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Efficient Multi-Step Lookahead Bayesian Optimization
with Local Search Constraints

Joel A. Paulson, Farshud Sorouifar, and Ankush Chakrabarty

Abstract— Bayesian optimization (BO) is a data-efficient ap-
proach for optimizing expensive-to-evaluate black-box functions
that suffer from noisy evaluations. Traditional BO algorithms
ignore the relationship between consecutive input values, which
is known to lead to significant “jumps” in the search space that
cannot be implemented in practice, especially in online exper-
imental systems. For example, in performance-driven control
applications, large changes in the chosen setpoint parameters
may trigger fail-safe mechanisms or lead to violation of critical
safety constraints. In such applications, it is necessary to limit
the allowable search space at each BO iteration, which can
be done by incorporating local search constraints into the
original problem setting. In this paper, we show how this
novel BO setting can be cast as a Markov decision process
(MDP) for which the optimal policy is characterized by an
intractable dynamic programming (DP) problem. To overcome
this challenge, we take advantage of approximate DP methods,
particularly rollout with fast policy search, to derive an efficient
multi-step lookahead BO policy. We also propose a novel
base policy needed for the rollout algorithm, which explicitly
incorporates the local search restrictions in an efficient and
intuitive manner. Lastly, we empirically show that our proposed
multi-step lookahead BO policy outperforms existing methods
on a well-known benchmark problem.

I. INTRODUCTION

In a variety of important real-world applications, we are
tasked with derivative-free global optimization of expensive-
to-evaluate black-box functions. In many cases, the objective
function structure is unknown and function evaluations may
be noisy. Relevant examples include hyperparameter tun-
ing [1], experiment design [2], simulated-based parameter es-
timation [3]–[5], and automated calibration of complex mul-
tivariable control structures [6]–[8]. Bayesian optimization
(BO) is a family of machine learning-based optimization al-
gorithms specifically developed to address these challenging
problems [9], [10]. The key to the success of BO compared
to alternative derivative-free optimization methods is its
sample-efficiency. The classical BO algorithm comprises two
major steps: (i) the construction of a probabilistic surrogate
model of the objective function from all currently available
data and (ii) the optimization over some utility metric defined
in terms of this surrogate model to decide where the objective
function should be evaluated next. Through proper design of
the utility (also called acquisition) function, one may achieve
an adequate balance between exploration (i.e., querying in
regions where the model predictions are most uncertain) and
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exploitation (i.e., querying in regions where the model is
confident the solutions are good).

Classical BO algorithms are greedy in nature in the sense
that they ignore how the design selected at the current
iteration will affect future optimization steps. This type of
strategy is well-known to lead to many aggressive “jumps” in
the search space since BO may select a sample to explore an
uncertain region and then immediately jump back to a more
promising region with no regard for the distance between
consecutive query points. This can become a major issue,
especially in online experimental systems that have an asso-
ciated cost with frequent input changes. For example, BO has
recently proven useful for automatically assigning reference
inputs for multiple actuators to minimize operational energy
use [11]. However, when the reference inputs are suddenly
changed to newly suggested values that are far apart in a
norm-sense, this can lead to violation of heat pump states
due to escalated temperature transients. Therefore, in such
situations, it is important to modify the standard BO problem
setting to include what we refer to in this work as local
search constraints, which restrict the sequential selection of
input points to lie within some specified region.

Although many constrained BO (CBO) methods have been
developed, to the best of our knowledge, this work is the first
to investigate local search constraints in BO. A comprehen-
sive overview of CBO is provided in [3] – the focus of such
methods is on black-box constraint functions that require the
construction of additional surrogate models. TuRBO [12] is a
trust region-based BO algorithm that restricts the movement
of next sample in a given iteration; however, these constraints
are added to limit the region over which the probabilistic
surrogate model must be constructed. TuRBO is not directly
applicable to problems with local search constraints, because
these constraints can be violated when the diameter of the
trust region exceeds that of the feasible region. SnAKe [13]
is a recently proposed BO algorithm that aims to minimize
input change costs by building an ordered optimization path
from a set of randomly drawn Thompson samples of the
probabilistic surrogate model. However, SnAKe is unable to
ensure feasible solutions in our problem setting since the
objective samples may not produce solutions that satisfy the
local search constraints.

In this work, we propose a novel multi-step lookahead
BO strategy that takes into account the remaining function
evaluations while also guaranteeing satisfaction of the local
search constraints. To construct such a strategy, we must first
define the notion of an “optimal policy” that maximizes the
long-term reward over multiple future steps. Building upon



the work in [14], we can characterize the optimal policy
as the solution to a dynamic programming (DP) problem
derived from Bellman’s principle of optimality. However, in
the context of lookahead BO problems, the DP procedure is
intractable due to the uncountable state and action spaces,
along with potentially long decision horizons. Approximate
dynamic programming (ADP) methods are often used to
overcome these limitations in practice [15]. A variety of non-
myopic BO policies have been recently developed by apply-
ing different ADP methods to the lookahead BO problem
[16]–[18]. A variant of policy iteration-based ADP uses the
rollout algorithm [19, Chapter 2], which uses a base policy
to evaluate the long-term benefits using several stochastic
simulations over multiple future steps. The choice of the base
policy can have a substantial impact on the performance of
the rollout algorithm. Therefore, the key contribution of this
work is to propose an efficient and effective base policy in the
context of lookahead BO with local search constraints. As we
show in our numerical example, this can provide substantial
performance improvements over greedy BO methods.

In summary, our major contributions include: (i) we cast
the BO with local search constraints as a Markov decision
process (MDP), whose optimal policy we characterize ex-
actly using DP; (ii) we show how to efficiently compute non-
myopic rollouts for long decision horizons using a Monte
Carlo integration algorithm developed by employing the re-
parameterization trick for Gaussian random variables; and,
(iii) we provide a novel, efficient acquisition function which
trades off local and global search, and therefore, can be used
as a powerful base policy required by some ADP methods.

The remainder of this paper is organized as follows:
We formally present our problem setting in Section II. We
summarize the optimal policy conditions and the rollout
approximation in Section III. In Section IV, we introduce
our new base policy and discuss its efficient implementation.
A numerical example is presented in Section V. Finally, we
conclude the paper and discuss some interesting directions
for future work in Section VI.

II. PROBLEM FORMULATION

We consider the following black-box optimization problem

min
x∈X

f(x), (1)

where x ∈ X are the decision variables that are restricted to
a compact optimization domain X ⊂ Rd and f : X → R
is the unknown objective function that is defined in terms
of an expensive-to-evaluate experiment (could be a physical
experiment, a high-fidelity simulation, or a combination). We
assume that the objective function can be evaluated, either
by measurement or some estimation procedure, once the
experiment is completed. Thus, our goal is to find a point
x ∈ X with the smallest possible objective value by querying
f at a sequence of points {xk}Nk=1 over a finite budget of
N function evaluations (total experiments).

Since a mathematical representation of the objective is
completely unknown, we endow f with a prior probability
distribution, denoted by p, which is formally defined in

Section III. This setting matches that of traditional Bayesian
optimization (BO), which determines the next informative
sampling point xk+1 given the complete set of current
observations Dk by solving an auxiliary problem of the form

xk+1 = argmax
x∈X

αk+1(x | Dk), (2)

where αk+1 : X → R denotes the utility (or acquisition)
function, which is defined in terms of the current posterior
distribution for f ∼ p(f | Dk) conditioned on the observa-
tions Dk. The main idea here is that, since the optimization
runtime is dominated by the evaluations of f , we should
be willing to dedicate time and effort to selecting the most
informative points to evaluate. The exact definition of “in-
formative” depends on the chosen auxiliary problem (see [9]
for a comparison between different acquisition functions). An
important issue that often arises in practice when sequentially
solving (2) is that subsequent iterations xk and xk+1 may
be very far apart, which leads to significant practical chal-
lenges, especially when performing online optimization in
experimental systems. Practical examples of such situations
are discussed in the introduction.

We aim to address this challenge by assuming there is a
restriction on the selection of the next sample that can be
represented by a collection of constraints of the form

xk+1 ∈ Tk(xk), ∀k ∈ {0, . . . , N − 1}, (3)

where

Tk(xk) = {xk+1 ∈ X : ck(xk, xk+1) ≤ 0},

is a set that depends on the previous xk and is defined
in terms of a known function ck : Rd × Rd → Rnck .
At first glance, this issue may appear easy to handle by
simply imposing the constraint xk+1 ∈ Tk(xk) when solving
(2); however, commonly-used acquisition functions lead to
“greedy” optimization strategies in the sense that they are
oblivious to the remaining number of objective function
evaluations. In addition, as we demonstrate in Section V,
there are cases where all feasible points have equal utility
such that the resulting sampling policy is prone to getting
stuck in regions of X that yield suboptimal objective values.

Therefore, our objective is to develop a method that can
systematically account for the remaining budget to plan out
the sequence {xk}Nk=1 in a non-myopic fashion. We can
devise such a method by first formulating the problem within
a dynamic programming (DP) framework, which is discussed
in the next section. Note that we assume that the initial data
set D0 could potentially comprise samples from the global
search space X . This is because the initial dataset can be
generated offline, and offline experiments can be reset, and
therefore do not necessarily have to satisfy (3).

III. APPROXIMATE DYNAMIC PROGRAMMING FOR
FINITE-BUDGET BAYESIAN OPTIMIZATION

In this section, we first provide an overview of Gaussian
process (GP) models that are used to as a probabilistic surro-
gate for the unknown objective function f . We then discuss



how the non-myopic BO framework can be interpreted as
an instance of a Markov decision process (MDP) such that
the optimal lookahead BO policy can be characterized as a
DP instance. Lastly, since the optimal policy is intractable in
practice due to the uncountable state and action spaces, we
discuss approximate DP methods that can be used to develop
more tractable, non-myopic policies.

A. Gaussian process regression

We model the black-box objective function f as the
realization of a Gaussian process (GP), which is an infinite
collection of random variables, any subset of which has a
joint Gaussian distribution [20]. As such, a GP represents
a distribution over functions f(x) ∼ GP(m(x), κ(x, x′))
specified by its mean m(x) and covariance κ(x, x′) func-
tions. The prior GP distribution is defined through an initial
choice of m(x) and κ(x, x′) that, in practice, depend on hy-
perparameters that must be calibrated to data by maximizing
the log marginal likelihood (see, e.g., [20] for details).

Not only are GPs non-parametric models, they have simple
analytic expressions for the posterior mean and covariance
conditioned on the current training set Dk = {(xi, yi)}ki=1

that consists of k potentially noisy observations yi = f(xi)+
ϵi at a corresponding point xi, with ϵi ∼ N (0, σ2) being an
i.i.d. Gaussian noise term for all i = 1, . . . , k. In particular,
the posterior f(x) | Dk ∼ N (µk(x), σ

2
k(x)) at any future

test point x ∈ X is Gaussian with the following posterior
mean µk(x) and posterior variance σ2

k(x)

µk(x) = m(x) + k⊤
k (x)(Kk + σ2Ik)

−1(Yk −Mk), (4)

σ2
k(x) = κ(x, x)− k⊤

k (x)(Kk + σ2Ik)
−1kk(x),

where Yk = [y1, . . . , yk]
⊤, Mk = [m(x1), . . . ,m(xk)]

⊤,
kk(x) = [κ(x1, x), . . . , κ(xk, x)]

⊤, and Kk is a k×k matrix
whose ijth entry is κ(xi, xj).

B. Markov decision process formulation

We can view the BO problem with local search constraints
as an instance of N -stage DP by casting it as a finite-horizon
MDP, which are expressed in terms of a chosen “state” space
and “action” space. The state of our MDP at iteration k is
Dk. The action of our MDP at iteration k is xk+1, which
is the location of our next sample of the objective function.
The state of our system is then defined recursively as follows

Dk+1 = Dk ∪ {(xk+1, yk+1)}, (5)

where yk+1 denotes a predicted value of the objective func-
tion at xk+1 generated according to the available probabilis-
tic model p(f(xk+1) | Dk). Based on our learned GP model
for the objective function, we can represent the simulated
value of yk+1 as follows

yk+1 ∼ N
(
µk(xk+1), σ

2
k(xk+1)

)
. (6)

Consequently, we can use the re-parameterization trick [21]
to express yk+1 in terms of an effective stochastic distur-
bance wk+1 ∼ N (0, 1) such that the simulated objective

value only depends on the current system state Dk and the
current action xk+1; concretely,

yk+1 = µk(xk+1) + σk(xk+1)wk+1.

Based on the structure of the imposed local constraints (3)
and stochastic dynamics (5), the resulting system satisfies the
Markov property [22, Section 3.6], i.e., the predicted state
distribution and constraints are conditionally independent of
previous state values given the current state.

C. Dynamic programming for BO

In ADP parlance, let π = {π1, π2, . . . , πN} denote a
policy that represents a sequence of functions πk. Each πk

maps from sets of available observations to feasible points in
the search space that satisfy the local search constraints, i.e.,
xk = πk(Dk−1) ∈ Tk−1(xk−1). To define an optimal policy,
we need an overall reward function to evaluate the quality
of different policies. In the context of the original problem
(1), we define the utility generated by a state Dk to be the
negative of the minimum observed objective function value

u(Dk) = −min(x,y)∈Dk
y. (7)

This utility function encodes the fact that points with small
objective values are desirable regardless of where it is placed
in the observed data sequence.

Given a utility function u, an initial set of observations D0,
and a policy π, we define the corresponding value function
as the expected increase in utility

Vπ(D0) = E
[∑N

k=1 r(Dk−1,Dk)
]
, (8)

where the expectation operator is defined with respect to fu-
ture observations D1, . . . ,DN (or equivalently w1, . . . , wN )
and r(Dk−1,Dk) = u(Dk)− u(Dk−1) is the utility increase
between stages. The optimal policy π⋆ is the one that maxi-
mizes the expected utility over the set of feasible policies Π
satisfying the local search constraints (3). Formally,

V ⋆(D0) = Vπ⋆(D0) = max
π∈Π

Vπ(D0), (9)

where V ⋆ denotes the optimal value function.
Using Bellman’s principle of optimality [15], we can

recursively compute V ⋆ using the following DP algorithm

Vk(D) = max
x+∈TN−k(x)

ED+

[
r(D,D+) + Vk−1(D+)

]
, (10)

for all k = 1, . . . , N starting from an initial value of
V0(D) = 0, where Vk(D) denotes the optimal value function
for the tail subproblem defined in terms of k remaining stages
and D+ = D∪{x+, y+} is the successor set of observations.
The optimal value function (9) then corresponds exactly to
VN (D0). Furthermore, we can say that, if we always select
the value of x+ that maximizes the right-hand side of (10)
for all k and all D, then the resulting policy must be equal
to that of the optimal policy π⋆ [15].

It is useful to express the right-hand side of (10) in terms
of the optimal Q-factors (also known as the state-action value



function in the reinforcement learning literature [22])

Qk(x | D) = (11)

Ey

[
r(D,D ∪ {(x, y)}) + Vk−1(D ∪ {(x, y)})

]
,

which represents the optimal value of the tail sub-problem
when starting at state D and taking action x at iteration N−
k and following an optimal policy for all remaining steps.
From (10) and (11), we can infer the following relationship:

Vk(DN−k) = max
x∈TN−k(xN−k)

Qk(x | DN−k), (12)

between the value function and the Q-factor. We can now
more straightforwardly define the optimal policy

π⋆
k(Dk−1) = argmax

x∈Tk−1(xk−1)

QN−k+1(x | Dk−1), (13)

in terms of the Q-factor, for all k = 1, . . . , N .

D. Rollout and direct policy search

Calculating the optimal non-myopic policy for BO re-
quires knowledge of the Q-factors, which are recursively
defined by the DP algorithm (10) and (11). However, (10) is
intractable in our problem setting since it must be executed
over an uncountable state space that grows in dimension by
d + 1 at every iteration. The action space is also uncount-
able, though defined over a fixed dimension, which makes
handling the nested constrained maximization problems and
expectation operators impossible to carry out exactly.

To find a tractable method of solving this problem, we
rely on approximate DP (ADP) methods that have shown
promising results on a variety of practical stochastic optimal
control problems with similar characteristics to BO. Con-
cretely, we employ the rollout algorithm (c.f. [19, Section
2.4]) and generate stochastic simulations to approximate
Qk−1 or Vk−1 over multiple future time steps [23]. The
main computational advantage of the rollout algorithm is
that it relaxes the requirement that future candidate points be
selected optimally by using a suboptimal heuristic policy to
decide which action to take in a given state. The choice of the
heuristic is notoriously problem-dependent. Recent work has
suggested to use existing greedy BO policies as the heuristic
[14], [18]. However, as discussed in Section II, such greedy
strategies do not adequately handle local search constraints
(3). To address this challenge, we introduce a novel heuristic
base policy in the next section. Before that, we summarize
the rollout procedure and discuss how to further improve its
computational efficiency using direct policy search.

To derive the rollout updates, we first define a heuristic
base policy π̃ = {π̃1, . . . , π̃N} that may differ from the
optimal policy π⋆. Given such a base policy π̃, we let
V π̃
k denote its corresponding value function for k remaining

stages, which is described by the recursion for k = 1, . . . , N

V π̃
k (D) = ED+

[
r(D,D+) + V π̃

k−1(D+)
]
, (14)

where D+ = D∪{(π̃N−k+1(D), yN−k+1)} and V π̃
0 (D) = 0.

Although (14) bears resemblance to (10), there are some
important differences. The biggest difference is that (14) can

be evaluated in a forward fashion since the base policy can be
evaluated for any given system state. Even though this has
reduced some of the complexity of the DP algorithm, we
still need to make two additional approximations to derive a
tractable policy. First, we use a shortened horizon h ≤ N to
limit the number of steps that we need to simulate forward
in time. Second, we need to approximate the expectation
with some type of numerical method such as quadrature or
Monte Carlo (MC) integration. Due to the nested structure of
the expectation, it would require an exponentially growing
number of quadrature points at each stage such that we rely
on MC to avoid this growth. We can then define the rollout
policy in a similar manner to (13) as follows:

πroll
k (Dk−1) = argmax

xk∈Tk−1(xk−1)

Q̃π̃
h (xk | Dk−1), (15)

where Q̃π̃
h is an approximate Q-factor (for only h steps

ahead) constructed using MC. Although computing Q̃π̃
h is

tractable, it is not simple to numerically optimize.
A simpler alternative, often referred to as policy search,

is to parameterize the base policy π̃θ in terms of some
unknown parameters θ ∈ Θ and then directly optimize over
this newly defined space. We focus on time-invariant base
polices of the form π̃θ = {π̃θ, . . . , π̃θ} as this reduces the
dimensionality of the policy search optimization problem,
though, in principle, any parametrized base policy can be
used. Using this idea, we define the following policy

πps
k (Dk−1) = argmax

θ∈Θ
Ṽ π̃θ

h (Dk−1), (16)

where Ṽ π̃θ

h (D) is an approximated value function evaluated
at a given state D and policy π̃θ for an h-step problem. The
MC evaluation procedure for Ṽ π̃θ

h (D) is summarized below

Ṽ π̃θ

h (D) =
1

S

S∑
j=1

h−1∑
i=0

r(D(j)
i ,D(j)

i+1), (17)

where

D(j)
i+1 = D(j)

i ∪ {(x(j)
i+1, y

(j)
i+1)}, D(j)

0 = D, (18a)

x
(j)
i+1 = π̃θ(D(j)

i ), (18b)

y
(j)
i+1 = µ

(j)
i (x

(j)
i+1) + σ

(j)
i (x

(j)
i+1)w

(j)
i+1, (18c)

S is the number of MC samples, and {w(j)
1 , . . . , w

(j)
h }Sj=1 are

the complete set of uncertainty samples, with each element
being drawn from a standard normal distribution. When Θ
is selected such that we only need to consider a finite set of
policies, then (16) can be easily evaluated by simulating (17)
for each θ ∈ Θ and selecting the one with the highest h-step
value. As a result, our proposed approach is significantly
faster than the DP method or traditional rollout ADP, though
this may come with a reduction in performance.

IV. AN EFFICIENT BASE POLICY FOR GLOBAL
OPTIMIZATION WITH LOCAL SEARCH CONSTRAINTS

We are now in a position to define our novel base policy
as the solution to the following optimization problem

π̃θ(Dk) = argmax
x∈Tk(xk)

Q1(x | Dk)− θ∥x− xglobal
k+1 (Dk)∥, (19)



Algorithm 1 Lookahead BO with Local Search Constraints
Input: The optimization domain X , initial data D0, GP prior
m and κ, total number of iterations N , rollout horizon h,
number of MC samples S, and policy parameter set Θ.

1: for k = 1 to N do
2: Determine xk by solving the policy search optimiza-

tion problem (16) with approximate value function Ṽ π̃θ

h

evaluated using the proposed base policy (19).
3: Evaluate the expensive objective function at the de-

sign suggested in the previous step to obtain a potentially
noisy observation, i.e., yk = f(xk) + ϵk.

4: Augment the dataset Dk = Dk−1∪{(xk, yk)}, which
can be used to update the GP posterior according to (4).

5: end for

where θ ≥ 0 is a non-negative scalar weight and xglobal
k+1 (Dk)

corresponds to the predicted one-step optimal solution to the
problem without local search constraints:

xglobal
k+1 (Dk) = argmax

x∈X
Q1(x | Dk). (20)

Therefore, similarly to previous work [14], [18], we focus on
a greedy policy in our rollout procedure for computational
efficiency; however, our policy attempts to balance two
disparate terms. The first term in (19), Q1(x | Dk), is simply
the one-step optimal acquisition function, which provides a
one-step quantification of improvement in our local search
region around the previous candidate xk. The second term
∥x−xglobal

k+1 (Dk)∥, on the other hand, corresponds to the dis-
tance from the suggested one-step globally optimal solution
(20), which indicates there is some inherent value to moving
toward this point, which can potentially be sampled at some
future iteration. Since we have two competing objectives, a
natural way to balance them is to treat the problem as a
multi-objective optimization problem that can be scalarized
using a weight factor θ, as shown in (19). We propose using
the policy search-based rollout algorithm (16) to adaptively
select θ based on the predicted future performance.

For our approach to be computationally efficient, the
optimization problems in (19) and (20) must be solved as fast
as possible since they will be repeatedly called during the
rollout procedure. To this end, we analytically reformulate
the one-step Q-factor for the utility function in (7) as follows

Q1(xk+1 | Dk) = Eyk+1
[max{yk+1 − u(Dk), 0}] , (21)

= σk(xk+1)zk(xk+1)Φ(zk(xk+1)) + ϕ(zk(xk+1)),

where zk(x) = (u(Dk)−µk(x))/σk(x) and Φ and ϕ denote
the standard Gaussian cumulative density and probability
density functions, respectively. It is interesting to note that
the expression in (21) is equivalent to the classical expected
improvement (EI) acquisition function proposed in [24],
which is one of the most popular acquisition functions in
traditional “greedy” BO. This is not very surprising since EI
is known to be one-step optimal for the utility function (7).

We summarize the proposed method in Algorithm 1.
We plan to formally analyze the convergence of this al-

gorithm in future work; however, we provide some brief
theoretical justification for its structure. In particular, if the
solution to (20) also satisfies the local search constraints,
i.e., xglobal

k+1 (Dk) ∈ Tk(xk), then the value of θ becomes
irrelevant such that xglobal

k+1 (Dk) = π̃θ(Dk) for all θ ∈ Θ.
Additionally, as θ → ∞, then the solution (20) corresponds
to the point in Tk(xk) that is nearest to xglobal

k+1 (Dk) (in the
norm sense). Assuming xglobal

k+1 (Dk) is roughly constant for i
iterations into the future, then we would have that xk+i ≈
xglobal
k+1 (Dk) for some i ≥ 1. Therefore, Algorithm 1 mimics

(20) under certain conditions, which is important because
the policy generated by (20) is guaranteed to converge to
the global minima under suitable regularity conditions on
the covariance function κ, as proven in [25, Theorem 7].
Even though this does not immediately imply convergence
of our proposed approach, it does hint at a possible direction
to achieve convergence. Furthermore, in practice, one cares
about improved performance (lower objective values found
in fewer iterations), which we demonstrate in a reproducible
manner on a numerical example next.

V. NUMERICAL EXAMPLE

For our benchmark problem, we use a modified version of
the Branin function over the domain x ∈ [−5, 10] × [0, 15].
The true unknown function f(x) is given by

f(x) = f1(x) + f2(x) + l1(x) + l2(x), (22)

where

f1(x) = a
(
x2 − bx2

1 + cx1 − r
)2

, (23a)
f2(x) = s(1− t) cos(x1) + s, (23b)

l1(x) = 5e−5((x1+3.14))2+(x2−12.27)2), (23c)

l2(x) = 5e−5((x1−3.14))2+(x2−2.275)2), (23d)

are functions defined in terms of the following constants a =
1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, t = 1/(8π).
Note that f1(x) + f2(x) corresponds to the standard Branin
function (that has 3 global minima), while l1(x) and l2(x) are
modifications developed to convert the 2 global minima at
(−3.14, 12.27) and (3.14, 2.275) to local minima. Thus, our
modified Branin function (22) has a unique global minimum
at (9.42, 2.475). To increase the difficult of the problem, we
assume that the selected sequence of query points {xk}Nk=1

must satisfy local search constraints of the form (3)

−0.75 ≤ x1,k+1 − x1,k ≤ +0.75, (24a)
−1.5 ≤ x2,k+1 − x2,k ≤ +1.5. (24b)

To implement our proposed lookahead BO strategy, sum-
marized in Algorithm 1, we use a GP with a Mateŕn 5/2
prior covariance function κ. We use maximum likelihood
estimation to learn the corresponding hyperparameters at ev-
ery iteration (including the length scale for each dimension,
the scale, and the noise variance) [20]. We randomly draw
10 points in X to construct the initial dataset D0 and always
select x0 to be the point that leads to the minimum objective
value within this set. We chose S = 20 samples using Latin



Fig. 1: Expected simple regret versus number of BO itera-
tions for the modified Branin problem for different rollout
horizons h ∈ {1, 2, 5}. Confidence intervals are shown
in the form of error bars, which were estimated from 50
independent realizations of the initial random samples.

hypercube sampling and run the algorithm for a total of
N = 50 iterations. To evaluate the proposed base policy
in (19), we use a multi-start L-BFGS-B algorithm [26] with
10 restarts selected by evaluating Q1 on a Latin hypercube of
1000 points and picking the best 10 as our initial conditions.
We use CasADi [27] to efficiently compute the first-order
derivatives required by L-BFGS-B. To perform the policy
search step (16), we only consider two discrete values of θ
that leads to either a pure local or global step for simplicity.

We compare Algorithm 1’s performance on three different
rollout horizons h ∈ {1, 2, 5}. The case h = 1 corresponds
to traditional greedy BO using an EI acquisition function
where we can only search over the feasible region defined
by the local search constraints. We use simple regret as our
performance metric, which is defined as follows

Regretk(D0) = min
i=1,...,k

yk − f⋆, (25)

where f⋆ = minx∈X f(x) is the true global solution. Since
the initial dataset D0 is random, we repeat each algorithm
50 times to obtain an estimate of the average simple regret
ED0

[Regret(D0)] along with confidence intervals estimated
by one standard deviation divided by the square root of
the number of replications. The results of the empirically
estimated average simple regret versus the number of it-
erations N is shown in Fig. 1. We see the rollout case
with h= 5 considerably outperforms the traditional greedy
BO approach (h = 1) and the short-sighted BO approach
(h=2) after around 12 iterations. Furthermore, this long-term
improvement in performance does not come at a large cost in
short-term performance since h=5 still shows a considerable
reduction in (average) regret during the first 10 iterations.
This is a direct consequence of the proposed base policy
(19), which captures both local and global information.

To better understand the empirical performance improve-
ments observed in Fig. 1, we have plotted the design policy

sequences generated by the proposed algorithm with h ∈
{1, 2, 5} in Fig. 2. The greedy BO policy (Fig. 2a) essentially
gets stuck near u(D0), which is the best observed sample in
the initial dataset because there is no room for improvement
in the one-step reachable zone (shown as magenta squares)
once the neighboring local minimum is found. By increasing
the rollout horizon h=2 (Fig. 2b), we see the policy is able
to pull away from the nearest local minimum by following
a path of reasonable improvement. However, it quickly gets
trapped by the other local minimum and shows a similar
behavior to the greedy BO algorithm at that point. The h=5
case (Fig 2c), on the other hand, shows a stronger preference
for globally exploring the objective function surface such that
it is able to quickly move toward the true global minimum
after a few steps of local improvement. It is important to note
that the optimization path shown in Fig 2c differs from that
generated by (19) with θ = ∞ since the rollout algorithm
allows us to adaptively choose between different θ values at
each step. In this way, we achieve a truly hybrid strategy that
can more adeptly handle the exploration-exploitation tradeoff
in the presence of local search constraints.

VI. CONCLUSIONS

This paper develops a variant of Bayesian optimization
(BO) for global optimization problems with expensive ob-
jective functions and local search constraints imposed on the
chosen sequence of query points. These local search con-
straints are important for limiting the input cost of classical
BO methods, which result in aggressive jumps in the search
space that can cause problems in online experimental systems
such as controller auto-tuning. We formulate a non-myopic
BO procedure as a dynamic programming (DP) problem,
which is intractable to solve in its natural form in part due
to having an uncountable state space. We take advantage
of rollout combined with fast policy search to overcome this
computational challenge, which are well-known approximate
DP methods. In addition, we propose a novel base policy that
incorporates the local search constraints, which is needed to
run the rollout algorithm in order to on-the-fly approximate
the value function at the current state. In future work, we
intend to implement this algorithm on an industrial controller
auto-tuning problem related to energy-use minimization as
well as develop improved base policy heuristics for which
we can directly establish convergence.
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