes
equivalent to selecting the node vj on the grid Ṽt that
minimizes (13a), while ensuring that the current state is
predicted by the j-th classifier to belong to the PRCAS
induced by Θ̂t, that is: ψj(xt) > 0. The full pseudocode
for the online PARG steps is provided in Algorithm 2.

Algorithm 2 PARG Implementation (Online)

Require: Parameter estimator E
Require: Classifier ψ
Require: Samples gridX := {xi}Nxi=1, gridV := {vj}Nvj=1,

and gridΘ := {θk}Nθk=1

Require: Initial bounds on parameter estimate Θ̂0

1: for t = 0 :∞ do
2: Compute current state xt
3: Θ̃t+1 ← compute confidence interval (CI) with E
4: Θ̂t+1 ← enforce non-expansion using (11)
5: for each xi, vj do

6: Ii,j(Θ̂t+1) ← compute index set of parameter
grid nodes within CI

7: zi,j(Θ̂t+1) ← assign label based on confidence
using (14)

8: ψj ← construct classifier based on features xi
and labels zi,j

9: end for
10: vt ← minimize (13a) with constraint ψj(xt) > 0
11: end for

Remark 3. A common way of implementing classifiers with
good approximation properties in an on-line manner is by
incrementally updating their hyperparameters based on
changes in the updated label set rather than re-learning
from scratch [31]. Fortunately, we will show later in Sec-
tion 5 that a state will remain feasible for a fixed vt, if
it starts within a PRCAS corresponding to that vt. This
indicates that the set O(Θ̂t) does not have to be updated
at every time iteration. Thus, this method can be used for
systems with small sampling times by learning the robust
sets asynchronously.

Remark 4. Note that the learning of these robust sets are
also performed without model knowledge, that is, in a
purely data-driven manner that is agnostic to the system
dynamics.

5. Idealized Performance Guarantees

In this section, we provide formal guarantees on both
the PRCAS learning quality and the closed-loop perfor-
mance of the PARG.

5.1. Bounding the SVM generalization errors

Recall that the optimization problem to be solved for
training the soft-margin SVM is described in (15). With-
out loss of generality, we remove the bias term b⋆ from
this discussion and denote the optimal solution w⋆. The
margin of the SVM is given by

M⋆ = 1/∥w⋆∥2.

Since φ : X → Φ ⊂ Rnφ is a continuous feature map,
and by assumption X is compact, the image Φ := φ(X)
is compact. Therefore, there exists some positive scalar
Rφ > 0 such that a nφ-dimensional ball with radius Rϕ
covers Φ. The following discussion demonstrates that the
misclassification rate of the robust invariant set classifier
on unknown test datasets can be quantified based on train-
ing performance.

Lemma 1 (Misclassification Error). Let Dtest denote any
distribution on Φ × {−1,+1}. Let DNx

train denote a train-
ing dataset comprising Nx ∈ N independent samples drawn
from DNxtest. If there exists a w⋆ ∈ Rnφ such that ∥w⋆∥2 ≤ 1
and the classifier (16) has margin at least M⋆ on all the
training examples in DNx

train, then there exists some con-
stant C0 > 0 such that for every εψ ∈ (0, 1), it holds with
probability at least 1 − εψ over the training samples that
the misclassification error rate on the test dataset satisfies
the bound

Pr(φ(x), z)∼Dtest

[
z · (φ(x)⊤w⋆) ≤ 0

]
≤ Č0(Nx, εψ,M

⋆),
(17)

where Č0(Nx, εψ,M
⋆) := C0

(Rφ/M
⋆)2 lnNx+ln(1/εψ)

Nx
.

Proof. Let

Ltest(w) = Pr(φ(x), z)∼Dtest

[
z · (φ(x)⊤w) ≤ 0

]
7



and

Ltrain(w,Nx,M) = Pr(φ(x),z)∼DNxtrain

[
z · (φ(x)⊤w) ≤M

]
.

For every ∥w∥ ≤ 1, and margin M = 1/∥w∥2, we know
from [32] that there exist constants C0 > 0 and C1 > 0
such that the probability of

Ltest(w) ≤ Ltrain(w,Nx,M) + Č1 + Č2, (18)

is at least 1− εψ, where

Č1 := C0
(Rφ/M)2 lnNx + ln(1/εψ)

Nx
,

Č2 := C1

(
(Rφ/M)2 lnNx ln(1/εψ)

Nx
· Ltrain(w,Nx,M)

) 1
2

For the training data DNxtrain that yields w⋆ with margin
M⋆ separating all training samples, we can write

Ltrain(w
⋆, Nx,M

⋆) = 0.

Replacing this in (18) yields (17), which concludes the
proof for finite-dimensional RKHS. For infinite-dimensional
RKHS, one can apply Johnson-Lindenstrauss transforms [33]
to first project onto general finite-dimensional Hilbert spaces
and then identical arguments can be made to prove the re-
sult.

Remark 5. Note that the conditions on the dataset in
Lemma 1 are often not possible to check computationally;
nevertheless, these conditions appear often in the litera-
ture and can be considered standard, c.f. [32].

Lemma 2. Suppose the conditions of Lemma 1 hold and
εψ be a fixed, small quantity. If the classifier has margin
at least M⋆ on all training samples for some sufficiently
large N0

x ∈ N, then with probability 1 − εψ over training
sets, for every πψ ∈ (0, 1) the classifier correctly classifies
any test data sampled from Dtest with probability at least
πψ.

Proof. Invoking (17), as long as N0
x satisfies

(Rφ/M)2 lnN0
x + ln(1/εψ)

N0
x

≤ 1− πψ
C0

, (19)

the misclassification error rate Ltest(w
⋆) ≤ 1 − πψ with a

probability 1−εψ over training sets. For every πψ, such an
N0
x exists for a given Rφ, M

⋆, C0, and εψ because the left
hand side of the inequality can be made arbitrarily small
by increasing N0

x . Since the misclassification probability
is at most 1 − πψ, the probability of correct classification
is at least πψ, which concludes the proof.

An interpretation of Lemma 2 is that if the soft margin
SVM optimization problem (15) possesses a feasible solu-
tion for arbitrarily large training sets, and the training
data is separable by some (possibly infinite-dimensional)

kernel function, then the generalization error can be made
arbitrarily small by the same kernel.

Remark 6. Since we have j = 1, . . . , Nv independent clas-
sifiers, the condition of Lemma 2 hold for N0,j

x for the j-th
classifier. In such a case, one could take N0

x := maxj N
0,j
x

to make the classification error probability uniformly at
most 1− πψ over each classifier. Understanding that each
classification is made independently, the probability of cor-
rect classification can remain at least πψ. In practice,
however, choosing a very large Nx might be computation-
ally challenging due to SVM’s typically quadratic to cubic
training complexity.

5.2. Guarantees on the PARG

We begin with the following lemma, which ensures that
the true parameter lies in each confidence interval Θ̂t with
probability determined by β in (10).

Lemma 3 (Parameter Estimation Error). If the estima-
tor (6) uses the update (11), then there exists a scalar
πθ ∈ (0, 1) such that

Pr[θ ∈ Θ̂t,∀t ≥ 0] ≥ πθ. (20)

Proof. Let Θ̂∞ = limt→∞ Θ̂t. This limit exists because the
sequence of sets is non-expanding and bounded. From (6),
we note that our measurement output is linear in θ. In-
voking the properties of the Kalman filter [29], there exists
a scalar πθ ∈ [0, 1] such that Pr[θ ∈ Θ̂∞] ≥ πθ. By the up-
date (11), θ ∈ Θ̂∞ implies θ ∈ Θ̂t for all t ≥ 0, because
Θ̂t ⊆ Θ̂t−1. Thus, Pr[θ ∈ Θ̂t,∀t ≥ 0] ≥ Pr[θ ∈ Θ̂∞] ≥
πθ.

The following lemma ensures that the PRCASs do not
contract for a fixed reference input, as long as the confi-
dence intervals are non-expansive.

Lemma 4. Recall that H = {(x, v) ∈ X×V : h(x, v) ∈ Y}.
The update (11) ensures O(Θ̂t) ⊇ O(Θ̂t−1) and O(Θ̂t) ⊆
H for all t ≥ 0.

Proof. For every t ≥ 0, O(Θ̂t) ⊆ H by construction. From (11),
Θ̂t ⊆ Θ̂t−1. Then, for any x ∈ X and any v ∈ V the set of
possible trajectories of (1) for Θ̂t is a subset of those for
Θ̂t−1. The result follows from Definition 1.

Lemmas 1–4 enable the following guarantees on the
constraint satisfaction performance of the closed loop of (1)
with the PARG (3a), (3b).

Theorem 1. Suppose Assumptions 1, 2 hold and the con-
ditions for Lemma 2 hold. Let εψ, πψ, and πθ be as defined
in (17) and (20), respectively. Let t0 ≥ 0 denote a time
instant at which (xt0 , v) ∈ O(Θ̂t0) for some v ∈ Vε(Θ̂t0).
Then, the closed-loop system (1), (4), (11) satisfies the
constraints (2) for any r(t) ∈ V and every t ≥ t0, with
probability at least πθπψ.
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Proof. At time t0, let θ ∈ Θ̂t. Then, from Lemma 2
the constraints are satisfied with probability πψ because

(xt0 , v) ∈ O(Θ̂t0) ⊆ H. From Definition 1, O(Θ̂t0) is in-
variant when vt = vt0 for all t ≥ t0, and hence (xt, v) ∈
O(Θ̂t0) ⊆ H for all t ≥ t0. Since, from Lemma 4, we
know that O(Θ̂t) ⊇ O(Θ̂t−1), thus (xt, v) ∈ O(Θ̂t) for all
t ≥ t0. Therefore, vt = v is a recursively feasible solu-
tion of (4), and the set of solutions of (4) is never empty,
for t ≥ t0. Since any feasible solution vt of (4) satisfies
(xt, v) ∈ O(Θ̂t) due to (4b), the property holds for any
value vt applied by (3a). From Lemma 3, the probability
of θ ∈ Θ̂t for all t ≥ 0 is at least πθ, and from Lemma 2 the
probability of correctly reconstructing O(Θ̂) by SVM clas-
sification is at least πψ. Then, assuming that the param-
eter and PRCAS estimation events are independent, the
probability of the result above holding is at least πθπψ.

Theorem 2. Let the conditions of Theorem 1 hold. Let
r(t) = r for all t ≥ 0, and let there be a finite time t̂ such
that r ∈ Vε(Θ̂t̂). Then, there exists a finite t̄ ≥ t̂ such that
v(t̄) = r, with probability at least πθπψ.

Proof. For a standard reference governor with known pa-
rameter vector θ, and fixed O({θ}), vt converges in finite
time to r ∈ Vε({θ}) by the asymptotic stability of (1),
Assumption 2, and v ∈ Vε({θ}). Due to these, in a fi-
nite time t̃, (xt̃, v) ∈ B((xss(v), v), ε/2), and the updated
reference v + ε

2|r−v| (r − v) is feasible and reduces the dis-

tance (r − v) by ε/2. Thus, there are finite decreases of
the reference tracking error in finite time intervals, which
eventually lead to vt = r for a finite time t [34, 3].

Consider the case θ ∈ Θ̂t, Θ̂t = Θ̂t−1 for all t ≥ 0.
Assumption 2 provides asymptotic stability for any value
of θ ∈ Θ. Thus, there exists t̃ < ∞ such that (xt̃, v) ∈
B((xss(v), v), ε/2) when vt = v for all t ∈ [0, t̃), and hence
at time t̃ < ∞, vt̃ can be selected to reduce the tracking

error by at least ε/2 > 0. Since Θ̂t ⊆ Θ̂t−1 by Lemma 4,
Vε(Θ̂t) ⊇ Vε(Θ̂t−1), and hence if v ∈ Vε(Θ̂t−1), then
v ∈ Vε(Θ̂t), which means that vt, t ∈ [0, t̃] is still feasible
when Θt is updated by (11). Thus, the finite-time inter-
val to see the reference tracking error reduction may only
shorten, and the size of the reference tracking error reduc-
tion may only increase due to the updates to the parameter
confidence interval. Finally, we prove that the reference r
satisfies (4e) over an infinite interval. Again, because of
the parameter update, if r ∈ Vε(Θ̂t̂), then r ∈ Vε(Θ̂t),
for all t ≥ t̂, which means that r will be steady state
admissible at any time past t̂. For ensuring that the gov-
ernor continues operating along the entire trajectory, it is
sufficient that θ ∈ Θ̂t for all t ≥ 0. As for Theorem 1,
these conditions hold with probability πθπψ, due to the

confidence of θ ∈ Θ̂t, and the probability of correctly esti-
mating O(θ).

Roughly, Theorem 1 states that if the learning algo-
rithm has sufficiently small misclassification error proba-
bility, and the confidence interval induced by the parame-
ter estimator contains the true parameter with sufficiently

high probability, then as long as the closed-loop system
satisfies constraints after a finite time t0 ≥ 0, it will re-
main constraint-feasible for every subsequent time instant
with a sufficiently high probability as well. Theorem 2 im-
plies a form of recursive feasibility, wherein if a particular
reference r results in a constraint-feasible closed-loop sys-
tem, then keeping that reference fixed for all subsequent
time is guaranteed (with some probability) to keep the
closed-loop system constraint-feasible.

6. Simulation Examples

In this section we verify the proposed control method
using two case studies: a lower dimensional mass-spring-
damper system to showcase the evolution of the robust
invariant sets during on-line learning, and a vehicle system
example to demonstrate the effectiveness of the approach
on real-world applications.

6.1. Example 1: Electromagnetically-actuated mass-spring-
damper

We consider a second-order nonlinear electromagneti-
cally actuated mass-spring damper system [1] for testing
the PARG. The closed-loop system without the reference
governor is given by the forward Euler discretization of

ẋ1 = x2,

ẋ2 = −c+ cd
m

x2 + θ

(
1

m
v − 1

m
x1

)
,

y = x1,

with sampling time τ = 1 ms.

Figure 2: [A] Mean parameter estimate, the true parameter value,
and the 99% confidence interval. [B] Measured output of closed-loop
system with conventional RG with incorrect parameter estimate. [C]
Measured output of closed-loop system with learning-based PARG.
No constraints are violated. PE = parameter estimator, RG = ref-
erence governor without adaptation, PARG = parameter-adaptive
reference governor.
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Figure 3: Phase plots of system with PARG-in-the-loop. [A] Evo-

lution of the states and O(Θ̂t) with fixed vt and varying Θ̂t. [B]

Evolution of the states and O(Θ̂t) with varying vt and varying Θ̂t.

The parameter θ = 38.94 is the unknown spring con-
stant. The values of the other parameters are cd = 4.00,
c = 0.66, and m = 1.54. The set Y is described by the
constraints x1 ≤ 8× 10−3 and 0 ≤ u(x, v) ≤ 0.3, where

u(x, v) =
1

α
(θv − cdx2)(d0 − x1)ν

is the legacy tracking controller whose structure and pa-
rameters θ, cd, α = 4.5 × 10−5, d0 = 1.02 × 10−2, and
ν = 1.99, cannot be altered. At design time, we know that
θ ∈ [10, 90]. Thus, we initialize Θ̂0 = [10, 90], and we have
V = [0.5 × 10−3, 7.5 × 10−3], and X = [−8 × 10−3, 8 ×
10−3]× [−4× 10−2, 4× 10−2].

For off-line dataset generation, we select Nx = 2000
Halton low-discrepancy samples on X, and construct regu-
lar grids on Θ and V using 50 and 80 equidistant nodes, re-
spectively. Empirically, we computed that the 95% settling
time of the mass-spring-damper system was 3.5 second, for
each (xi, vj , θk) we simulate the closed-loop dynamics for-
ward in time for Ts = 5 seconds. Consequently, we check
whether the constraints were violated at any time point
on t ∈ [0, 5]s for generating labels.

We note that the mass-spring-damper system can be
written in the linear-in-parameter form (7), and thus a
Kalman filter can be designed to provide estimates of the
parameter θ. The Kalman filter covariance matrices are set
to Rf = diag

([
10−4, 10−8

])
and Qf = 10−8I. The 99%

confidence interval Θ̂t generated by the parameter estima-
tor is used to learn the PRCASs online. Concretely, we
can compute Θ̂t, described in (14), and use support vec-
tor machine (SVM) bi-classifiers to estimate the PRCAS
as described in Section 4.3. The SVM employs a radial
basis function kernel, with no box constraints, a sequen-
tial minimal optimization [35] (SMO) solver4, and kernel

4We observed that other commonly used SVM solvers such as
L1QP or ISDA significantly increase the training time.

length-scales automatically selected by MATLAB R2021a.
In order to promote the generation of strictly feasible sets,
where no point labeled ‘-1’ is contained in the set, we use
an asymmetric cost function with cost matrix [ 0 1

100 0 ].
We compare the performance of the learning-based PARG

to a non-adaptive RG that assumes a parameter value of
θ̃ = 45, which is the point estimate θ̂ after 100 measure-
ment have been collected online. We will show that such
a point estimate can lead to constraint violations, which
the PARG can prevent by the use of robust sets. The out-
put of the parameter estimator is illustrated in Figure 2[A]
(dotted line) along with the true parameter value (green

continuous line). The point estimate θ̂ converges to a small
neighborhood around θ within 1 s, and the 99% confidence
intervals (blue continuous lines) start contracting to a tight
set around θ around 20 s. Note that Θ̂t contracts when the
desired reference rt jumps and vt varies, since these jumps
excite the closed-loop system, leading to satisfaction of
weak persistence of excitation conditions. Figures 2[B] and
2[C] illustrate that the robust sets learned by the statistical
learning algorithm is not conservative, capable of generat-
ing irregular geometries, and adapts quickly with change
in the confidence intervals computed by the Kalman fil-
ter. Figure 2[B] confirms that using only a point-estimate
and not adapting with measurements leads to constraint
violations, because the constraint-admissible set is gen-
erated based on an incorrect estimate θ̃. Conversely, as
evident from Figure 2[C], the PARG, which is informed by
the learned PRCASs, does not violate constraints over the
length of the simulation.

Figure 3 depicts the time-evolution of the robust sets.
In Figure 3[A], we see that, for a fixed vt, the sets expand
with time; each updated state shares the same colored dot
as the corresponding invariant set. The expansions occur
because the intervals Θ̂t contract and so the invariant sets
become less conservative for the same vt. When vt changes,
as in Figure 3[B], the shapes of the sets alter according to
how close they are to the constraints. However, as ex-
pected, the states always lie within the PRCASs, which
implies that the constraints are never violated.

6.2. Example 2: Vehicle Rollover Avoidance

This second case study is to demonstrate the potential
of the PARG algorithm on realistic application with larger
dimension (5 states, 3 uncertain parameters) and varying
reference, namely, vehicle rollover prevention. Rollover ac-
cidents, while infrequent, contribute to a significant per-
centage of severe accidents and fatalities [36]. Develop-
ment of control principles for avoiding such accidents has
therefore been a major topic of research. The center-of-
gravity (CoG) location is the most prominent factor in
rollover occurrence. However, before vehicle operation, the
CoG location can only be determined under nominal con-
ditions, and therefore a control strategy benefits from the
capability of estimating in real-time the CoG location. It
is important to note that most rollover prevention control
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methods assume a known CoG location [37, 38, 39], but in
practice the CoG location changes with loading conditions
and the maneuver [40].

6.2.1. Modeling

We use a control-oriented model of the vehicle based
on a nonlinear chassis model describing the motion of the
rigid body due to the forces generated at the tires, and
a nonlinear tire model describing the forces that the tires
generate depending on the chassis and wheels velocities.
The chassis model combines a single-track chassis model
with a torsional spring-damper model for the roll dynam-
ics. With the longitudinal and lateral velocities, vX , vY ,
yaw rate ψ̇, roll angle, ϕ, and roll rate ϕ̇ as states, the
resulting chassis model is described by

v̇X = vY ψ̇ −mhϕ̇ cos (ϕ) + FX/m, (21a)

v̇Y = −vX ψ̇ + h(ϕ̈ cos (ϕ)− ϕ̇2 sin (ϕ)) + FY /m, (21b)

ψ̈ =MZ/IZ , (21c)

ϕ̇ = ϕ̇, (21d)

ϕ̈ =
h(FY +m sin (ϕ))(g + hϕ̇2) + τϕ

IX +mh2 cos (ϕ)
, (21e)

where

FX = F xf cos (δ)− F yf sin (δ) + F xr , (22a)

FY = F xf sin (δ) + F yf cos (δ) + F xr , (22b)

MZ = lf (F
x
f sin (δ) + F yf cos (δ))− lrF yr , (22c)

τϕ = −Kϕ tan (ϕ)−Dϕϕ̇ cos (ϕ), (22d)

g is the gravitational acceleration, h is the CoG distance,
the distance from the roll axis to the CoG, m is the vehicle
mass, IX , IZ , are the vehicle inertias about the X- and
Z-axis, respectively, Kϕ is the spring stiffness, Dϕ is the
damping coefficient, and δ is the road-wheel angle of the
front wheels, which is used as the reference input to be
designed. In this work the vector of uncertain parameters
is θ = {Kϕ, Dϕ, h}.

We use the Pacejka tire model [41] for the tire-road
interaction. We model combined slip similar to [39],

[
F xi F yi

]⊤
= FPP ŝ, s =

[
λi

tanαi

]
, lŝ = s ∥s∥,

P = sin (C atan (sc/C(1− E) + E atan(sc/C))) ,

sc =
Cα∥s∥
FP

, Cα = c1mg(1− e−c2z
Z
i /(mg)),

c1 =
BCD

4(1− e−c2/4)
, FP =

F zi 1.0527

1 +
(

1.5F zi
mg

)3 ,

(23)

where αi are the slip angles, λi are the slip ratios, F zi is
the normal forces resting on wheel i, F zf = mglr/l, F

z
r =

mglf/l, Cα is the cornering stiffness, and B, C, D, E, and
c2 are tire and road-specific parameters. The slip angles

αi and slip ratios λi in (23) are

αi = − arctan

(
vyi
vxi

)
, λi =

Rwωi − vxi
vxi

, i ∈ {f, r}, (24)

where Rw is the wheel radius, ωi is the wheel angular
velocity for wheel i, and vxi and vyi are the longitudinal
and lateral wheel velocities for wheel i in the coordinate
system of the respective wheel.

The input constraint is symmetric and based on the
maximum allowed road wheel steering angle. The state
constraints are determined based on a tradeoff between
safety limits and driving comfort. Following previous work
in rollover avoidance [38, 39], we express the load transfer
ratio (LTR) as a percentage, given by

LTR = 100× F zL − F zR
mg

, (25)

where F zL, F
z
R, are the left and right vertical loads, re-

spectively. The LTR measures the relative load on each
side of the vehicle and wheel liftoff occurs when either
LTR > 100% or LTR < −100%.5 The LTR is a function of
the roll angle and roll rate and can therefore be calculated
from the lateral load transfer [42].

6.2.2. Bayesian CoG Estimation

From (21), we observe that the roll dynamics are lin-
ear in the vehicle states but nonlinear in the parame-
ters. We formulate an estimation method based on a
marginalized[17, 43] adaptive particle filter (MAPF), where
θ = {Kϕ, Dϕ,h} is estimated using a particle filter, which
adapts its number of particles in response to convergence
monitoring. Conditioned on the particles, the states can
be analytically estimated with a conditional Kalman filter.
We briefly summarize the estimator next and refer to [6]
for more details. We model the roll-plane dynamics by

(Ix +mh2)ϕ̈+Dϕ̇+Kϕ = mh(ay cosϕ+ g sinϕ), (26)

and the parameters as nearly constant position models
with prior distribution θ0 ∼ p0(θ). Consequently, we can

write the system in state-space form with state xe =
[
ϕ ϕ̇

]⊤
similar to (7),

θt+1 = θt + wθ,t, (27a)

xet+1 = A(θt)x
e
t +B(θt)ay, (27b)

ȳt = xet + et, (27c)

where ek ∼ N(0, R) and the lateral acceleration is modeled
as ay ∼ N(ay,m, Qa), where ay,m is the measurement and
Qa can be determined using standard sensor calibration
methods [29].

The estimation of θ is based on the factorization

p(xet , θ0:t|ȳ0:t) = p(xet |θ0:t, ȳ0:t).p(θ0:t|ȳ0:t). (28)

5There are some exceptions to this rule, c.f. [39, Remark 1].
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The second distribution in (28) is approximated by a par-
ticle filter. Given the nonlinear state trajectory θ0:t, the
first distribution in (28) is Gaussian and hence it can be
estimated with conditional KFs, one for each particle i
conditioned on the i-th particle trajectory. Then, (8) is
computed from (28) by approximating the integral using
the particles. The main difference compared with the stan-
dard KF is an extra measurement update for each KF us-
ing the forward propagated θit+1 as an extra measurement.

For the implementation of the MAPF used in this pa-
per, (7) is equivalent to Model 1 in [43], which for the
rollover avoidance application is the roll-dynamics model
(27). For particle adaptation, we initialize the filter with
N = 8000 particles, and the minimum number of particles
in the particle adaptation is set to N = 1000. This gives
a balance between execution time and performance. For
more details about the MAPF implementation, we refer
the reader to our prior work [6].

6.2.3. PRCAS Learning

The first step of the learner design is the offline data
collection. To this end, we extract Nx = 2000 samples on
a 5-dimensional admissible state space selected based on
domain expertise,

X = [15, 25]× [−1.5, 1.5]× [−8π/18, 8π/18]3.

We also construct grids for parameters and references,
where the bounds on these spaces are

Θ = Θ̂0 = [4× 104, 8× 104]× [4× 103, 1× 104]× [0.5, 1.2]

and
V = [−0.075, 0.075],

with Nθ = 203 and Nv = 40 nodes, respectively; the ref-
erence angle is in radian. We find that the settling time
of the vehicle is approximately 1.5s, so for each sample
(xi, vj , θk), we simulate the vehicle dynamics (21)–(22) for
2s with sampling period of 10ms, and compute the LTR
constraint via (25) in order to assign a label to the sam-
ple. To promote caution on this practical system, we label
constraint violation if |LTR| > 98%. The prediction model
is (21)–(24), which includes lateral and longitudinal dy-
namics, nonlinear tire forces including combined slip, and
suspension dynamics, which includes both sprung and un-
sprung mass models. The simulation model and the pa-
rameters used are the same as in [39], where are said to be
similar to a North-American SUV.

Online, we use an SVM with the same implementation
details as in the previous example, with the addition that
the inputs to the SVM are first standardized due to the
varying orders of magnitude. The asymmetric cost ma-
trix has the same form as the previous example, with 100
replaced by 106 to heavily penalize any infeasible sample
being classified as feasible. We also get comparable re-
sults using a polynomial kernel with a box constraint of
10. The computation of the reference must occur in real-

time and for these simulations it is 0.89s on average and
1.93s in the worst case. The PRCAS update for these sim-
ulations takes 71.32ms on average and 0.92s in the worst
case. However, the PRCAS update does not need to hap-
pen in real-time, since a current PRCAS always guaran-
tees probabilistic constraint satisfaction. In fact it may
be more effective to update the PRCAS after a few more
data points are obtained, in an anytime fashion. For the
current application less than 12MB of total memory is re-
quired to store the data for PRCAS. All such data are
based on a non-optimized implementation of the method
in MATLAB; note that an optimized C implementation can
easily be 10×–40× faster and reduce storage usage by one
order of magnitude or more: for example, by data com-
pression and active data selection. Additionally, the use
of SVM is exemplar, and in practice one could use deep
neural networks or other machine learning algorithms that
can be trained faster online, and do not require matrix in-
version for computing the training loss.

6.2.4. Simulation Results

To test the PARG on an aggressive reference input, we
use the Fishhook maneuver as the command reference r,
which is a vehicle maneuver standardized by NHTSA and
commonly used for evaluating roll stability. We keep the
vehicle velocity when entering the maneuver to 80km/h.
The only reference input is the wheel steering angle δ con-
trolled by the PARG; there is no other control algorithm
operating on the vehicle. These results were generated
using the simulation model (21)–(24).

Figure 4: Parameter estimation results for the Fishhook maneuver.
True values in red dashed, estimates in blue, and 2σ interval is shaded
light blue.

Figure 4 shows the estimation results during closed-
loop simulation with the PARG determining the steering
angle. After the initial transients, the spring stiffness Kϕ,
damping coefficient Dϕ, and CoG distance h all converge
close to their respective true values. The estimates are
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contained within the confidence intervals, which reduce
with time until they reach a steady-state confidence inter-
val, limited by the noise level that we have selected for the
MAPF.

Herein, we compare three reference selection algorithms
to showcase the effectiveness of the PARG: (1) the PARG
algorithm, as described in this section; (2) a nominal con-
troller that uses the Fishhook reference command directly
without adaptation; and (3) a prescient ‘oracle’ RG that
operates with complete knowledge of the system, including
the true parameters. The oracle-RG is implemented online
by simulating the vehicle model with true parameters and
selecting as vt the value that does not result in a constraint
violation and is closest to the reference. The oracle-RG is
the ideal case where all parameters are known, but if these
are assumed known yet are incorrectly set, constraint vio-
lations often occur in the maneuvers simulated next. The
other comparison could be with a robust RG obtained by
linearizing the nonlinear dynamics at multiple operating
points, each for the extreme values of the a-priori parame-
ter bounds, and using the resulting polytopic difference in-
clusion to compute a robust constraint admissible set [44].
However, due to the linearization at multiple operating
points and the a-priori parameter ranges, such robust RG
is extremely conservative, and the simulated maneuvers
are poorly executed.

Figure 5 shows the closed-loop constraint satisfaction
and resulting steering angle command of PARG, oracle-
RG, and nominal Fishhook maneuver, where the reference
is directly applied as command, for the same initial con-
ditions of Figure 4. Following the nominal Fishhook ma-
neuver results in repeated constraint violation (black dots)
indicating wheel lift-offs, while PARG and oracle-RG sat-
isfy the constraints. PARG is slightly more conservative
than oracle-RG, since the latter perfectly knows the vehicle
parameters, which results in slightly smaller LTR values.
While oracle-RG reaches the reference, the PARG con-
verges to a value close to the reference due to the uncer-
tainty not disappearing even at steady state, as discussed
above. On the other hand, during the transient, from 0.2s
to 0.5s, the PARG behaves very similarly to the oracle-
RG showing that is not excessively conservative. Figure 6
shows recursive feasibility according to Theorem 1.

Figure 6 shows the closed-loop constraint satisfaction
and resulting steering angle command for a slightly less
aggressive version of the Fishhook maneuver. In this sce-
nario, PARG also reaches the reference according to Theo-
rem 2, albeit slower than the oracle-RG due to accounting
for the uncertainty. The interested reader can find the im-
provement of performance of PARG over a robust RG in
this case study in [25], which is not repeated here.

A detailed comparison of PARG with other robust or
adaptive RG methods is beyond the scope of this paper,
and in general may not be appropriate due to the struc-
tural differences of PARG with existing algorithms. Specif-
ically, the method in [45] considers additive disturbance,
the method in [21] freely allows constraint violations dur-

Figure 5: LTR and steering angle for closed-loop control in the Fish-
hook maneuver. The PARG using the estimator with results in Fig-
ure 4 satisfies the LTR constraint, whereas the nominal steering ref-
erence violates multiple times the constraints.

Figure 6: LTR and steering angle for closed-loop control in a less
aggressive Fishhook maneuver (compare with Figure 5). The PARG
using the estimator with results in Figure 4 satisfies the LTR con-
straint and converges to the reference as the oracle RG.

ing learning, which is impractical for rollover avoidance,
and the method in [23] is completely black-box and ar-
guably requires larger amount of data and exploration of
several trajectories, as opposed to our grey-box approach.

7. Conclusions

In this paper, we developed an adaptation mechanism
for reference governors that can handle constraint satis-
faction in systems with parametric uncertainties. Offline,
we use machine learning to construct a parameter-robust
constraint admissible set for different ranges of the uncer-
tainty and online we use the confidence interval obtained
from the estimator to instantiate the invariant set used
for determining the command. The dynamics of the es-
timator confidence intervals and the properties of the al-
gorithm used for machine learning ensure recursive fea-
sibility in probability, as well as finite time convergence
in probability to robustly admissible references. We have
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demonstrated the method in two case studies of different
difficulty. Future work will investigate how to reduce the
sample-complexity to further reduce the online computa-
tional load of the PARG and investigate using PARG with
non-statistical estimators, such as interval estimators and
set membership estimators.
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