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Abstract
Identifying the mathematical relationships that best describe a dataset remains a very chal-
lenging problem in machine learning, and is known as Symbolic Regression (SR). In contrast
to neural networks which are often treated as black boxes, SR attempts to gain insight into
the underlying relationships between the independent variables and the target variable of a
given dataset by assembling analytical functions. In this paper, we present GSR, a General-
ized Symbolic Regression approach, by modifying the conventional SR optimization problem
formulation, while keeping the main SR objective intact. In GSR, we infer mathematical
relationships between the independent variables and some transformation of the target vari-
able. We constrain our search space to a weighted sum of basis functions, and propose a
genetic programming approach with a matrix-based encoding scheme. We show that our
GSR method is competitive with strong SR benchmark methods, achieving promising ex-
perimental performance on the well-known SR benchmark problem sets. Finally, we high-
light the strengths of GSR by introducing SymSet, a new SR benchmark set which is more
challenging relative to the existing benchmarks.
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Abstract

Identifying the mathematical relationships that best describe a dataset remains a very chal-
lenging problem in machine learning, and is known as Symbolic Regression (SR). In contrast
to neural networks which are often treated as black boxes, SR attempts to gain insight into
the underlying relationships between the independent variables and the target variable of a
given dataset by assembling analytical functions. In this paper, we present GSR, a General-
ized Symbolic Regression approach, by modifying the conventional SR optimization problem
formulation, while keeping the main SR objective intact. In GSR, we infer mathematical
relationships between the independent variables and some transformation of the target vari-
able. We constrain our search space to a weighted sum of basis functions, and propose
a genetic programming approach with a matrix-based encoding scheme. We show that
our GSR method is competitive with strong SR benchmark methods, achieving promising
experimental performance on the well-known SR benchmark problem sets. Finally, we high-
light the strengths of GSR by introducing SymSet, a new SR benchmark set which is more
challenging relative to the existing benchmarks.

1 Introduction

Symbolic regression (SR) aims to find a mathematical expression that best describes the relationship between
the independent variables and the target (or dependent) variable based on a given dataset. By inspecting the
resulting expression, we may be able to identify nontrivial relations and/or physical laws which can provide
more insight into the system represented by the given dataset. SR has gained tremendous interest and
attention from researchers over the years for many reasons. First, many rules and laws in natural sciences
(e.g. in physical and dynamical systems (Schmidt & Lipson, 2009; Quade et al., 2016)) are accurately
represented by simple analytical equations (which can be explicit (Brunton et al., 2016) or implicit (Mangan
et al., 2016; Kaheman et al., 2020)). Second, in contrast to neural networks that involve complex input-
output mapping, and hence are often treated as black boxes which are difficult to interpret, SR is very
concise and interpretable. Finally, symbolic equations may outperform neural networks in out-of-distribution
generalization (especially for physical problems) (Cranmer et al., 2020).

SR does not require a priori specification of a model. Conventional regression methods such as least squares
(Wild & Seber, 1989), likelihood-based (Edwards, 1984; Pawitan, 2001; Tohme et al., 2021), and Bayesian
regression techniques (Lee, 1997; Leonard & Hsu, 2001; Tohme, 2020; Tohme et al., 2020; Vanslette et al.,
2020) use fixed-form parametric models and optimize for the model parameters only. SR seeks to find both
a model structure and its associated parameters simultaneously.
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Related Work. The SR problem has been widely studied in the literature (Orzechowski et al., 2018; La Cava
et al., 2021). SR can be a very challenging problem and is thought to be NP-hard (Lu et al., 2016; Udrescu
& Tegmark, 2020; Petersen et al., 2021; Virgolin & Pissis, 2022). It can also be computationally expensive
as the search space is very wide (or complex) containing expressions of any size and length de França
(2018), this issue being exacerbated with the dimension of the input feature vector (i.e. the number of
independent variables). Several approaches have been suggested over the years. Most of the methods
use genetic (or evolutionary) algorithms (Koza & Koza, 1992; Schmidt & Lipson, 2009; Bäck et al., 2018;
Virgolin et al., 2019). Some more recent methods are Bayesian in nature (Jin et al., 2019), some are physics-
inspired (Udrescu & Tegmark, 2020), and others use divide-and-conquer (Luo et al., 2017) and block building
algorithms (Chen et al., 2017b; 2018a;b). Lately, researchers proposed using machine learning algorithms
and neural networks to solve the SR problem (Martius & Lampert, 2016; Sahoo et al., 2018; Udrescu et al.,
2020; Ahn et al., 2020; Al-Roomi & El-Hawary, 2020; Kim et al., 2020; Kommenda et al., 2020; Burlacu
et al., 2020; Biggio et al., 2021; Mundhenk et al., 2021; Petersen et al., 2021; Valipour et al., 2021; Razavi
& Gamazon, 2022; Zhang et al., 2022a; d’Ascoli et al., 2022; Kamienny et al., 2022; Zhang et al., 2022b).
Furthermore, some works suggested constraining the search space of functions to generalized linear space
(Nelder & Wedderburn, 1972) (e.g. Fast Function eXtraction (McConaghy, 2011), Elite Bases Regression
(Chen et al., 2017a), etc.) which proved to accelerate the convergence of genetic algorithms significantly (at
the expense of sometimes losing the generality of the solution (Luo et al., 2017)).

Most of the SR methods use a tree-based implementation, where analytical functions are represented (or
encoded) by expression trees. Some approaches suggested encoding functions as an integer string (O’Neill
& Ryan, 2001), others proposed representing them using matrices (Luo & Zhang, 2012; Chen et al., 2017a;
de França, 2018; de Franca & Aldeia, 2020). As we will discuss in later sections, our implementation relies
on matrices to encode expressions.

Our Contribution. We present Generalized Symbolic Regression (GSR), by modifying the conventional
SR optimization problem formulation, while keeping the main SR objective intact. In GSR, we identify
mathematical relationships between the independent variables (or features) and some transformation of the
target variable. In other words, we learn the mapping from the feature space to a transformed target
space (where the transformation applied to the target variable is also learned during this process). To
find the appropriate functions (or transformations) to be applied to the features as well as to the targets,
we constrain our search space to a weighted sum of basis functions. In contrast to conventional tree-
based genetic programming approaches, we propose a matrix-based encoding scheme to represent the basis
functions (and hence the full mathematical expressions). We run a series of numerical experiments on the
well-known SR benchmark datasets and show that our proposed method is competitive with many strong
SR methods. Finally, we introduce SymSet, a new SR benchmark problem set that is more challenging
than existing benchmarks.

2 Notation and Problem Formulation

Consider the following regression task. We are given a dataset D = {xi, yi}Ni=1 consisting of N i.i.d. paired
examples, where xi ∈ Rd denotes the ith d-dimensional input feature vector and yi ∈ R represents the
corresponding continuous target variable. The goal of SR is to search the space of all possible mathematical
expressions S defined by a set of given mathematical functions (e.g., exp, ln, sin, cos) and arithmetic
operations (e.g., +, −, ×, ÷), along with the following optimization problem:

f∗ = argmin
f∈S

N∑
i=1

[
f(xi)− yi

]2 (1)

where f is the model function and f∗ is the optimal model.
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3 Generalized Symbolic Regression (GSR)

In this section, we introduce our Generalized Symbolic Regression (GSR) approach. We present its problem
formulation, and discuss its solution and implementation.

3.1 Modifying the goal of symbolic regression

As highlighted in Section 2, the goal of SR is to search the function space to find the model that best fits the
mapping between the independent variables and the target variable (i.e. the mapping between xi and yi, for
all i). Since the main objective of SR is to recognize correlations and find non-trivial interpretable models
(rather than making direct predictions), we modify the goal of SR; we instead search the function space to
find the model that best describes the mapping between the independent variables and a transformation
of the target variable (i.e. the mapping between xi and some transformation or function of yi, for all i).
Formally, we propose modifying the goal of SR to search for appropriate (model) functions from a space of all
possible mathematical expressions S defined by a set of given mathematical functions (e.g., exp, ln, sin, cos)
and arithmetic operations (e.g., +, −, ×, ÷), which can be described by the following optimization problem:

f∗, g∗ = arg min
f,g∈S

N∑
i=1

[
f(xi)− g(yi)

]2 (2)

where f∗ and g∗ are the optimal analytical functions. In other words, instead of searching for mathematical
expressions of the form y = f(x) as is usually done in the SR literature, the proposed GSR approach attempts
to find expressions of the form g(y) = f(x). We illustrate this concept in Table 1.

Table 1: GSR finds analytical expressions of the form g(y) = f(x) instead of y = f(x).

Ground Truth Expression Learned Expression

y =
√
x+ 5 y2 = x+ 5

y = 1/(3x1 + x3
2) y−1 = 3x1 + x3

2
y = (2x1 + x2)− 2

3 ln(y) = − 2
3 ln(2x1 + x2)

y = ln(x3
1 + 4x1x2) ey = x3

1 + 4x1x2
y = ex

3
1+2x2+cos(x3) ln(y) = x3

1 + 2x2 + cos(x3)

Although the main goal of GSR is to find expressions of the form g(y) = f(x), we may encounter situations
where it is best to simply learn expressions of the form y = f(x) (i.e. g(y) = y). For instance, consider the
ground truth expression y = sin(x1) + 2x2. In this case, we expect to learn the expression exactly as is (i.e.
g(y) = y and f(x) = sin(x1) + 2x2) as long as the right basis functions (i.e. sin(x) and x in this case) are
within the search space, as we will see in the next sections.

Making predictions. Given a new input feature vector x∗, predicting y∗ with GSR is simply a matter
of solving the equation g(y) = f(x∗) for y, or equivalently, g(y)− f(x∗) = 0. Note that f(x∗) is a known
quantity and y is the only unknown. If g(·) is an invertible function, then y∗ can be easily found using
y∗ = g−1(f(x∗)

)
. If g(·) is not invertible, then y∗ will be the root of the function h(y) = g(y) − f(x∗).

Root-finding algorithms include Newton’s method. Whether the function g(·) is invertible or not, we might
end up with many solutions for y∗ (an invertible function, which is not one-to-one, can lead to more than
one solution). In this case, we choose y∗ to be the solution that belongs to the range of y which can be
determined from the training dataset.
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3.2 A new problem formulation for symbolic regression

Now that we have presented the goal of our proposed GSR approach (summarized by Equation 2), we
need to constrain the search space of functions S to reduce the computational challenges and accelerate the
convergence of our algorithm. Inspired by McConaghy (2011); Chen et al. (2017a) as well as classical system
identification methods (Brunton et al., 2016), we confine S to generalized linear models, i.e. to functions
that can be expressed as a linear combination (or as a weighted sum) of basis functions (which can be linear
or nonlinear). In mathematical terms, for a given input feature vector xi and a corresponding target variable
yi, the search space S is constrained to model functions of the form:

f(xi) =
Mφ∑
j=1

αjφj(xi), g(yi) =
Mψ∑
j=1

βjψj(yi) (3)

where φj(·) and ψj(·) are the basis functions applied to the feature vector xi and the target variable
yi, respectively, Mφ and Mψ denote the corresponding number of basis functions involved, respectively.
In matrix form, the minimization problem described in Equation 2 is equivalent to finding the vectors of
coefficients α = [α1 · · · αMφ

]T and β = [β1 · · · βMψ
]T such that:

α∗,β∗ = argmin
α,β
||Xα−Yβ||2 (4)

where

X =

φ1(x1) φ2(x1) · · · φMφ
(x1)

...
... · · ·

...
φ1(xN ) φ2(xN ) · · · φMφ

(xN )

 , Y =

ψ1(y1) ψ2(y1) · · · ψMψ
(y1)

...
... · · ·

...
ψ1(yN ) ψ2(yN ) · · · ψMψ

(yN )

 . (5)

Note that if we examine the minimization problem as expressed in Equation 4, we can indeed minimize
||Xα − Yβ||2 by simply setting α∗ = 0 and β∗ = 0 which will not lead to a meaningful solution to our
GSR problem. In addition, to avoid reaching overly complex mathematical expressions for f(·) and g(·), we
are interested in finding sparse solutions for the weight vectors α∗ and β∗ consisting mainly of zeros which
results in simple analytical functions containing only the surviving basis functions (i.e. whose corresponding
weights are nonzero). This is closely related to sparse identification of nonlinear dynamics (SINDy) methods
(Brunton et al., 2016). To this end, we apply L1 regularization, also known as Lasso regression (Tibshirani,
1996), by adding a penalty on the L1 norm of the weights vector (i.e. the sum of its absolute values)
which leads to sparse solutions with few nonzero coefficients. In terms of our GSR method, Lasso regression
automatically performs basis functions selection from the set of basis functions that are under consideration.

Putting the pieces together, we reformulate the minimization problem in Equation 4 as a constrained Lasso
regression optimization problem defined as

w∗ = argmin
w
||Aw||22 + λ||w||1

s.t. ||w||2 = 1
(6)

where λ > 0 is the regularization parameter, and

A =
[
X −Y

]
, w =

[
α

β

]
= [α1 · · · αMφ

β1 · · · βMψ
]T . (7)

3.3 Solving the GSR problem

To solve the GSR problem, we first present our approach for solving the constrained Lasso problem in
Equation 6, assuming some particular sets of basis functions are given. We then outline our genetic program-
ming (GP) procedure for finding the appropriate (or optimal) sets of these basis functions, before discussing
our matrix-based encoding scheme (to represent the basis functions) that we will use in our GP algorithm.
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Algorithm 1: Solving the constrained Lasso optimization problem using ADMM
Input: A, λ, ρ, w0, z0, u0
Output: w
function SolveADMM(A, λ, ρ, w0, z0, u0)

Initialization: w ← w0, z ← z0,u← u0;
while Not Converge do

w ←
(
2ATA+ ρI

)−1 · ρ (z − u);
w ← w/||w||2;
z ← Sλ/ρ

(
w + u

)
;

u ← u+w − z;
end

end function

3.3.1 Solving the Lasso optimization problem given particular sets of basis functions

We assume for now that, in addition to the dataset D = {xi, yi}Ni=1, we are also given the sets of basis
functions {φj(xi)}

Mφ

j=1 and {ψj(yi)}
Mψ

j=1 used with the input feature vector xi and its corresponding target
variable yi, respectively, for all i. In other words, we assume for now that the matrix A in Equation 7 is
formed based on particular sets of basis functions

(
i.e. {φj(xi)}

Mφ

j=1 and {ψj(yi)}
Mψ

j=1
)
, and we are mainly

interested in solving the constrained optimization problem in Equation 6. Applying the alternating direction
method of multipliers (ADMM) (Boyd et al., 2011), the optimization problem in Equation 6 can be written as

w∗ = argmin
w
||Aw||22 + λ||z||1

s.t. ||w||2 = 1
w − z = 0

(8)

where λ > 0 is the regularization parameter. The scaled form of ADMM (see Boyd et al. (2011) for details)
for this problem is

wk ← argmin
||w||2=1

Lρ(w, zk−1,uk−1)

zk ← Sλ/ρ
(
wk + uk−1

)
uk ← uk−1 +wk − zk

(9)

where u is the scaled dual vector, and

Lρ(w, z,u) = ||Aw||22 + ρ

2
∣∣∣∣w − z + u

∣∣∣∣2
2 (10)

where ρ > 0 is the penalty parameter and the soft thresholding operator S is defined as

Sκ(a) =


a− κ a > κ

0 |a| ≤ κ
a+ κ a < −κ

(11)

To find the minimizer wk in the first step of the ADMM algorithm above (in Equation 9), we first com-
pute the gradient of the function Lρ(w, zk−1,uk−1) with respect to w, set it to zero, and then normalize
the resulting vector solution:

0 =∇wLρ(w, zk−1,uk−1)
∣∣
w=wk

= 2ATAwk + ρ (wk − zk−1 + uk−1)
(12)
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It follows that
wk =

(
2ATA+ ρI

)−1 · ρ (zk−1 − uk−1)
wk = wk/||wk||2

(13)

Algorithm 1 outlines the overall process for solving the constrained Lasso optimization problem in Equation 6,
for a given matrix A, regularization parameter λ, penalty parameter ρ, and initial guesses w0, z0, u0.

3.3.2 Finding the appropriate sets of basis functions using genetic programming

Now that we have presented Algorithm 1 that solves the constrained Lasso optimization problem in
Equation 6 for particular sets of basis functions, we go through our procedure for finding the optimal sets
of basis functions

(
and hence, the optimal analytical functions f(·) and g(·)

)
.

Encoding Scheme
Most of the SR methods rely on expression trees in their implementation. That is, each mathematical
expression is represented by a tree where nodes (including the root) encode arithmetic operations (e.g. +,
−, ×, ÷) or mathematical functions (e.g. cos, sin, exp, ln), and leaves contain the independent variables
(i.e. x1, . . . , xd) or constants. Inspired by Luo & Zhang (2012); Chen et al. (2017a), we use matrices instead
of trees to represent the basis functions. However, we propose our own encoding scheme that we believe is
general enough to handle/recover a wide range of expressions.

We introduce the basis matrices Bφ and Bψ to represent the basis functions φ(·) and ψ(·) used with the
feature vector x and the target variable y, respectively. The basis matricesBφ andBψ are of sizes nBφ×mBφ
and nBψ × 1 respectively (i.e. Bψ is a column vector), and take the form

Bφ =


bφ1,1 . . . bφ1,m

Bφ

... · · ·
...

bφn
Bφ

,1 . . . bφn
Bφ

,m
Bφ

 , Bψ =


bψ1,1
...

bψn
Bψ

,1

 , (14)

where the entries bφi,j and bψi,1 are all integers. The first column bφ•,1 of Bφ and the first (and only) column
bψ•,1 of Bψ indicate the mathematical function (or transformation) to be applied (on the input feature vector
x and the target variable y, respectively). In Bφ, the second column bφ•,2 specifies the type of argument (see
Table 2), and the remaining nv = mBφ−2 columns bφ•,3, · · · , b

φ
•,m

Bφ
indicate which independent variables (or

features) are involved (i.e. the active operands). The quantity nv represents the maximum total multiplicity
of all the independent variables included in the argument. Note that nBφ and nBψ specify the number of
transformations to be multiplied together (i.e. each basis function φ(·) and ψ(·) will be a product of nBφ
and nBψ transformations, respectively).

The encoding/decoding process happens according to a table of mapping rules that is very straightforward to
understand and employ. For instance, consider the mapping rules outlined in Table 2, where d is the dimen-
sion of the input feature vector. As we will see in our numerical experiments in Section 4, we will adopt this
table for many SR benchmark problems. Other mapping tables are defined according to different benchmark
problems1 (more details about the SR benchmark problem specifications can be found in Appendix C). The
encoding from the analytical form of a basis function to the basis matrix is straightforward. For example,
for d = 3, nBφ = 4 and mBφ = 5 (i.e. nv = 3), the basis function φ(x) = x2 cos(x2

1x2) ln(x1 + x3) can be
generated according to the encoding steps shown in Table 3.

1Each SR benchmark problem uses a specific set (or library) of allowable mathematical functions (e.g. cos, sin, exp, log),
and hence, we mainly modify the first two rows of the mapping tables.
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Table 2: Example table of mapping rules for a basis
function. The identity operator is denoted by •1.

b•,1 0 1 2 3 4 5
Transformation (T ) 1 •1 cos sin exp ln
b•,2 0 1 2
Argument Type (arg) x

∑ ∏
b•,3, · · · , b•,mB 0 1 2 3 · · · d
Variable (v) skip x1 x2 x3 · · · xd

Table 3: Encoding steps corresponding to the
basis function φ(x) = x2 cos(x2

1x2) ln(x1 + x3).

Step T arg v1 v2 v3 Update

1 •1 x x2 — — T1(x) = x2
2 cos

∏
x1 x1 x2 T2(x) = cos(x2

1x2)
3 ln

∑
x1 x3 skip T3(x) = ln(x1 + x3)

4 1 — — — — T4(x) = 1
Final Update: φ(x) = T1(x) · T2(x) · T3(x) · T4(x)

Based on the mapping rules in Table 2 and the encoding steps in Table 3, the basis function
φ(x) = x2 cos(x2

1x2) ln(x1 + x3) can be described by a 4× 5 matrix as follows:

Bφ =


1 0 2 • •
2 2 1 1 2
5 1 1 3 0
0 • • • •

 (15)

Remark 3.1. In Table 3, — denotes entries that are ignored during the construction of the basis function.
The argument type in Step 1 is x which implies that we only select the first variable (encoded by b•,3) out of
the nv variables as an argument, and hence the entries corresponding to v2 and v3 are ignored. Similarly, the
transformation in Step 4 is T = 1 which implies that the argument type and the nv variables are all ignored.
These are the only two cases where some entries are ignored during the construction process. The same
ignored entries are reflected in the matrixBφ using •. More encoding examples can be found in Appendix B.

Remark 3.2. The term ‘skip’ can be thought of as 0 or 1 when the argument type is summation
∑

or
multiplication

∏
respectively. To account for the case where the argument type is x, we let b•,3 ∈ {1, . . . , d}

(i.e. we exclude 0) as b•,3 is the only entry considered in this case (see Remark 3.1).

Remark 3.3. The same basis function can be represented by several matrices for three reasons:
i) Each basis function is a product of transformations where each transformation is represented by a row in
the basis matrix. Hence, a new basis matrix for the same basis function is formed by simply swapping rows.
ii) When the argument type is

∑
or
∏
, the order of the nv variables (including ‘skip’) starting from the

third column of the matrix Bφ does not affect the expression. Hence a new basis matrix for the same basis
function is formed by simply swapping these columns.
iii) As mentioned in Remark 3.1, some entries are ignored in some cases. Hence a new basis matrix for the
same basis function is formed by simply modifying these entries.

Remark 3.4. In the example above, we showed how we can produce the matrix Bφ to represent a basis func-
tion φ(x). A similar (and even simpler) procedure can be applied to produce the matrix Bψ that represents
a basis function ψ(y); we only need a mapping table corresponding to the set of allowable transformations
(e.g. the first two rows of Table 2).

Note that the decoding from the basis matrix to the expression of a basis function is trivial; we go
through the rows of the basis matrix and convert them into transformations according to a mapping ta-
ble (e.g. Table 2), before finally multiplying them together. Also note that the search space of basis
functions

(
mainly φ(·)

)
is huge in general which makes enumeration impractical, and hence, we will rely

on GP for effective search process.
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Genetic Programming (Evolutionary Algorithm)
The SR problem has been extensively studied in the literature, and a wide variety of methods has been
suggested over the years to tackle it. Most of these methods are based on genetic programming (GP) (Koza
& Koza, 1992; Schmidt & Lipson, 2009; Bäck et al., 2018; Virgolin et al., 2019). This is a heuristic search
technique that tries to find the optimal mathematical expression (in the SR context) among all possible
expressions within the search space. The optimal (or best) expression is found by minimizing some objective
function, known as the fitness function.

GP is an evolutionary algorithm that solves the SR problem. It starts with an initial population (or first
generation) of Np randomly generated individuals (i.e. mathematical expressions), then recursively applies
the selection, reproduction (crossover), and mutation operations until termination. During the selection
operation, the fitness of each of the Np individuals of the current generation is evaluated (according to
the fitness function), and the np fittest (or best) individuals are selected for reproduction and mutation
(the selected individuals are part of the new generation and can be thought of as parents). The reproduc-
tion (crossover) operation generates new individuals (offsprings) by combining random parts of two parent
individuals. The mutation operation produces a new individual by changing a random part of some par-
ent individual. Finally, the recursion terminates, when some individual reaches a predefined fitness level
(i.e. until some stopping criterion is satisfied).

In our GSR approach, we use a slightly modified version of the GP algorithm described above. Each individual
in the population initially consists of two sets of Mφ and Mψ randomly generated basis functions encoded
by basis matrices. Such matrices will form the functions f(·) and g(·) to be used with the input feature
vector x and the target variable y, respectively. This is different from the GP algorithm described above
where individuals typically represent the full mathematical expression or function as a whole. In addition,
the Np individuals in the population of a new generation consist of the np fittest individuals of the current
generation in addition to Np − np individuals generated as follows. With probability 1

4 , a new individual
is generated (reproduced) by randomly combining basis functions (i.e. basis matrices) from two parent
individuals (i.e. crossover) selected from the np surviving individuals. With probability 1

4 , a new individual
is generated by randomly choosing one of the np surviving individuals, and replacing (mutating) some of its
basis functions (i.e. basis matrices) with completely new ones (i.e. randomly generated). With probability
1
2 , a completely new individual is randomly generated (in the same way we generate the individuals of the
initial population). Randomly generating individuals enhances diversity in the basis functions and avoids
reaching a plateau. Indeed, this is just one of many ways that can be followed to apply some sort of
crossover/mutation on individuals defined by their sets of basis functions instead of their full mathematical
expression. A pseudocode of our proposed GSR algorithm is provided in Appendix A.

4 Experimental Results

We evaluate our proposed GSR method through a series of numerical experiments on a number of common
SR benchmark datasets. In particular, we compare our approach to existing state-of-the-art methods using
three popular SR benchmark problem sets: Nguyen (Uy et al., 2011), Jin (Jin et al., 2019), and Neat (Trujillo
et al., 2016). In addition, we demonstrate the benefits of our proposed method on the recently introduced
SR benchmark dataset called Livermore (Mundhenk et al., 2021), which covers problems with a wider range
of difficulty compared to the other benchmarks. Finally, we introduce a new and more challenging set of
SR benchmark problems, which we call SymSet, mainly for two reasons: i) Our GSR algorithm achieves
perfect scores on Nguyen, and almost perfect scores on Jin, Neat, and Livermore, and hence we introduced a
benchmark problem set that is more challenging, ii) The existing SR benchmark problem sets do not really
reflect the strengths of our proposed method, and thus we designed SymSet to explicitly highlight the benefits
we gain from using our proposed approach. SymSet contains benchmark problems with similar properties
as Nguyen, Jin, Neat, and Livermore benchmarks, but with an additional function composition (or symbolic
layer). Each SR benchmark problem consists of a ground truth expression, a training and test dataset, and
a set (or libary) of allowable arithmetic operations and mathematical functions. Specifications of all the SR
benchmark problems are described in Appendix C. Hyperparameters and additional experiment details are
provided in Appendix A.
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Table 4: Recovery rate comparison of GSR against several algorithms on the Nguyen benchmark set over
100 independent runs. The formulas for these benchmarks are shown in Appendix Table 19.

Recovery Rate (%)
Benchmark Expression GSR NGGPPS DSR Eureqa

Nguyen-1 y = x3 + x2 + x 100 100 100 100
Nguyen-2 y = x4 + x3 + x2 + x 100 100 100 100
Nguyen-3 y = x5 + x4 + x3 + x2 + x 100 100 100 95
Nguyen-4 y = x6 + x5 + x4 + x3 + x2 + x 100 100 100 70
Nguyen-5 y = sin(x2) cos(x)− 1 100 100 72 73
Nguyen-6 y = sin(x) + sin(x+ x2) 100 100 100 100
Nguyen-7 y = ln(x+ 1) + ln(x2 + 1) 100 97 35 85
Nguyen-8 y =

√
x 100 100 96 0

Nguyen-9 y = sin(x1) + sin(x2
2) 100 100 100 100

Nguyen-10 y = 2 sin(x1) cos(x2) 100 100 100 64
Nguyen-11 y = xx2

1 100 100 100 100

Average 100 99.73 91.18 80.64

Across our experiments, we compare our GSR approach against several strong SR benchmark methods:
Neural-guided genetic programming population seeding (NGGPPS): A hybrid approach of neural-
guided search and GP, which uses a recurrent neural network (RNN) to seed the starting population for GP
(Mundhenk et al., 2021). NGGPPS achieves strong results on the well-known SR benchmarks.
Deep Symbolic Regression (DSR): A reinforcement learning method that proposes a risk-seeking policy
gradient to train an RNN to produce better-fitting expressions (Petersen et al., 2021). DSR is the “RNN
only” version of NGGPPS, and is also considered a strong performer on the common SR benchmarks.
Bayesian Symbolic Regression (BSR): A Bayesian framework which carefully designs prior dis-
tributions to incorporate domain knowledge (e.g. preference of basis functions or tree structure),
and which employs efficient Markov Chain Monte Carlo (MCMC) methods to sample symbolic
trees from the posterior distributions (Jin et al., 2019).
Neat-GP: a GP approach which uses the NeuroEvolution of Augmenting Topologies (NEAT) algorithm
that greatly reduces the effects of bloat (i.e. controls the growth in program size) (Trujillo et al., 2016).
PSTree: A piece-wise non-linear SR method based on decision tree and GP techniques (Zhang et al., 2022a).
PSTree can generate explainable models with high accuracy in a short period of time. PSTree is the cur-
rent top performer on SRBench datasets (La Cava et al., 2021), achieving state-of-the-art performance and
beating other competitive SR methods such as Operon (Kommenda et al., 2020; Burlacu et al., 2020) and
AI Feynman (Udrescu et al., 2020).
PySR: A fast and parallelized SR method in Python/Julia (Cranmer, 2020), which uses evolutionary algo-
rithms to search for symbolic expressions by optimizing a particular objective; the metric used for scoring
equations is based on the work by Cranmer et al. (2020).
gplearn: A Koza-style SR method in Python, which starts with a random population of models, and then
iteratively performs tournament selection, crossover, and mutation (Koza & Koza, 1992).

We first compare GSR against NGGPPS, DSR, as well as Eureqa (a popular GP-based commercial software
proposed in Schmidt & Lipson (2009)) on the Nguyen benchmarks. We follow their experimental procedure
and report the results in Table 4. We use recovery rate as our performance metric, defined as the fraction of
independent training runs in which an algorithm’s resulting expression achieves exact symbolic equivalence
compared to the ground truth expression (as verified using a computer algebra system such as SymPy (Meurer
et al., 2017)). Table 4 shows that GSR significantly outperforms DSR and Eureqa in exactly recovering the
Nguyen benchmark expressions. As NGGPPS achieves nearly perfect scores on the Nguyen benchmarks,
GSR shows only a slight improvement (on Nguyen-7) compared to NGGPPS. However, GSR exhibits faster
runtime than NGGPPS; by running each benchmark problem, GSR takes an average of 2.5 minutes per
run on the Nguyen benchmarks compared to 3.2 minutes for NGGPPS. Runtimes on individual Nguyen
benchmark problems are shown in Appendix Table 11.
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Table 5: Comparison of mean root-mean-
square error (RMSE) for GSR against
several methods on the Jin benchmark
problem set over 50 independent runs. The
formulas for these benchmarks are shown in
Appendix Table 19.

Mean RMSE
Benchmark GSR NGGPPS DSR BSR

Jin-1 0 0 0.46 2.04
Jin-2 0 0 0 6.84
Jin-3 0 0 0.00052 0.21
Jin-4 0 0 0.00014 0.16
Jin-5 0 0 0 0.66
Jin-6 0.018 0 2.23 4.63

Average 0.0030 0 0.45 2.42

Table 6: Comparison of median RMSE for GSR against
several methods on the Neat benchmark problem set over
30 independent runs. The formulas for these benchmarks
are shown in Appendix Table 19.

Median RMSE
Benchmark GSR NGGPPS DSR Neat-GP

Neat-1 0 0 0 0.0779
Neat-2 0 0 0 0.0576
Neat-3 0 0 0.0041 0.0065
Neat-4 0 0 0.0189 0.0253
Neat-5 0 0 0 0.0023
Neat-6 2.0× 10−4 6.1× 10−6 0.2378 0.2855
Neat-7 0.0521 1.0028 1.0606 1.0541
Neat-8 4.0× 10−4 0.0228 0.1076 0.1498
Neat-9 8.1× 10−9 0 0.1511 0.1202

Average 0.0059 0.1139 0.1756 0.1977

We next evaluate GSR on the Jin and Neat benchmark sets. The results are reported in Tables 5 and 6
respectively. A RMSE value of 0 indicates exact symbolic equivalence. From Table 5, we can clearly
observe that GSR outperforms DSR and BSR and performs nearly as good as NGGPPS recovering all
the Jin problems (accross all independent runs) except Jin-6. Table 6 shows that GSR outperforms all
other methods (NGGPPS, DSR, and Neat-GP) on the Neat benchmarks. Note that expressions containing
divisions (i.e. Neat-6, Neat-8, and Neat-9) are not exactly recovered by GSR (i.e. only approximations are
recovered) since the division operator is not included in our scheme (see Appendix E for details).

We then run experiments on the Livermore benchmark set which contains problems with a large range of
difficulty. In addition to NGGPPS and DSR, we compare against NGGPPS using the soft length prior (SLP)
and hierarchical entropy regularizer (HER) recently introduced in Larma et al. (2021). We also compare
against a recently proposed method, known by genetic expert-guided learning (GEGL) (Ahn et al., 2020),
which trains a molecule-generating deep neural network (DNN) guided with genetic exploration. Table 7
shows that our GSR method outperforms all other methods on both the Nguyen and Livermore benchmark
sets, beating NGGPPS+SLP/HER which was the top performer on these two benchmark sets.

We highlight the strengths of GSR on the new SymSet benchmark problem set, and show the benefits of
searching for expressions of the form g(y) = f(x) instead of y = f(x). Typical expressions, with exact
symbolic equivalence, recovered by GSR are shown in Appendix Table 26. The key feature of GSR lies in its
ability to recover expressions of the form g(y) = f(x). To better highlight the benefits offered by this feature,
we disable it by constraining the search space in GSR to expressions of the form y = f(x) (which is the most
critical ablation). We refer to this special version of GSR as s-GSR. Note that most of the SymSet expressions
cannot be exactly recovered by s-GSR (i.e. they can only be approximated). We compare the performance of
GSR against s-GSR on the SymSet benchmarks in terms of accuracy and runtime (see Table 8). The results
clearly show that GSR is faster than s-GSR, averaging around 2 minutes per run on the SymSet benchmarks
compared to 2.27 minutes for s-GSR (i.e. ∼ 11% runtime improvement). In addition, GSR is more accurate
than s-GSR by two orders of magnitude. This is due to the fact that GSR exactly recovers the SymSet
expressions across most of the runs, while s-GSR only recovers approximations for most of these expressions.
This reflects the superiority of GSR over s-GSR, which demonstrates the benefits of learning expressions of
the form g(y) = f(x) in SR tasks. We further compare GSR against several strong SR methods with similar
(or better) expression ability. In particular, we experiment on SymSet with NGGPPS, PSTree, PySR, and
gplearn (see Table 8). GSR is more accurate than all these methods by three orders of magnitude, which
further demonstrates the advantage of our proposed approach. As for the runtime, PSTree is the fastest
method, averaging around 16 seconds per run on the SymSet expressions, while maintaining solid accuracies.
This comes as no surprise given its state-of-the-art performance on SRBench datasets (La Cava et al., 2021).
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Table 7: Recovery rate comparison of GSR
against several algorithms on the Nguyen and
Livermore benchmark sets over 25 independent
runs. Recovery rates on individual benchmark
problems are shown in Appendix Table 10.

Recovery Rate
(
%
)

All Nguyen Livermore

GSR 90.59 100.00 85.45
NGGPPS+SLP/HER 82.59 92.00 77.45
NGGPPS 78.59 92.33 71.09
GEGL 66.82 86.00 56.36
DSR 49.18 83.58 30.41

Table 8: Average performance in mean RMSE and
runtime, along with their standard errors, for GSR
against s-GSR and several strong SR methods on the
SymSet benchmark problem sets over 25 independent
runs. Mean RMSE and runtime values on individual
benchmark problems are shown in Appendix Table 12.

SymSet Average
Mean RMSE Runtime (sec)

GSR 2.66× 10−4 ± 1.59× 10−4 120.84 ± 4.22
s-GSR 2.56× 10−2 ± 5.27× 10−3 136.19 ± 4.56

PSTree 4.57× 10−1 ± 7.98× 10−2 16.23 ± 0.67
NGGPPS 4.65× 10−1 ± 1.24× 10−1 158.57 ± 2.59

PySR 4.99× 10−1 ± 1.76× 10−1 87.07 ± 21.6
gplearn 7.22× 10−1 ± 1.64× 10−1 163.86 ± 2.94

5 Discussion

Limitations. GSR, including state-of-the-art methods, have difficulty with expressions containing divisions.
For GSR, this is due to the way we define our encoding scheme. Other methods fail even though the division
is included in their framework. GSR can overcome this issue by modifying its encoding scheme to include
divisions within the basis functions (at the expense of significantly increasing the complexity of the search
space). Another limiting factor to GSR is that it cannot recover expressions containing composition of
functions, such as y = ecos(x) + ln(x). This could be overcome by modifying the search space (e.g. one
could expand the definition of a basis function to account for composition of functions up to some number of
layers, or completely modify the search space to a symbolic neural network as in Martius & Lampert (2016);
Sahoo et al. (2018); Kim et al. (2020)). Another challenging task for GSR is to reach, although expressible,
expressions containing multiple complex basis functions simultaneously. This can be due to the choice of the
hyperparameters or the GP search process. A more elaborate discussion about the limitations of GSR can
be found in Appendix E. These limitations will be addressed in a future paper. Indeed, there are plenty of
expressions that still cannot be fully recovered by GSR. This is the case for all other SR methods as well.

Closely related work. There has been growing attention on the SR task with non explicit (or implicit)
mathematical equations and several works have been attempted to address this interesting task. In partic-
ular, implicit sparse identification of nonlinear dynamics (implicit-SINDy) (Mangan et al., 2016; Kaheman
et al., 2020) introduces the concept of identifying implicit expressions of the form f(x, y) = 0 in the context
of differential equations

(
i.e. y = ẋi = dxi

dt for i ∈ {1, . . . , d} where x ∈ Rd
)
. Further, Eureqa (Schmidt &

Lipson, 2009), a well-established baseline SR algorithm, focuses on discovering invariants rather then trying
to perform prediction directly. Inspired by the two aforementioned methods, and by the fact that the main
objective of SR is to recognize correlations and define non-trivial interpretable models, GSR identifies rela-
tions between the input and a transformed output through searching for expressions of the form g(y) = f(x),
which keeps the possibility open for predicting the output y in a straightforward manner.

Computational complexity. Although genetic algorithms are inherently heuristic, understanding how
our GSR algorithm operates and scales could still be valuable. Following Algorithm 2 from Appendix A, we
can approximate the time complexity of GSR as:

O
(
Nε ·Np ·

(
Mφ · nBφ ·mBφ +Mψ · nBψ +Nδ +N + logNp

))
(16)

where Nε is the number of generations until the GP algorithm converges, and Nδ is the number of iterations
until the ADMM algorithm converges. Recall that Np is the population size, Mφ andMψ denote the number
of nBφ ×mBφ and nBψ × 1 basis matrices applied to x and y, respectively, and N is the number of paired
training examples. More details about GSR’s computational complexity can be found in Appendix A.
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Compared to GSR, the special version s-GSR adopts a vanilla SR (where g(y) is simply y) with the same GP
algorithm and coefficient optimization process (through ADMM) as GSR. Hence, s-GSR’s time complexity
can be approximated as:

O
(
Nε ·Np ·

(
Mφ · nBφ ·mBφ +Nδ +N + logNp

))
(17)

Although GSR’s computational complexity contains an additional term of O (Nε ·Np ·Mψ · nBψ ), the
number of GP generations Nε produced by GSR is often much less than that of s-GSR, which explains
the runtime advantage of GSR over s-GSR shown in Table 8.

GSR’s expression ability. The term Generalized in GSR mainly stands for its ability to discover analytical
mappings from the input space to a transformed output space through expressions of the form g(y) = f(x).
This generalizes the classical SR task of identifying expressions of the form y = f(x) (i.e. the latter is simply
a special case of GSR with g(y) = y). In addition, the term Generalized can denote the fact that we constrain
the search space to generalized linear models, keeping in mind that the search space could be confined to
other generalized spaces. Note that, by finding relations of the form g(y) = f(x), the expression ability of
GSR could resemble that of classical SR tasks which search for relations y = fc(x) where the composition
function fc(·) is defined as fc(·) := h ◦ f(·) = h(f(·)) with h(·) = g−1(·) if g(·) is invertable, or a function
class of similar expression ability as g−1(·) if g(·) is not invertable. However, GSR takes advantage of the fact
that the target y is a scalar, and hence, we can apply many basis functions to y (through g(·)) without much
increasing the complexity of the expression. In other words, we can avoid searching for functions equivalent
to g−1(·) in a space that could grow exponentially with the dimension of the input feature vector by simply
searching for their corresponding inverse transformations applied to the scalar target variable. This concept,
which happens implicitly in our algorithm provides an edge for GSR over traditional SR methods in terms of
runtime, complexity, and smoothness of the search space. In short, GSR discovers simplified expressions by
reducing redundancies in the search space, which greatly saves the computational complexity of the search
process. It is worth mentioning that, in principle, GSR’s concept of fitting g(y) = f(x) (instead of y = f(x))
could be applied in conjunction with other classical SR methods; this may require some modifications to
their parameter/coefficient optimization process.

GSR: a simple yet promising algorithm. GSR combines features and benefits from the usually dis-
parate fields of system identification and genetic programming. On the one hand, SINDy methods use
some LASSO-like approaches (or sequential thresholded least squares) to conduct their sparse non-linear
regression for finding solutions that take the form of a linear combination of basis functions. On the other
hand, evolutionary algorithms are effective in finding basis functions that achieve optimal solution. In other
words, GSR combines well established evolutionary methods with more classical system identification meth-
ods. Although each of the algorithm components are relatively simple, the overall GSR algorithm achieves
promising experimental performance, highlighting new insights, which can open up new research directions
for future improvement.

6 Conclusion
We introduce GSR, a Generalized Symbolic Regression approach by modifying the formulation of the conven-
tional SR optimization problem. In GSR, we identify mathematical relationships between the input features
and some transformation of the target variable. That is, we infer the mapping from the feature space to a
transformed target space, by searching for expressions of the form g(y) = f(x) instead of y = f(x). We con-
fine our search space to a weighted sum of basis functions and use genetic programming with a matrix-based
encoding scheme to extract their expressions. We perform several numerical experiments on well-known SR
benchmark datasets and show that our GSR approach is competitive with strong SR benchmark methods.
We further highlight the strengths of GSR by introducing SymSet, a new SR benchmark set which is more
challenging relative to the existing benchmarks. In principle, GSR’s concept of fitting g(y) = f(x) could be
extended to existing SR methods and could boost their performance.
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A Implementation, Hyperparameters, and Additional Experiment Details

Implementation. Our GSR method discovers expressions of the form g(y) = f(x) where y ∈ R, x ∈ Rd,
and where the search space for f(·) and g(·) is constrained to a weighted sum of Mφ and Mψ basis functions(
namely φ(·) and ψ(·)

)
, respectively. We use a matrix-based encoding scheme to represent φ(·) and ψ(·)

using basis matrices Bφ and Bψ of sizes nBφ ×mBφ and nBψ ×1, respectively (where mBφ = nv +2 and nv
is defined in Section 3.3.2). Hence, in addition to the number of basis functions Mφ and Mψ, the parameters
nBφ , nv, andmBφ affect the complexity of the evolved expressions, and hence can be controlled to confine the
search space (although d also affects the complexity of the expression, it is given by the problem and cannot
be controlled). Although more than one basis matrix can lead to the same basis function (see Remark 3.3),
the search space of basis functions

(
mainly φ(·)

)
is still huge in general, and thus, enumerating all the possible

basis functions is not practical. Hence, we will rely on genetic programming (GP) for effective search process.
A pseudocode of our GP-based GSR algorithm is outlined in Algorithm 2.

Algorithm 2: GP Procedure for GSR
Input: Np, np, Mφ, Mψ , Lx, Ly
Output: I∗

function SolveGSR(Np, np, Mφ, Mψ , Lx, Ly)
Initialize population: // I(k)← {I1(k), I2(k), . . . , INp (k)}
k ← 0; // Initialize the generation (or iteration) counter
for i = 1 to Np do
Ii(k)← GenerateRandomIndividual(Mφ, Mψ ,Lx,Ly);
/* Each individual Ii(k) contains two randomly generated sets of Mφ and Mψ basis matrices

respectively */
end
Evaluate each individual Ii(k) with respect to the fitness function;
/* For each individual Ii(k), form the matrix Ai(k), solve for the optimal coefficients vector

wi(k)← SolveADMM(Ai(k), · · · ), then compute its fitness */
I(k)← sorted(I(k)); // in ascending order of fitness
while Stopping Criterion not Satisfied do

k ← k + 1; // Increment the generation (or iteration) counter
UpdateCriterion( );
/* Start with a strict stopping criterion (e.g. a very low error threshold) and slowly relax it

(e.g. gradually increase the error threshold) */
Lsx,Lsy ← ChooseSublibrary(Lx,Ly);
/* Choose sublibraries Lsx ⊆ Lx and Lsy ⊆ Ly of allowable operations to be used with x and y

respectively */
I [1:np](k)← I [1:np](k − 1);
/* The np fittest individuals of the previous generation are copied to the current new one */
for i = np + 1 to Np do

u← GenerateRandomInteger(1, 4);
if u = 1 then
Ii(k)← Reproduce(I [1:np](k),Lsx,Lsy);
/* Crossover based on the surviving individuals */

else if u = 2 then
Ii(k)←Mutate(I [1:np](k),Lsx,Lsy);
/* Mutation based on the surviving individuals */

else
Ii(k)← GenerateRandomIndividual(Mφ, Mψ ,Lsx,Lsy);
/* Randomly generate a completely new individual */

end
end
Evaluate each individual Ii(k) with respect to the fitness function;
I(k)← sorted(I(k)); // in ascending order of fitness

end
I∗ ← I1(k); // return the fittest individual

end function

The main inputs to our GP-based algorithm are Np, np, Mφ, Mψ, Lx, and Ly. Recall that Np is the
population size and np is the number of surviving individuals per generation. Lx and Ly are the libraries
of allowable transformations that can be used with x and y, respectively. These libraries form the first
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two rows of mapping tables, e.g. Table 13, and are defined by the benchmark problem. Note that the
division operator is not part of our GSR architecture. That is, the main arithmetic operations used by
GSR are {+,−,×}. For example, for the Nguyen benchmark dataset, the library of allowable operations is
L0 = {+,−,×,÷, cos, sin, exp, ln} as shown in Table 19. In this case, we define Lx = {1, •1, cos, sin, exp, ln}
(resulting in the mapping Table 2) and Ly = {1, •1, exp, ln}. Regarding the stopping criterion, common
terminating conditions for GP include: i) a solution reaches minimum criterion (e.g. error threshold), ii) the
algorithm reaches a fixed number of generations (or iterations), iii) the algorithm generates a fixed number
of individuals (or candidates expressions), iv) the algorithm reaches a plateau such that new generations no
longer improve results, v) combinations of the above conditions. In our case, the algorithm terminates when
the solution hits a minimum root-mean-square error (RMSE) threshold. To accelerate termination, we slowly
relax the error threshold by gradually increasing it. To avoid reaching a plateau and since we are dealing
with a small population size as shown in Table 9, we enhance diversity (in the basis functions) by producing
completely new individuals with probability 1/2 per generation (while performing crossover and mutation
with probability 1/4 each per generation). To speed up the search process, we employ sublibraries Lsx ⊆ Lx
and Lsy ⊆ Ly of allowable transformations, used when generating completely new individuals (or completely
new basis functions in the case of mutation). For x, we mainly rely on three sublibraries which are the most
common: a polynomial sublibrary Lpoly, a trigonometric sublibrary Ltrig, and the original library Lx itself.
For the Nguyen benchmark example above, Lpoly = {1, •1} and Ltrig = {1, •1, cos, sin}. Note that power
operators such as •2, •3 would be included in these sublibraries if they were part of the original library
defined by the benchmark problem. The function ChooseSublibrary( ) works according to some cycle.
For example, assuming k is the generation (or iteration) counter, if k ≤ 1, 500, each cycle consists of 70
iterations broken into three stages, the first stage consists of 15 iterations and assigns Lsx ← Lx, the second
stage consists of 25 iterations and assigns Lsx ← Lpoly, and the third and final stage consists of the remaining
35 iterations and assigns Lsx ← Ltrig. This cycle repeats until k = 1, 500, after which the cycle’s size becomes
1, 500 iterations broken into three equal stages (i.e. 500 iterations per sublibrary). For y, the cycle consists of
20 iterations, in which we equally alternate between the polynomial sublibrary Lpoly and the original library
Ly itself (i.e. 10 iterations for each sublibrary). Indeed, the use of sublibraries is only possible when the
corresponding operations are included in the original library defined by the benchmark problem (e.g. Neat-6
and Neat-8 cannot use trigonometric sublibraries since {cos, sin} are not included in their corresponding
original libraries, as shown in Table 19). In addition, it is up to the user to specify the cycle’s size and how
to alternate between sublibraries, or even decide whether to use sublibraries in the first place.

Hyperparameters. Throughout our experiments, we adopt the following hyperparameter values. For
GP, we use a population size Np = 30, and we allow for np = 10 surviving individuals per generation.
We perform crossover with probability Pc = 1

4 and allow for only 2 parents to be involved in the process
(i.e. new individuals are formed by combing basis functions from two randomly chosen parent individuals).
We apply mutation with probability Pm = 1

4 and allow for 3 basis functions (randomly selected from an
individual) to be mutated (i.e. to be discarded and replaced by completely new basis functions). We generate
a (completely new) random individual with probability Pr = 1

2 . For ADMM, we use a regularizer λ = 0.4,
a penalty ρ = 0.1. The algorithm terminates when the `2-norm of the difference between the weight vectors
from two consecutive iterations falls below a threshold of δ = 10−5. Regarding initial conditions, we use
w0 = 1̂

2 = [ 1
2 ···

1
2 ]T√

1
4 +···+ 1

4
(where “ ̂ ” denotes a normalized vector), z0 = 1 = [1 · · · 1]T , u0 = 0 = [0 · · · 0]T .

For GSR, we allow for a maximum of Mφ = 15 basis functions φ(·) for each expression of f(·) (this is the
maximum number since some of the Mφ basis functions will be multiplied by 0, i.e. at most we get Mφ

nonzero coefficients multiplying the basis fcuntions). To avoid overfitting and overly complex expressions,
we allow for a maximum of Mψ = 1 basis function ψ(·) for each expression of g(·) (in this case the maximum
and minimum are both 1 and g(·) will consist of a single basis function). It is worth noting that we use
Mψ = 2 for SymSet-11. Each basis ψ(·) will consist of a single transformation nBψ = 1. Each basis φ(·)
will be a product of Nt transformations, where Nt is a random integer between 1 and 3, i.e. nBφ ∈ {1, 2, 3}.
For each of these Nt transformations, the maximum total multiplicity of all the independent variables (or
features) in an argument is a random integer between 2 and 5, i.e. nv ∈ {2, 3, 4, 5}. GSR terminates when a
candidate expression achieves a RMSE lower than a threshold with a starting value of ε = 10−6 (recall that
this threshold is slowly relaxed during the process, e.g. by progressively multiplying it by a factor of

√
10

for every 1, 500 iterations). All hyperparameter values are summarized in Table 9.
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Table 9: Hyperparameter values for GSR for all experiments, unless otherwise specified.

Hyperparameter Symbol Value
GP Parameters
Population size Np 30
Number of survivors per generation np 10
Crossover probability Pc 1/4
Number of parents involved in crossover — 2
Mutation probability Pm 1/4
Number of bases to mutate — 3
Randomly generated individual probability Pr 1/2
ADMM Parameters
Regularization parameter λ 0.4
Penalty parameter ρ 0.1
Tolerance on the solution error δ 10−5

Initial guesses w0, z0, u0
1̂
2 ,1,0

GSR Parameters
Maximum number of basis functions φ(·) for each expression of f(·) Mφ 15
Maximum number of basis functions ψ(·) for each expression of g(·) Mψ 1
Maximum total multiplicity of all features in an argument nv {2, 3, 4, 5}
Number of tranformations multiplied together per basis φ(·) nBφ {1, 2, 3}
Number of tranformations multiplied together per basis ψ(·) nBψ 1
Tolerance on the solution error (RMSE) ε 10−6

Computational complexity. Although genetic algorithms are inherently heuristic, understanding how our
GSR algorithm operates and scales could still be valuable. Following Algorithm 2 above, we can approximate
the time complexity of GSR as:

O

(
Np ·

(
Mφ · nBφ ·mBφ +Mψ · nBψ · 1 +Nδ +O (fitness)

)
+O (Np logNp)

+Nε ·
(

(Np − np) ·
(
Pc ·O (crossover) + Pm ·O (mutation) + Pr · (Mφ · nBφ ·mBφ +Mψ · nBψ · 1)

+Nδ +O (fitness)
)

+O (Np logNp)
))

(18)

where Nε is the number of generations until the GP algorithm hits the tolerance ε, and Nδ is the number
of iterations until the ADMM algorithm hits the tolerance δ. Note that performing crossover or mutation
operations takes O(1) time (i.e. a constant amount of time), and computing the fitness (which calculates
RMSE on N paired training examples) takes O(N) time. Also note that Pc, Pm, and Pr are probabilities
which can be treated as constants. Hence, GSR’s time complexity reduces to:

O
(
Nε ·Np ·

(
Mφ · nBφ ·mBφ +Mψ · nBψ +Nδ +N + logNp

))
(19)

Compared to GSR, the special version s-GSR adopts a vanilla SR (where g(y) is simply y) with the same GP
algorithm and coefficient optimization process (through ADMM) as GSR. Thus, s-GSR’s time complexity
can be approximated as:

O
(
Nε ·Np ·

(
Mφ · nBφ ·mBφ +Nδ +N + logNp

))
(20)

Although GSR’s computational complexity contains an additional term of O (Nε ·Np ·Mψ · nBψ ), the
number of GP generations Nε produced by GSR is often much less than that of s-GSR, which explains
the runtime advantage of GSR over s-GSR shown in Table 12.
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Additional experiment details. For all benchmark problems, we run GSR for multiple independent trials
using different random seeds (following the experimental procedure in Petersen et al. (2021); Mundhenk et al.
(2021)). Table 10 shows the recovery rates of GSR against literature-reported values from several algorithms
on the Nguyen and Livermore individual benchmark problems. We first note that, due to the wide domain of
sampled input points imposed by Livermore-1 (i.e. [−10, 10]), we observed some instabilities in the solution
due to the presence of the exponential function, which we decided to exclude from the library of allowable
operations during the search process for this benchmark. In what follows, we provide explanations for
the results shown in Table 10. Note that Livermore-5 is difficult to recover by NGGPPS+SLP/HER and
the remaining methods as it contains subtractions. Subtraction is more difficult than addition since it is
not cumulative. This is not an issue for GSR since both additions and subtractions are equally recovered
through the sign of the optimal coefficients multiplying the basis functions. Livermore-10 and Livermore-17
are more challenging than Nguyen-10 since they require adding the same basis function many more times
(which is apparent through the poor recovery rates of the different methods). Fortunately, this is also
not a problem for GSR since it can be easily solved by finding the right coefficient multiplying the basis
function. Livermore-18 is more challenging than Livermore-2 and Nguyen-5 since it requires recovering
the constant 5 without a constant optimizer

(
which can be recovered as x+x+x+x+x

x

)
. For GSR, this can

be recovered by naturally solving for the real-valued coefficient. The problem of the different methods on
Livermore-22 lies in the constant 0.5, which requires finding x

x+x compared to GSR which simply solves for
the optimal parameter multiplying x2. We observe that GSR performs poorly on Livermore-9 and Livermore-
21 compared to NGGPPS+SLP/HER. This can be due to the choice of hyperparameters (e.g. Mφ, nBφ ,
and nv) as well as the GP-based search process. These two benchmarks require finding the first 9 and 8
powers of x simultaneously, respectively, which can be difficult to achieve by GSR, especially that we only
consider Mφ = 15 basis functions φ(·) per expression of f(·), as mentioned earlier. Note that polynomials
were not an issue for GSR up to the 6th order (i.e. Nguyen-4). We also tried experimenting with a 7th order
polynomial (i.e. y = x7 + x6 + x5 + x4 + x3 + x2 + x) and GSR achieved 100% recovery rate. We started
observing a decline in the recovery rate when we added the 8th power of x. In other words, Livermore-21
(the 8th order polynomial) seems to be the limit that GSR can reach with polynomials while Livermore-9
(the 9th order polynomial) becomes very difficult to recover. It is worth noting that if the libraries for the
Livermore-9 and Livermore-21 problems contained the square and cube operators {•2, •3} (as is the case
for the Jin benchmarks described in Table 19), then GSR would easily recover these two problems. Finally,
GSR is not able to recover Livermore-7

(
y = sinh(x)

)
and Livermore-8

(
y = cosh(x)

)
since both benchmarks

require finding the basis function e−•,2 which cannot be expressed using our current encoding scheme unless
it is available as a transformation by itself. That is, the exponential operator e• is not enough to recover
1
e• = e−• using our current encoding scheme. Had the negative exponential operator e−• been part of the
library of allowable operations defined by Livermore-7 and Livermore-8, GSR would easily recover these two
benchmarks. As we can see for SymSet-1

(
y = x sinh(x) − 4

5
)
, we added the operator e−• to the library of

allowable operations (see Table 20), which made GSR’s mission much simpler and it was able to recover the
corresponding ground truth expression as shown in Table 26. It is worth mentioning that, although ground
truth expressions are not expressible, GSR was naturally able to recover the best approximations possible
for Livermore-7 and Livermore-8, which turned out to be their Taylor expansions around 0. GSR’s typical
output expressions were as follows:

Livermore-7:

0.51655 y = +0.51655x+ 0.48165x(x× x) + 0.48165x(x× x)
− 0.048738(x+ x+ x)(x+ x+ x)(x+ x) + 0.0022335(x+ x)(x)(x× x× x)

⇐⇒ y ≈ x+ 0.166x3 + 0.00865x5

≈ x+ x3

3! + x5

5!
(
the first three terms of the Taylor series of sinh(x) around 0

)
≈ sinh(x)

2Livermore-7 and Livermore-8 can be expressed as sinh(x) = ex−e−x

2 and cosh = ex+e−x

2 respectively.
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Livermore-8:

−0.8616 y = −0.2154− 0.042956(x+ x)x− 0.035877(x× x)(x× x)− 0.2154− 0.2154
− 0.0012368(x× x)(x× x× x× x)− 0.042956x(x+ x)− 0.25898x(x)− 0.2154

⇐⇒ y ≈ 1 + 0.5x2 + 0.0416x4 + 0.00144x6

≈ 1 + x2

2! + x4

4! + x6

6!
(
the first four terms of the Taylor series of cosh(x) around 0

)
≈ cosh(x)

We next perform a runtime comparison between GSR and NGGPPS on the Nguyen benchmark problem set.
We run each benchmark problem and report the runtimes in Table 11. We find that GSR exhibits faster
runtime than NGGPPS, averaging 2.5 minutes per run on the Nguyen benchmarks compared to 3.2 minutes
for NGGPPS. It is worth noting that although GSR is, on average, faster than NGGPPS, it still exhibits
slower runtime on some problems (e.g. Nguyen-6 and Nguyen-9 in Table 11). This is due to the randomness
of the search process as well as the use of sublibraries as mentioned earlier in the Appendix. Indeed, the
runtime depends on the stopping criterion or condition. For example, one can shorten the runtime further
if the interest is just in an approximation rather than an exact recovery. Our GSR method recovers exact
expressions in the order of few minutes.

We further highlight the strengths of GSR on the new SymSet benchmark problem set, and show the
benefits of searching for expressions of the form g(y) = f(x) instead of y = f(x). Typical expressions,
with exact symbolic equivalence, recovered by GSR are shown in Table 26. The key feature of GSR lies
in its ability to recover expressions of the form g(y) = f(x). To better highlight the benefits offered by
this feature, we disable it by constraining the search space in GSR to expressions of the form y = f(x)
(which is the most critical ablation). We refer to this special version of GSR as s-GSR. Note that most
of the SymSet expressions cannot be exactly recovered by s-GSR (i.e. they can only be approximated).
We compare the performance of GSR against s-GSR on the SymSet benchmarks in terms of accuracy and
runtime (see Table 12). The results clearly show that GSR is faster than s-GSR, averaging around 2 minutes
per run on the SymSet benchmarks compared to 2.27 minutes for s-GSR (i.e. ∼ 11% runtime improvement).
In addition, GSR is more accurate than s-GSR by two orders of magnitude. This is due to the fact that GSR
exactly recovers the SymSet expressions across most of the runs, while s-GSR only recovers approximations
for most of these expressions. It is worth mentioning that on SymSet-1, SymSet-4, SymSet-5, SymSet-10,
and SymSet-12, we observe mean RMSE values of the same order of magnitude between GSR and s-GSR,
since these expressions can be exactly recovered by simply learning expressions of the form y = f(x). As
GSR has to perform a search to discover that g(y) is simply y for these expressions, it exhibits slower runtime
than s-GSR in recovering these expressions (see Table 12).

In addition, we compare GSR against several strong SR methods with similar (or better) expression ability.
In particular, we experiment on SymSet with NGGPPS, PSTree, PySR, and gplearn (see Table 12). GSR
is more accurate than all these methods by three orders of magnitude, which further demonstrates the
advantage of our proposed approach. As for the runtime, PSTree is the fastest method, averaging around 16
seconds per run on the SymSet expressions, while maintaining solid accuracies. This comes as no surprise
given its state-of-the-art performance on SRBench datasets (La Cava et al., 2021). It is worth mentioning
that on SymSet-16, all the methods (i.e. NGGPPS, PSTree, PySR, and gplearn) exhibited some instabilities
in the solution over all independent runs. Hence, we excluded SymSet-16 for these methods in Table 12.
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Table 10: Recovery rate comparison of GSR against literature-reported values from several algorithms on
the Nguyen and Livermore benchmark problem sets over 25 independent runs. The ground truth expressions
for these benchmarks are shown in Tables 19 and 20.

Recovery Rate (%)
Benchmark GSR NGGPPS + SLP/HER NGGPPS GEGL DSR
Nguyen-1 100 100 100 100 100
Nguyen-2 100 100 100 100 100
Nguyen-3 100 100 100 100 100
Nguyen-4 100 100 100 100 100
Nguyen-5 100 100 100 92 72
Nguyen-6 100 100 100 100 100
Nguyen-7 100 100 96 48 35
Nguyen-8 100 100 100 100 96
Nguyen-9 100 100 100 100 100
Nguyen-10 100 100 100 92 100
Nguyen-11 100 100 100 100 100
Nguyen-12? 100 4 12 0 0
Nguyen Average 100 92.00 92.33 86.00 83.58
Livermore-1 100 100 100 100 3
Livermore-2 100 100 100 44 87
Livermore-3 100 100 100 100 66
Livermore-4 100 100 100 100 76
Livermore-5 100 40 4 0 0
Livermore-6 100 100 88 64 97
Livermore-7 0 4 0 0 0
Livermore-8 0 0 0 0 0
Livermore-9 4 88 24 12 0
Livermore-10 100 8 24 0 0
Livermore-11 100 100 100 92 17
Livermore-12 100 100 100 100 61
Livermore-13 100 100 100 84 55
Livermore-14 100 100 100 100 0
Livermore-15 100 100 100 96 0
Livermore-16 100 100 92 12 4
Livermore-17 100 36 68 4 0
Livermore-18 100 48 56 0 0
Livermore-19 100 100 100 100 100
Livermore-20 100 100 100 100 98
Livermore-21 76 88 24 64 2
Livermore-22 100 92 84 68 3
Livermore Average 85.45 77.45 71.09 56.36 30.41
All Average 90.59 82.59 78.59 66.82 49.18
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Table 11: Runtimes of GSR vs. NGGPPS on the Nguyen benchmarks. The ground truth expressions for
these benchmarks are shown in Table 19.

Runtime (sec)
Benchmark GSR NGGPPS
Nguyen-1 18.66 27.05
Nguyen-2 25.96 59.79
Nguyen-3 38.77 151.06
Nguyen-4 63.82 268.88
Nguyen-5 447.01 501.65
Nguyen-6 465.79 43.96
Nguyen-7 33.35 752.32
Nguyen-8 93.89 123.21
Nguyen-9 391.79 31.17
Nguyen-10 68.05 103.72
Nguyen-11 38.86 66.50
Average 153.27 193.57

23



Table 12: Average performance in mean RMSE and runtime, along with their standard errors, for GSR
against s-GSR and several strong SR methods on the SymSet benchmark problem sets over 25 independent
runs. The ground truth expressions for these benchmarks are shown in Table 20.

Mean RMSE Runtime (sec)
Benchmark GSR s-GSR GSR s-GSR

SymSet-1 2.52× 10−5 ± 9.29× 10−6 3.69× 10−5 ± 1.62× 10−5 49.94 ± 2.61 43.81 ± 1.95
SymSet-2 4.28× 10−7 ± 3.35× 10−8 2.34× 10−3 ± 1.21× 10−3 75.24 ± 2.83 91.95 ± 4.26
SymSet-3 6.58× 10−6 ± 1.79× 10−6 1.22× 10−3 ± 8.17× 10−4 66.34 ± 2.51 88.14 ± 3.49
SymSet-4 7.94× 10−4 ± 5.19× 10−4 1.37× 10−4 ± 1.46× 10−3 428.23 ± 8.46 405.54 ± 6.04
SymSet-5 3.63× 10−5 ± 9.92× 10−5 4.98× 10−5 ± 7.37× 10−5 71.86 ± 4.12 64.19 ± 3.82
SymSet-6 4.38× 10−5 ± 8.09× 10−6 8.12× 10−2 ± 1.93× 10−2 76.59 ± 3.72 94.18 ± 4.16
SymSet-7 2.39× 10−4 ± 1.71× 10−5 6.83× 10−2 ± 6.56× 10−3 93.61 ± 2.54 109.94 ± 4.98
SymSet-8 6.83× 10−4 ± 1.95× 10−5 7.88× 10−3 ± 3.88× 10−3 68.07 ± 2.47 90.61 ± 3.06
SymSet-9 3.57× 10−6 ± 3.41× 10−5 6.32× 10−3 ± 1.39× 10−3 57.36 ± 2.68 83.18 ± 2.09
SymSet-10 2.12× 10−4 ± 4.43× 10−4 3.24× 10−4 ± 7.58× 10−5 393.62 ± 5.47 379.56 ± 6.86
SymSet-11 1.43× 10−3 ± 9.97× 10−4 9.39× 10−2 ± 6.78× 10−3 124.38 ± 9.65 187.49 ± 8.35
SymSet-12 1.22× 10−5 ± 5.37× 10−5 7.09× 10−5 ± 2.88× 10−4 78.53 ± 4.02 69.72 ± 2.97
SymSet-13 2.31× 10−5 ± 1.83× 10−5 9.13× 10−2 ± 3.28× 10−2 96.14 ± 5.48 114.85 ± 4.61
SymSet-14 2.18× 10−5 ± 9.47× 10−6 6.14× 10−2 ± 7.78× 10−3 112.32 ± 4.57 137.61 ± 4.53
SymSet-15 1.81× 10−6 ± 4.75× 10−5 6.71× 10−3 ± 3.57× 10−4 46.97 ± 2.33 85.07 ± 4.14
SymSet-16 7.24× 10−4 ± 3.58× 10−4 9.86× 10−3 ± 2.19× 10−3 98.37 ± 3.71 126.16 ± 5.94
SymSet-17 2.57× 10−4 ± 7.03× 10−5 3.41× 10−3 ± 4.54× 10−3 116.78 ± 4.49 143.31 ± 6.28

Average 2.66× 10−4 ± 1.59× 10−4 2.56× 10−2 ± 5.27× 10−3 120.84 ± 4.22 136.19 ± 4.56

Benchmark NGGPPS PSTree NGGPPS PSTree

SymSet-1 3.66× 10−1 ± 7.81× 10−3 7.92× 10−3 ± 2.23× 10−3 175.32 ± 1.54 42.98 ± 3.23
SymSet-2 4.75× 10−1 ± 5.92× 10−2 1.96× 10−1 ± 2.72× 10−2 171.46 ± 2.03 24.68 ± 1.05
SymSet-3 1.34× 10−2 ± 1.91× 10−3 3.73× 10−3 ± 4.01× 10−4 167.11 ± 1.69 21.68 ± 1.89
SymSet-4 1.76× 100 ± 9.89× 10−1 1.32× 100 ± 1.61× 10−1 171.85 ± 2.01 24.14 ± 1.09
SymSet-5 4.21× 10−1 ± 3.58× 10−2 3.19× 10−1 ± 9.94× 10−2 177.98 ± 1.57 13.09 ± 0.37
SymSet-6 2.08× 100 ± 4.80× 10−1 1.42× 100 ± 3.72× 10−1 179.34 ± 1.75 13.28 ± 0.36
SymSet-7 2.43× 10−2 ± 9.62× 10−3 5.25× 10−1 ± 7.62× 10−2 133.89 ± 6.95 11.78 ± 0.24
SymSet-8 3.93× 10−1 ± 5.08× 10−2 4.02× 10−1 ± 6.42× 10−2 169.46 ± 1.81 11.54 ± 0.41
SymSet-9 1.34× 10−1 ± 3.55× 10−2 1.23× 10−1 ± 1.90× 10−2 175.04 ± 1.04 12.23 ± 0.29
SymSet-10 3.32× 10−1 ± 3.09× 10−2 9.91× 10−1 ± 9.59× 10−2 178.27 ± 1.75 11.06 ± 0.17
SymSet-11 2.49× 10−1 ± 2.71× 10−2 1.11× 10−1 ± 2.24× 10−2 166.91 ± 1.66 21.26 ± 0.53
SymSet-12 8.76× 10−1 ± 6.89× 10−2 8.32× 10−1 ± 1.39× 10−1 178.56 ± 1.53 11.65 ± 0.32
SymSet-13 2.19× 10−1 ± 1.77× 10−1 8.69× 10−1 ± 1.71× 10−1 126.39 ± 7.88 9.92 ± 0.23
SymSet-14 4.93× 10−17 ± 2.85× 10−18 8.24× 10−2 ± 8.50× 10−3 99.85 ± 3.81 9.95 ± 0.21
SymSet-15 2.86× 10−17 ± 4.49× 10−18 6.22× 10−2 ± 1.28× 10−2 94.42 ± 2.84 9.93 ± 0.18
SymSet-17 9.16× 10−2 ± 6.52× 10−3 5.44× 10−2 ± 5.51× 10−3 171.25 ± 1.55 10.46 ± 0.19

Average 4.65× 10−1 ± 1.24× 10−1 4.57× 10−1 ± 7.98× 10−2 158.57 ± 2.59 16.23 ± 0.67

Benchmark PySR gplearn PySR gplearn

SymSet-1 1.10× 10−3 ± 3.01× 10−4 4.45× 10−2 ± 2.91× 10−3 61.21 ± 19.72 140.44 ± 7.27
SymSet-2 5.75× 10−2 ± 2.28× 10−2 3.42× 10−1 ± 5.12× 10−2 119.55 ± 39.39 145.84 ± 1.67
SymSet-3 1.71× 10−3 ± 2.02× 10−4 1.72× 10−2 ± 9.41× 10−3 12.62 ± 0.69 169.38 ± 1.19
SymSet-4 6.14× 10−1 ± 6.12× 10−1 2.89× 100 ± 5.77× 10−1 79.39 ± 1.98 248.12 ± 9.71
SymSet-5 5.91× 10−2 ± 1.28× 10−2 2.64× 10−1 ± 1.76× 10−2 69.47 ± 0.49 190.83 ± 1.41
SymSet-6 6.57× 100 ± 1.96× 100 3.94× 100 ± 1.31× 100 67.45 ± 0.67 215.11 ± 6.69
SymSet-7 5.22× 10−2 ± 4.64× 10−2 8.93× 10−1 ± 1.50× 10−1 117.47 ± 28.85 169.94 ± 1.91
SymSet-8 3.57× 10−1 ± 3.85× 10−2 4.35× 10−1 ± 3.16× 10−2 135.13 ± 30.82 167.64 ± 0.98
SymSet-9 2.58× 10−2 ± 8.51× 10−3 2.19× 10−1 ± 4.17× 10−2 162.11 ± 45.01 159.22 ± 1.86
SymSet-10 4.14× 10−2 ± 1.72× 10−2 1.63× 100 ± 3.38× 10−1 48.17 ± 0.43 192.92 ± 1.72
SymSet-11 2.81× 10−2 ± 3.40× 10−3 1.88× 10−1 ± 2.91× 10−2 49.88 ± 0.63 184.38 ± 1.34
SymSet-12 2.53× 10−2 ± 1.11× 10−2 2.62× 10−1 ± 3.11× 10−2 136.14 ± 41.77 187.32 ± 2.90
SymSet-13 8.44× 10−2 ± 6.39× 10−2 1.07× 10−16 ± 1.29× 10−17 16.01 ± 2.98 12.52 ± 0.77
SymSet-14 1.59× 10−2 ± 4.51× 10−3 9.82× 10−2 ± 1.59× 10−2 57.54 ± 9.81 142.12 ± 5.79
SymSet-15 6.90× 10−3 ± 4.02× 10−3 2.05× 10−1 ± 1.36× 10−2 93.54 ± 56.54 147.58 ± 1.12
SymSet-17 3.94× 10−2 ± 5.21× 10−3 1.18× 10−1 ± 8.20× 10−3 167.45 ± 65.81 148.42 ± 0.67

Average 4.99× 10−1 ± 1.76× 10−1 7.22× 10−1 ± 1.64× 10−1 87.07 ± 21.60 163.86 ± 2.94
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B More Examples on Our Matrix-Based Encoding Scheme

The encoding process happens according to a table of mapping rules that is very straightforward to under-
stand and use. For example, consider the mapping rules shown in Table 13 below, where d is the dimension
of the input feature vector. Note that Table 13 involves more transformations than Table 2.

Table 13: An example table of mapping rules for a basis function. Placeholder operands are denoted by •,
e.g. •2 corresponds to the square operator. The identity operator is denoted by •1.

b•,1 0 1 2 3 4 5 6 7 8 9
Transformation (T ) 1 •1 •−1 •2 •3 cos sin exp ln

√
•

b•,2 0 1 2
Argument Type (arg) x

∑ ∏
b•,3, · · · , b•,mB

0 1 2 3 · · · d
Variable (v) skip x1 x2 x3 · · · xd

Example 1. For d = 2, nBφ = 2 and mBφ = 4 (i.e. nv = 2), the basis function φ(x) = x2
1e
x1x2 can be

generated according to the encoding steps shown in Table 14.

Table 14: Encoding steps corresponding to the basis function φ(x) = x2
1e
x1x2 .

Step T arg v1 v2 Update
1 •2 x x1 — T1(x) = x2

1
2 exp

∏
x1 x2 T2(x) = ex1x2

Final Update: φ(x) = T1(x) · T2(x)

Based on the mapping rules in Table 13 and the encoding steps in Table 14, the basis function φ(x) = x2
1e
x1x2

can be encoded by a 2× 4 matrix as follows:

Bφ =
[
3 0 1 •
7 2 1 2

]
(21)

Example 2. For d = 3, nBφ = 5 and mBφ = 5 (i.e. nv = 3), the basis function
φ(x) = x3

2 sin(x2x3)
√
x2+2x3

2x1+x2
can be generated according to the encoding steps shown in Table 15.

Table 15: Encoding steps corresponding to the basis function φ(x) = x3
2 sin(x2x3)

√
x2+2x3

2x1+x2
.

Step T arg v1 v2 v3 Update
1 •−1 ∑

x1 x1 x2 T1(x) = (2x1 + x2)−1

2 •3 x x2 — — T2(x) = x3
2

3 sin
∏

x2 x3 — T3(x) = sin(x2x3)
4

√
•

∑
x2 x3 x3 T4(x) =

√
x2 + 2x3

5 1 — — — — T5(x) = 1
Final Update: φ(x) = T1(x) · T2(x) · T3(x) · T4(x) · T5(x)

Based on the mapping rules in Table 13 and the encoding steps in Table 15, the basis function
φ(x) = x3

2 sin(x2x3)
√
x2+2x3

2x1+x2
can be encoded by a 5× 5 matrix as follows:

Bφ =


2 1 1 1 2
4 0 2 • •
6 2 2 3 •
9 1 2 3 3
0 • • • •

 (22)
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Example 3. For nBψ = 2, the basis function ψ(y) = y3√y can be generated according to the encoding
steps shown in Table 16.

Table 16: Encoding steps corresponding to the basis function ψ(y) = y3√y.

Step T Update
1 •3 T1(y) = y3

2
√
• T2(y) = √y

Final Update: ψ(y) = T1(y) · T2(y)

Based on the mapping rules in Table 13 and the encoding steps in Table 17, the basis function ψ(y) = y3√y
can be encoded by a 2× 1 matrix as follows:

Bψ =
[
4
9

]
(23)

Example 4. For nBψ = 3, the basis function ψ(y) = ln(y) can be generated according to the encoding
steps shown in Table 17.

Table 17: Encoding steps corresponding to the basis function ψ(y) = ln(y).

Step T Update
1 1 T1(y) = 1
2 ln T2(y) = ln(y)
3 1 T3(y) = 1
Final Update: ψ(y) = T1(y) · T2(y) · T3(y)

Based on the mapping rules in Table 13 and the encoding steps in Table 17, the basis function ψ(y) = ln(y)
can be encoded by a 3× 1 matrix as follows:

Bψ =

0
8
0

 (24)

Example 5. For nBψ = 1, the basis function ψ(y) = ey can be generated according to the encoding steps
shown in Table 18.

Table 18: Encoding steps corresponding to the basis function ψ(y) = ey.

Step T Update
1 exp T1(y) = ey

Final Update: ψ(y) = T1(y)

Based on the mapping rules in Table 13 and the encoding steps in Table 18, the basis function ψ(y) = ey

can be encoded by a 1× 1 matrix as follows:

Bψ =
[
7
]

(25)
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C Symbolic Regression Benchmark Problem Sets

Table 19: Specifications of the Symbolic Regression (SR) benchmark problems. Input variables are de-
noted by x for 1-dimensional problems, and by (x1, x2) for 2-dimensional problems. U(a, b, c) indicates
c random points uniformly sampled between a and b for every input variable; different random seeds are
used for the training and test sets. E(a, b, c) indicates c evenly spaced points between a and b for ev-
ery input variable; the same points are used for the training and test sets

(
except Neat-6, which uses

E(1, 120, 120) as test set, and the Jin tests, which use U(−3, 3, 30) as test set
)
. To simplify the notation,

libraries (of allowable arithmetic operators and mathematical functions) are defined relative to a ‘base’
library L0 = {+,−,×,÷, cos, sin, exp, ln}. Placeholder operands are denoted by •, e.g. •2 corresponds
to the square operator.

Benchmark Expression Dataset Library
Nguyen-1 y = x3 + x2 + x U(−1, 1, 20) L0
Nguyen-2 y = x4 + x3 + x2 + x U(−1, 1, 20) L0
Nguyen-3 y = x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0
Nguyen-4 y = x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0
Nguyen-5 y = sin(x2) cos(x)− 1 U(−1, 1, 20) L0
Nguyen-6 y = sin(x) + sin(x+ x2) U(−1, 1, 20) L0
Nguyen-7 y = ln(x+ 1) + ln(x2 + 1) U(0, 2, 20) L0
Nguyen-8 y =

√
x U(0, 4, 20) L0

Nguyen-9 y = sin(x1) + sin(x2
2) U(0, 1, 20) L0

Nguyen-10 y = 2 sin(x1) cos(x2) U(0, 1, 20) L0
Nguyen-11 y = xx2

1 U(0, 1, 20) L0
Nguyen-12 y = x4

1 − x3
1 + 1

2x
2
2 − x2 U(0, 1, 20) L0

Nguyen-12? y = x4
1 − x3

1 + 1
2x

2
2 − x2 U(0, 10, 20) L0

Jin-1 y = 2.5x4
1 − 1.3x3

1 + 0.5x2
2 − 1.7x2 U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}

Jin-2 y = 8x2
1 + 8x3

2 − 15 U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-3 y = 0.2x3

1 + 0.5x3
2 − 1.2x2 − 0.5x1 U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}

Jin-4 y = 1.5ex1 + 5 cos(x2) U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-5 y = 6 sin(x1) cos(x2) U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Jin-6 y = 1.35x1x2 + 5.5 sin ((x1 − 1)(x2 − 1)) U(−3, 3, 100) L0 − {ln} ∪ {•2, •3, const}
Neat-1 y = x4 + x3 + x2 + x U(−1, 1, 20) L0 ∪ {1}
Neat-2 y = x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0 ∪ {1}
Neat-3 y = sin(x2) cos(x)− 1 U(−1, 1, 20) L0 ∪ {1}
Neat-4 y = ln(x+ 1) + ln(x2 + 1) U(0, 2, 20) L0 ∪ {1}
Neat-5 y = 2 sin(x1) cos(x2) U(−1, 1, 100) L0
Neat-6 y =

∑x
k=1

1
k E(1, 50, 50) {+,×,÷, •−1,−•,

√
•}

Neat-7 y = 2− 2.1 cos(9.8x1) sin(1.3x2) E(−50, 50, 105) L0 ∪ {tan, tanh, •2, •3,
√
•}

Neat-8 y = e−(x1−1)2

1.2+(x2−2.5)2 U(0.3, 4, 100) {+,−,×,÷, exp, e−•, •2}
Neat-9 y = 1

1+x−4
1

+ 1
1+x−4

2
E(−5, 5, 21) L0
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Table 20: Specifications of the Symbolic Regression (SR) benchmark problems. Input variables are de-
noted by x for 1-dimensional problems, by (x1, x2) for 2-dimensional problems, and by (x1, x2, x3) for 3-
dimensional problems. U(a, b, c) indicates c random points uniformly sampled between a and b for every
input variable; different random seeds are used for the training and test sets. To simplify the notation, li-
braries (of allowable arithmetic operators and mathematical functions) are defined relative to ‘base’ libraries
L0 = {+,−,×,÷, cos, sin, exp, ln} or Lc0 = L0 ∪ {const}. Placeholder operands are denoted by •, e.g. •2

corresponds to the square operator.

Benchmark Expression Dataset Library
Livermore-1 y = 1

3 + x+ sin(x2) U(−10, 10, 1000) L0
Livermore-2 y = sin(x2) cos(x)− 2 U(−1, 1, 20) L0
Livermore-3 y = sin(x3) cos(x2)− 1 U(−1, 1, 20) L0
Livermore-4 y = ln(x+ 1) + ln(x2 + 1) + ln(x) U(0, 2, 20) L0
Livermore-5 y = x4

1 − x3
1 + x2

1 − x2 U(0, 1, 20) L0
Livermore-6 y = 4x4 + 3x3 + 2x2 + x U(−1, 1, 20) L0
Livermore-7 y = sinh(x) U(−1, 1, 20) L0
Livermore-8 y = cosh(x) U(−1, 1, 20) L0
Livermore-9 y = x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0
Livermore-10 y = 6 sin(x1) cos(x2) U(0, 1, 20) L0

Livermore-11 y = x2
1x

2
1

x1+x2
U(−1, 1, 50) L0

Livermore-12 y = x5
1
x3

2
U(−1, 1, 50) L0

Livermore-13 y = x
1
3 U(0, 4, 20) L0

Livermore-14 y = x3 + x2 + x+ sin(x) + sin(x2) U(−1, 1, 20) L0
Livermore-15 y = x

1
5 U(0, 4, 20) L0

Livermore-16 y = x
2
5 U(0, 4, 20) L0

Livermore-17 y = 4 sin(x1) cos(x2) U(0, 1, 20) L0
Livermore-18 y = sin(x2) cos(x)− 5 U(−1, 1, 20) L0
Livermore-19 y = x5 + x4 + x2 + x U(−1, 1, 20) L0
Livermore-20 y = e−x

2
U(−1, 1, 20) L0

Livermore-21 y = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x U(−1, 1, 20) L0
Livermore-22 y = e−0.5x2

U(−1, 1, 20) L0

SymSet-1 y = x sinh(x)− 4
5 U(−1, 1, 20) Lc0 − {ln} ∪ {e−•}

SymSet-2 y = (x5 − 3x4 − 2.8x+ 5)−1 U(−1, 1, 20) Lc0 ∪ {•−1}
SymSet-3 y = (x4 − 1.2x2 + 11.5) 1

3 U(−1, 1, 20) Lc0 ∪ {•2, •3}
SymSet-4 y = 0.8− cos(x) + 4.2ex sin(x2) U(−3, 3, 20) Lc0
SymSet-5 y = 4.5x2

1 + x1x
3
2 − 1.7x2 − 3.1 U(−1, 1, 20) Lc0

SymSet-6 y = 5
3x1−x3

2
U(−1, 1, 20) Lc0 ∪ {•−1}

SymSet-7 y = ln(x3
1 + 4x1x2) U(0, 2, 20) Lc0

SymSet-8 y =
√

5x5
1 + 14x3

1x
4
2 − 2x2 + 7 U(−1, 1, 20) Lc0 ∪ {•2, •3}

SymSet-9 y = (2x1 + x2)− 2
3 U(0, 2, 20) Lc0

SymSet-10 y = 1.5 cos(x1) ln(x1x2)− 2.5 U(0, 1, 20) Lc0
SymSet-11 y =

√
2 cos(x1) + 30ex2 + 4 U(−1, 1, 20) Lc0 ∪ {•2}

SymSet-12 y = 0.4x4
1 + 6.2x2 − 3.5x1x3 − 4.5 U(−1, 1, 20) Lc0

SymSet-13 y = 2x2
x1+x3

U(0, 1, 20) Lc0
SymSet-14 y = x1x2x3

x1+x2+x3
U(0, 2, 20) Lc0

SymSet-15 y = (x1 + x2)x3 U(0, 1, 20) Lc0
SymSet-16 y = e2.6x1−ln(x2)+9.8 cos(x3) U(0, 1, 20) Lc0
SymSet-17 y = ln

(
0.2ex1+x2 + 0.5 cos(x2

3)
)

U(0, 1, 20) Lc0
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D Typical Recovered Expressions

Table 21: Typical expressions (with exact symbolic equivalence) recovered by GSR for the Nguyen benchmark
set. Note that the coefficients in the GSR expressions form a unit vector due to the normalization constraint
imposed by the Lasso problem in Equation 6. It is easy to verify (by simplification) that the GSR expressions
are symbolically equivalent to the ground truth expressions.

Benchmark Expression
Truth y = x3 + x2 + x

Nguyen-1 −0.558 y = −0.1395(x× x× x)− 0.1395(x× x× x)− 0.2697x− 0.1395(x× x× x)
GSR −0.2697x− 0.2697x+ 0.0651(x+ x+ x+ x) + 0.0651(x+ x+ x+ x)

−0.1395(x× x× x)− 0.2697x− 0.558(x× x)
Truth y = x4 + x3 + x2 + x

Nguyen-2 −0.58554 y = −0.09759x(x+ x)− 0.58554x− 0.19518(x× x)x− 0.09759(x+ x)x
GSR −0.19518(x× x× x)− 0.29277x(x× x× x)− 0.29277x(x× x× x)

−0.09759(x+ x)x− 0.19518(x× x)x
Truth y = x5 + x4 + x3 + x2 + x

Nguyen-3 0.5 y = +0.125x+ 0.25(x× x× x× x) + 0.125(x)x+ 0.5(x× x)x
GSR +0.125x+ 0.5x(x× x× x× x) + 0.125x+ 0.125(x× x) + 0.125x

+0.125(x)x+ 0.125(x× x) + 0.25x(x× x× x)
Truth y = x6 + x5 + x4 + x3 + x2 + x

−0.48318 y = −0.096636x− 0.48318x(x× x)(x× x)− 0.16106(x× x)− 0.16106(x× x)
Nguyen-4 GSR −0.24159(x× x)x− 0.096636x− 0.48318(x× x× x)(x× x)x

−0.24159(x× x× x)− 0.24159(x× x× x)(x+ x)− 0.096636x
−0.096636x− 0.096636x− 0.16106(x× x)

Nguyen-5 Truth y = sin(x2) cos(x)− 1
GSR 0.63246 y = 0.63246 cos(x) sin(x× x)− 0.31623− 0.31623

Nguyen-6 Truth y = sin(x) + sin(x+ x2)
GSR 0.5 y = 0.5 cos(x) sin(x× x) + 0.5 sin(x) + 0.5 cos(x× x) sin(x)
Truth y = ln(x+ 1) + ln(x2 + 1)

0.70956 ey = +0.1095x(x× x× x) + 0.1095(x× x× x× x) + 0.17082x+ 0.23652
Nguyen-7 GSR +0.17082x+ 0.12702(x× x)(x+ x) + 0.17082x− 0.1095x(x+ x)(x× x)

+0.22776x(x× x) + 0.23652 + 0.22776(x× x)x+ 0.23652
+0.23652(x+ x+ x)x+ 0.17082x+ 0.01314(x+ x)

Nguyen-8 Truth y =
√
x

GSR 0.83654 ln(y) = −0.032175 ln(x× x× x× x) + 0.54697 ln(x)
Nguyen-9 Truth y = sin(x1) + sin(x2

2)
GSR −0.57735 y = −0.57735 sin(x1)− 0.57735 sin(x2 × x2)

Nguyen-10 Truth y = 2 sin(x1) cos(x2)
GSR 0.44721 y = 0.89442 sin(x1) cos(x2)

Nguyen-11 Truth y = xx2
1

GSR 0.70711 ln(y) = 0.70711x2 ln(x1)
Truth y = x4

1 − x3
1 + 1

2x
2
2 − x2

Nguyen-12 GSR −0.4 y = −0.2(x2 × x2)− 0.4x1 − 0.4x1 + 0.4(x1 + x2 + x1) + 0.4(x1 × x1)x1
−0.4x1(x1 × x1 × x1)

Truth y = x4
1 − x3

1 + 1
2x

2
2 − x2

Nguyen-12? GSR −0.6 y = −0.1(x2 + x2 + x2)x2 − 0.3(x1 + x1)(x1 × x1 × x1) + 0.3(x1 × x1 × x1)
+0.3x1(x1 × x1) + 0.6x2
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Table 22: Typical expressions (with exact symbolic equivalence) recovered by GSR for the Jin benchmark
set. Note that the coefficients in the GSR expressions form a unit vector due to the normalization constraint
imposed by the Lasso problem in Equation 6. It is easy to verify (by simplification) that the GSR expressions
are symbolically equivalent to the ground truth expressions. Although GSR does not exactly recover Jin-6,
it recovers approximations with very low RMSE, as shown in Table 5.

Benchmark Expression
Jin-1 Truth y = 2.5x4

1 − 1.3x3
1 + 0.5x2

2 − 1.7x2
GSR 0.30664 y = +0.15332x2

2 − 0.398632x3
1 − 0.260644x2 − 0.260644x2 + 0.7666x1x

3
1

Jin-2 Truth y = 8x2
1 + 8x3

2 − 15
GSR 0.06909 y = −0.518175 + 0.55272x3

2 − 0.518175 + 0.27636x2
1 + 0.27636x2

1

Jin-3 Truth y = 0.2x3
1 + 0.5x3

2 − 1.2x2 − 0.5x1
GSR −0.7943 y = −0.11914x2 − 0.15886x3

1 + 0.39715(x2 + x2 + x2 + x1)− 0.11915x2 − 0.39715x3
2

Jin-4 Truth y = 1.5ex1 + 5 cos(x2)
GSR −0.25198 y = −0.37797ex1 − 0.62995 cos(x2)− 0.62995 cos(x2)

Jin-5 Truth y = 6 sin(x1) cos(x2)
GSR 0.13484 y = −0.80904 sin(x2) cos(x1) + 0.40452 sin(x2 + x1) + 0.40452 sin(x2 + x1)

Jin-6 Truth y = 1.35x1x2 + 5.5 sin ((x1 − 1)(x2 − 1))
GSR Not exactly recovered

Table 23: Typical expressions (with exact symbolic equivalence) recovered by GSR for the Neat benchmark
set. Note that the coefficients in the GSR expressions form a unit vector due to the normalization constraint
imposed by the Lasso problem in Equation 6. It is easy to verify (by simplification) that the GSR expressions
are symbolically equivalent to the ground truth expressions. Although GSR does not exactly recover Neat-6,
Neat-7, Neat-8, and Neat-9, it recovers approximations with very low RMSE, as shown in Table 6.

Benchmark Expression
Truth y = x4 + x3 + x2 + x

Neat-1 −0.64952 y = −0.32476x(x+ x)(x× x)− 0.064952(x+ x) + 0.082996(x+ x+ x)
GSR −0.32476(x× x)− 0.2129x− 0.32476(x× x)− 0.18764x(x+ x)x

−0.064952(x+ x)− 0.2129x− 0.2129x− 0.27424(x× x× x)
Truth y = x5 + x4 + x3 + x2 + x

0.3914 y = +0.3914x(x× x× x× x) + 0.18274x+ 0.27676x(x) + 0.18274x
Neat-2 GSR +0.02794(x+ x) + 0.3914x(x× x)− 0.02702(x+ x+ x)(x+ x)

+0.18274x+ 0.27676(x× x)− 0.12682(x+ x+ x) + 0.3914(x× x× x)x
+0.18274x+ 0.18274x− 0.12682(x+ x+ x) + 0.18274x

Neat-3 Truth y = sin(x2) cos(x)− 1
GSR −0.57735 y = −0.57735 sin(x× x) cos(x) + 0.57735

Neat-4 Truth y = ln(x+ 1) + ln(x2 + 1)
GSR −0.5 ey = −0.25(x× x)− 0.5− 0.25x− 0.25x− 0.5x(x× x)− 0.25(x× x)

Neat-5 Truth y = 2 sin(x1) cos(x2)
GSR 0.57735 y = 0.57735 cos(x2) sin(x1) + 0.57735 cos(x2) sin(x1)

Neat-6 Truth y =
∑x
k=1

1
k

GSR Not exactly recovered
Neat-7 Truth y = 2− 2.1 cos(9.8x1) sin(1.3x2)

GSR Not exactly recovered

Neat-8 Truth y = e−(x1−1)2

1.2+(x2−2.5)2

GSR Not exactly recovered
Neat-9 Truth y = 1

1+x−4
1

+ 1
1+x−4

2

GSR Not exactly recovered
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Table 24: Typical expressions (with exact symbolic equivalence) recovered by GSR for the Livermore bench-
mark set. Note that the coefficients in the GSR expressions form a unit vector due to the normalization con-
straint imposed by the Lasso problem in Equation 6. It is easy to verify (by simplification) that the GSR ex-
pressions are symbolically equivalent to the ground truth expressions. Although GSR does not exactly recover
Livermore-7 and Livermore-8, it naturally recovers their Taylor approximations, as discussed in Appendix A.

Benchmark Expression
Livermore-1 Truth y = 1

3 + x+ sin(x2)
GSR 0.65079 y = 0.21693 + 0.65079 sin(x× x) + 0.325395(x+ x)

Livermore-2 Truth y = sin(x2) cos(x)− 2
GSR −0.40825 y = −0.40825 cos(x) sin(x× x) + 0.8165

Livermore-3 Truth y = sin(x3) cos(x2)− 1
GSR −0.57735 y = 0.57735− 0.57735 sin(x× x× x) cos(x× x)
Truth y = ln(x+ 1) + ln(x2 + 1) + ln(x)

Livermore-4 GSR −0.50998 ey = −0.25499(x× x)− 0.21064x− 0.022175(x+ x)− 0.21064x− 0.25499(x× x)
−0.50998(x× x)(x× x)− 0.50998x(x× x)− 0.022175(x+ x)

Livermore-5 Truth y = x4
1 − x3

1 + x2
1 − x2

GSR 0.44721 y = −0.44721x2 + 0.44721(x1 × x1)− 0.44721(x1 × x1)x1 + 0.44721(x1 × x1)(x1 × x1)
Truth y = 4x4 + 3x3 + 2x2 + x

Livermore-6 −0.15763 y = −0.26677x− 0.26677x− 0.093216(x+ x)− 0.23918(x× x)
GSR −0.03804(x+ x)x− 0.63052x(x)(x× x)− 0.47289(x× x× x)

−0.093216(x+ x) + 0.253886(x+ x+ x+ x)− 0.26677x
Livermore-7 Truth y = sinh(x)

GSR Not exactly recovered
Livermore-8 Truth y = cosh(x)

GSR Not exactly recovered
Truth y = x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x
GSR −0.30767 y = −0.30767x(x× x× x)(x× x)− 0.30767(x× x× x)x− 0.266671(x× x)

Livermore-9 −0.30767(x× x× x)(x)(x× x× x)− 0.153835x− 0.30767(x× x× x)
−0.30767(x× x× x× x× x)(x× x× x× x)− 0.30767(x× x× x× x)x
+0.056037(x+ x+ x+ x)(x+ x+ x+ x)− 0.266671(x× x)− 0.153835x
−0.30767(x× x× x× x)(x)(x× x× x)− 0.22364x(x+ x+ x)

Livermore-10 Truth y = 6 sin(x1) cos(x2)
GSR 0.22942 y = 0.68826 cos(x2) sin(x1) + 0.68826 sin(x1) cos(x2)

Livermore-11 Truth y = x2
1x

2
1

x1+x2

GSR −0.40825 ln(y) = −0.8165 ln(x1 × x1) + 0.40825 ln(x2 + x1)
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Table 25: Typical expressions (with exact symbolic equivalence) recovered by GSR for the Livermore bench-
mark set (cont’d). Note that the coefficients in the GSR expressions form a unit vector due to the normal-
ization constraint imposed by the Lasso problem in Equation 6. It is easy to verify (by simplification) that
the GSR expressions are symbolically equivalent to the ground truth expressions.

Benchmark Expression

Livermore-12 Truth y = x5
1
x3

2

GSR 0.16903 ln(y) = 0.84515 ln(x1)− 0.50709 ln(x2)

Livermore-13 Truth y = x
1
3

GSR 0.97332 ln(y) = 0.16222 ln(x) + 0.16222 ln(x)
Livermore-14 Truth y = x3 + x2 + x+ sin(x) + sin(x2)

GSR 0.40825 y = 0.40825x(x× x) + 0.40825 sin(x) + 0.40825(x× x) + 0.40825 sin(x× x) + 0.40825x

Livermore-15 Truth y = x
1
5

GSR 0.99015 ln(y) = 0.099015 ln(x) + 0.099015 ln(x)

Livermore-16 Truth y = x
2
5

GSR 0.99504 ln(y) = 0.099504 ln(x× x× x× x)
Livermore-17 Truth y = 4 sin(x1) cos(x2)

GSR 0.17408 y = 0.69632 sin(x2 + x1)− 0.69632 cos(x1) sin(x2)
Livermore-18 Truth y = sin(x2) cos(x)− 5

GSR −0.19245 y = 0.96225− 0.19245 cos(x) sin(x× x)
Truth y = x5 + x4 + x2 + x

Livermore-19 GSR −0.46202 y = −0.46202x(x× x)x− 0.015609(x+ x+ x) +−0.46202 ∗ (x1 ∗ x1)− 0.46202x(x× x)(x× x)
−0.290313x− 0.15297(x+ x)− 0.15297(x+ x) + 0.12175(x+ x+ x+ x)

Livermore-20 Truth y = e−x
2

GSR −0.89442 ln(y) = 0.44721(x+ x)x
Truth y = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x

−0.38914 y = −0.027357(x+ x+ x)x− 0.38914(x× x× x)(x× x)− 0.38914x(x× x× x× x)(x× x× x)
Livermore-21 GSR +0.0714425x(x+ x)(x+ x)− 0.38914x− 0.38914(x× x× x× x)− 0.22497(x× x× x)

−0.19457(x× x× x× x)(x+ x)(x× x)− 0.22497x(x× x)− 0.027357x(x+ x+ x)
−0.22497(x× x)x− 0.224998(x× x)− 0.097285x(x+ x+ x+ x)(x× x× x× x)

Livermore-22 Truth y = e−0.5x2

GSR 0.8165 ln(y) = −0.40825(x+ x)x+ 0.40825(x× x)
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Table 26: Typical expressions (with exact symbolic equivalence) recovered by GSR for the SymSet benchmark
set. Note that the coefficients in the GSR expressions form a unit vector due to the normalization constraint
imposed by the Lasso problem in Equation 6. It is easy to verify (by simplification) that the GSR expressions
are symbolically equivalent to the ground truth expressions.

Benchmark Expression
SymSet-1 Truth y = x sinh(x)− 4

5
GSR 0.70448 y = 0.35224exx− 0.17612xe−x − 0.563584exe−x − 0.17612xe−x

Truth y = (x5 − 3x4 − 2.8x+ 5)−1

SymSet-2 −0.11335 y−1 = −0.23188x− 0.11335 + 0.50651(x+ x)− 0.11335− 0.23188x
GSR −0.11335− 0.11335− 0.23188x− 0.11335(x× x× x× x)x

−0.11335 + 0.34005x(x× x× x)

Truth y = (x4 − 1.2x2 + 11.5) 1
3

SymSet-3 GSR 0.1173 y3 = +0.26576x2 + 0.26576x2 + 0.26576(x× x) + 0.44965 + 0.44965
+0.02346(x+ x+ x+ x+ x)x3 − 0.23451(x+ x+ x+ x)x+ 0.44965

SymSet-4 Truth y = 0.8− cos(x) + 4.2ex sin(x2)
GSR 0.22485 y = −0.112425 cos(x) + 0.94437 sin(x× x)ex − 0.112425 cos(x) + 0.17988

SymSet-5 Truth y = 4.5x2
1 + x1x

3
2 − 1.7x2 − 3.1

GSR −0.16964 y = −0.16964(x2 × x2 × x2 × x1)− 0.76338(x1 × x1) + 0.525884 + 0.288388x2

SymSet-6 Truth y = 5
3x1−x3

2

GSR 0.84515 y−1 = −0.16903(x2 × x2)x2 + 0.50709x1

SymSet-7 Truth y = ln(x3
1 + 4x1x2)

GSR −0.482715 ey = −0.64362(x1 + x1 + x1)x2 + 0.21883x2 − 0.482715(x1 × x1 × x1)− 0.21883x2

SymSet-8 Truth y =
√

5x5
1 + 14x3

1x
4
2 − 2x2 + 7

GSR 0.060634 y2 = 0.30317(x2
1 × x3

1) + 0.848876x2
1x

3
2(x1 × x2) + 0.424438− 0.060634(x2 + x2)

SymSet-9 Truth y = (2x1 + x2)− 2
3

GSR 0.83205 ln(y) = −0.5547 ln(x1 + x2 + x1)
SymSet-10 Truth y = 1.5 cos(x1) ln(x1x2)− 2.5

GSR 0.32444 y = −0.8111 + 0.48666 ln(x1 × x2) cos(x1)

SymSet-11 Truth y =
√

2 cos(x1) + 30ex2 + 4
GSR −0.228568 y + 0.028571 y2 = −0.457136 + 0.85713ex2 + 0.057142 cos(x1)
Truth y = 0.4x4

1 + 6.2x2 − 3.5x1x3 − 4.5
SymSet-12 GSR 0.16288 y = −0.18324 + 0.065152x1(x1)(x1 × x1)− 0.57008(x3 × x1) + 0.504928x2 − 0.18324

−0.18324− 0.18324 + 0.504928x2

SymSet-13 Truth y = 2x2
x1+x3

GSR 0.57735 ln(y) = 0.57735 ln(x2 + x2)− 0.57735 ln(x1 + x3)
SymSet-14 Truth y = x1x2x3

x1+x2+x3

GSR 0.57735 ln(y) = 0.57735 ln(x1 × x2 × x3)− 0.57735 ln(x2 + x3 + x1)
SymSet-15 Truth y = (x1 + x2)x3

GSR 0.70711 ln(y) = 0.70711x3 ln(x1 + x2)

SymSet-16 Truth y = e2.6x1−ln(x2)+9.8 cos(x3)

GSR 0.098035 ln(y) = 0.960743 cos(x3)− 0.0490175 ln(x2 × x2) + 0.254891x1

SymSet-17 Truth y = ln
(
0.2ex1+x2 + 0.5 cos(x2

3)
)

GSR 0.88045 ey = 0.17609ex1+x2 + 0.440225 cos(x3 × x3)
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E Limitations

Although GSR achieves great results whether by recovering exact expressions or approximations with low
errors, it still has several limitations:
Absence of division operations. The primary limiting factor to our GSR method is that it still cannot
handle divisions. This is due to the way we define our encoding scheme. In this current version, we only
consider a weighted sum of basis functions where the basis functions are a product of transformations; no
divisions are involved. We can overcome this issue by modifying the encoding scheme to include divisions
within the basis functions

(
e.g. a negative integer in the first column of the basis functions implies a division

by the corresponding transformation, i.e. using Table 13, a first-column entry of −8 encodes the division 1
ln
)
.

However, this will significantly increase the total number of possible combinations in which we can form basis
matrices. Due to the lack of divisions in its current version, GSR suffers on some benchmarks such as Neat-6,
Neat-8, Neat-9, Livermore-7, Livermore-8. It is worth noting that GSR can recover some divisions with the
help of the ln or •−1 operators (see Livermore-11, Livermore-12, Livermore-20, Livermore-22, SymSet-2,
SymSet-6, SymSet-9, SymSet-13, and SymSet-14). This is only possible when the original function consists
of only one term (not a sum of terms).

Composition of tranformations. Another limiting factor to the current version of GSR is that it cannot
recover expressions containing composite functions, such as y = ecos(x) + ln(x). In this example, the basis
function ecos(x) cannot be recovered by GSR due to our encoding scheme. Again, if ln(x) was not there,
that is, if the function contained the first term only, i.e. y = ecos(x), then GSR can handle the situation
by recovering ln(y) = cos(x). The benefits of using g(y) = f(x) can be clearly observed on the SymSet
benchmark problems (especially SymSet-16, and SymSet-17).

Choice of hyperparameters and search process. Throughout our experiments, we have observed that,
for some benchmarks (such as Jin-6 and Neat-7), althought they are expressible by GSR, they were not
fully recovered. GSR only recovered approximations for these benchmarks with very low errors. This can be
explained by two reasons: i) The choice of hyperparameters affects the search process, ii) Our matrix-based
GP search process may not be very effective on these benchmarks, given the complexity of their corresponding
basis functions, and thus they may require a huge number of iterations to be recovered. That is, if we keep
our code running for a very long time, we may be able to recover these benchmarks. This can be verified by
expanding Jin-6 and Neat-7 as follows:

Jin-6:
y = 1.35x1x2 + 5.5 sin ((x1 − 1)(x2 − 1))

= 1.35x1x2 + 5.5 sin (x1x2 − x1 − x2 + 1)
= 1.35x1x2 + 5.5

[
sin (−x1 − x2) cos (x1x2 + 1) + cos (−x1 − x2) sin (x1x2 + 1)

]
= 1.35x1x2 − 5.5 cos(1) sin(x1 + x2) cos(x1x2)︸ ︷︷ ︸

φ1(x)

+5.5 sin(1) sin(x1 + x2) sin(x1x2)︸ ︷︷ ︸
φ2(x)

+ 5.5 cos(1) cos(x1 + x2) sin(x1x2)︸ ︷︷ ︸
φ3(x)

+5.5 sin(1) cos(x1 + x2) cos(x1x2)︸ ︷︷ ︸
φ4(x)

Neat-7:
y = 2− 2.1 cos(9.8x1) sin(1.3x2)

= 2− 2.1
(

cos(9.8) cos(x1)− sin(9.8) sin(x1)
)(

sin(1.3) cos(x2) + cos(1.3) sin(x2)
)

= 2− 2.1 cos(9.8) sin(1.3) cos(x1) cos(x2)︸ ︷︷ ︸
φ1(x)

+2.1 sin(9.8) sin(1.3) sin(x1) cos(x2)︸ ︷︷ ︸
φ2(x)

− 2.1 cos(9.8) cos(1.3) cos(x1) sin(x2)︸ ︷︷ ︸
φ3(x)

+2.1 sin(9.8) cos(1.3) sin(x1) sin(x2)︸ ︷︷ ︸
φ4(x)

As we can see, GSR has to find the four corresponding basis functions simultaneously in order to recover
the expressions.
Indeed, there are plenty of expressions that still cannot be fully recovered by our GSR method. This is the
case for all the other methods as well.
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