
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Few-Shot Closed-Loop Performance Optimization with
Bayesian Meta-Learning

Chakrabarty, Ankush

TR2022-160 December 09, 2022

Abstract
Bayesian optimization (BO) has been widely adopted for optimizing closed-loop performance
in data-limited settings, especially for systems with unmodeled dynamics or performance
functions. The BO algorithm efficiently trades-off exploration and exploitation by leveraging
uncertainty estimates using surrogate models learned using data from the target closed-loop
system to be optimized. The convergence rate of BO can be greatly improved if the underlying
surrogate model can accurately predict the target system performance despite having very
limited data. In this paper, we propose the use of Bayesian meta-learning to generate an
initial surrogate model based on data collected from closed-loop performance optimization
tasks performed on a variety of systems that are different to the target system. To this end, we
employ deep kernel networks (DKNs) which are simple to train and which comprise encoded
Gaussian process models that integrate seamlessly with classical BO. The effectiveness of
our proposed DKN-BO approach for speeding up closed-loop performance optimization is
demonstrated using a well-studied uncertain nonlinear system with unknown dynamics and
an unmodeled performance function.

IEEE Conference on Decision and Control (CDC) 2022

c© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Few-Shot Closed-Loop Performance Optimization
with Bayesian Meta-Learning

Ankush Chakrabarty†

Abstract—Bayesian optimization (BO) has been widely
adopted for optimizing closed-loop performance in data-limited
settings, especially for systems with unmodeled dynamics or
performance functions. The BO algorithm efficiently trades-off
exploration and exploitation by leveraging uncertainty estimates
using surrogate models learned using data from the target
closed-loop system to be optimized. The convergence rate of
BO can be greatly improved if the underlying surrogate model
can accurately predict the target system performance despite
having very limited data. In this paper, we propose the use
of Bayesian meta-learning to generate an initial surrogate
model based on data collected from closed-loop performance
optimization tasks performed on a variety of systems that
are different to the target system. To this end, we employ
deep kernel networks (DKNs) which are simple to train and
which comprise encoded Gaussian process models that integrate
seamlessly with classical BO. The effectiveness of our proposed
DKN-BO approach for speeding up closed-loop performance
optimization is demonstrated using a well-studied uncertain
nonlinear system with unknown dynamics and an unmodeled
performance function.

Index Terms—Bayesian optimization, kernel methods, neural
networks, latent variables, few-shot optimization.

I. INTRODUCTION

Performance-driven optimization of closed-loop control
systems often involves optimizing system-specific perfor-
mance functions. Such performance functions often lack a
complete mathematical representation or exhibit such high
model complexity that standard model-based techniques can-
not be deployed without oversimplifying assumptions or
introducing conservativeness. As argued in [1], Bayesian
optimization (BO) possesses some clear advantages that
have led to its adoption for closed-loop performance op-
timization [2]–[5]. Namely, BO is a gradient-free, global
optimization method that works well in data-limited settings
while concurrently learning a probabilistic approximation of
the underlying performance function from data. This has led
BO to be implemented in a range of engineering applications,
including energy systems [6]–[8], vehicles [9], robotics [10],
and aerospace [11].

In the performance-driven BO literature, a standard as-
sumption is that the target system to be optimized is available
for closed-loop experimentation so that, at design time, one
can evaluate the performance of the system by changing some
closed-loop system parameters such as controller gains or
setpoints. Furthermore, it is often the case that there is very
limited data available from the target system at the start of

Phone: +1 (617) 758-6175. Email: achakrabarty@ieee.org. Mit-
subishi Electric Research Laboratories (MERL), Cambridge, MA, USA.

the BO procedure. Therefore, a learned surrogate model of
the performance function constructed with this limited data
will initially be inaccurate, and will need to be improved in
subsequent BO iterations by exploring the search space [12].
In many industrial applications, however, there is often data
collected from previous performance optimization tasks on
similar, but not identical, closed-loop control systems. We
posit that this previously collected data, combined with the
limited target system data, can warm-start BO by estimating
a good initial surrogate model, potentially improving the
convergence of BO for the target task.

To this end, we propose the use of few-shot meta-learning
(or just meta-learning for brevity), wherein a machine learn-
ing model is trained on a variety of related ‘source’ opti-
mization tasks so that it can make accurate predictions for
a new target task, in spite of limited data points available
from that target task. This typically involves solving a bi-level
optimization problem, where the outer level is dedicated to
extracting task-independent features across a set of source
tasks, and the inner level is devoted to quickly adapting
to a specific optimization task. A widely use meta-learning
framework that employs this bi-level optimization for train-
ing deep neural networks is model-agnostic meta-learning
(MAML) [13]. However, as shown recently in [14], MAML
is not always easy to train and often exhibits numerical in-
stabilities. In addition, MAML does not generate uncertainty
estimates around the predictions since it is a deterministic
algorithm. Consequently, we adopt a Bayesian meta-learning
approach in this work, which builds on the methodology
proposed in [15]–[17]. To the best of our knowledge, this
paper is the first to investigate the effectiveness of meta-
learning for closed-loop system optimization.

Our main contribution in this work is to propose a
meta-learned Bayesian optimization methodology for rapidly
optimizing closed-loop performance of systems with dynam-
ics and performance functions whose mathematical repre-
sentations are unknown, but can be evaluated by exper-
iment/simulation. Specifically, we employ Bayesian meta-
learning to systematically learn from data collected from a
variety of systems that are different to a target system to
be optimized, and leverage this disparate dataset to generate
a good surrogate model for the target system performance
function, despite having very few data samples from the
target system. Our Bayesian meta-learning framework is im-
plemented using deep kernel networks (DKNs) which has the
advantage of requiring single-level optimization for training
as the inner training loop is replaced by a Gaussian process

(GP) base kernel. Additionally, our approach is simple to
implement using standard deep learning toolkits such as
PyTorch. The choice of GPs as the base learner lends itself
to classical BO, where the default choice of probabilistic
surrogate model is a GP. We demonstrate via simulation
experiments that this performance-driven meta-learned BO
can generate near-optimal solutions with fewer online exper-
iments than classical BO for a class of parameter-uncertain
systems with unmodeled dynamics, without requiring explicit
parameter estimation. While meta-learning has recently been
explored in the context of adaptive control in [?], [18],
[19], our work differs from these works in a few key
aspects: (i) we propose meta-learning for optimizing closed-
loop performance rather than controller gain adaptation for
tracking/regulation, and (ii) we adopt Bayesian deep learning
for meta-learning and instead of adaptive controllers; and,
(iii) we do not assume any modeling knowledge on the
closed-loop dynamics, controller structure, or performance
function.

The rest of the paper is organized as follows. The closed-
loop performance optimization problem is formalized in
Section II and the meta-learning setup is explained therein.
In Section III, we provide a brief overview of BO and deep
kernel networks, and describe how they are used for meta-
learned BO in Section IV. We demonstrate the effectiveness
of the proposed approach using a numerical example in
Section V, and conclude in Section VI.

II. MOTIVATION

We consider a class of stable closed-loop systems of the
form

x+ = f(x, r, θ) (1)

where x, x+ ∈ Rnx denote the current and updated state
of the system, respectively, r ∈ R ⊂ Rnr is a control
parameter to be tuned (e.g., a setpoint or controller gain),
and θ ∈ Θ ⊂ Rnθ denotes unknown system parameters.
The admissible sets of control parameters and system pa-
rameters: R and Θ, respectively, are known. Additionally,
we assume that for each θ ∈ Θ and each r ∈ R, the
closed-loop system (1) is globally asymptotically stable to
a parameter-dependent equilibrium state x∞(r, θ), and that
the map x∞(·, ·) is continuous on R × Θ. To determine
how the closed-loop system performs, we define a continuous
function J : R × Θ → R. The performance output J(r, θ)
is measured. Note that for our purposes, it suffices that f
and J are smooth and can be evaluated either by simulation
or experiments—however, we do not assume access to a
mathematical representation of these functions, nor can we
compute their gradients analytically.

For a target system (1) with unknown system parameter
θ, our target optimization task is to compute the control
parameter

r⋆ := argmax
r∈R

J(r, θ) (2)

that optimizes the performance of the closed-loop system (1)
directly from data. We will do this without estimating θ,

which would prove difficult since f is unknown, and x is
not measured.

In most industrial applications that involve optimization
of closed-loop performance, it is often the case that the
optimization task has been performed before, most likely for
similar, but not necessarily identical, systems. While solving
these source optimization tasks, one has likely generated
optimization-relevant data that can prove valuable to the tar-
get optimization task, even if the target system is not exactly
the same as one of the systems encountered before. In BO-
based tuning, such source data (data obtained while solving
source optimization tasks) is typically ignored, and the target
system is optimized from scratch [1]. This can lead to slow
convergence of BO since the algorithm’s initial estimate of
the target performance function, constructed with very few
target data points, is often inaccurate or highly uncertain.
In this work, we propose meta-learning from a variety of
source data and integrating the information extracted from
the source data to target optimization task. In the sequel,
we will show that meta-learning from disparate sources of
data can enable optimization of closed-loop performance in
a few-shot manner (i.e., with very limited target system data)
and thereby lead to significant acceleration of the target
optimization procedure.

Example 1. As a motivating example, consider a common
task in smart building control: to minimize energy con-
sumption of a newly constructed target building by tuning
controllable variables in heating/cooling systems [6]. At
design time, it is likely that very little data has been collected
from the target building, and using classical BO will require
first exploring the search space until a good estimate of the
energy function is learned. Conversely, we posit that the
designer could have access to larger quantities of source
data from other buildings that are similar in architectural
style, location, occupancy, and HVAC equipment. Even if
the energy functions learned from those source tasks are
not identical to the energy function of the target building, a
learner can extract information (e.g., curvature) about classes
of energy functions, which can be used to rapidly optimize
energy in the target building.

Concretely, we assume that we have access to a dataset
DS ≜ {DS

k }
NS

k=1, collected from NS ∈ N source optimization
tasks performed in the past, where

DS
k = {rt,k, J(rt,k, θk)}Tk

t=1. (3)

That is, the k-th source optimization task generated a data
sequence of (r, J) pairs over Tk ∈ N optimization iterations.
Each k-th source data pair consists of the control parameter
rt,k, and the corresponding performance output J(rt,k, θk)
evaluated on a source system with dynamics modeled by (1)
with system parameter θk ∈ Θ, where each θk is unique. We
reiterate that we do not assume access to the source systems
or the system parameters θk. For the target task, our objective
is to compute (2) by learning a variety of performance
functions from the source dataset DS and generating a
good estimate of the performance function for the target

optimization task, despite having access to a very limited
target dataset

DT = {rt, J(rt, θ)}Tt=1,

where T ≪ mink Tk.
To this end, we propose the use of Bayesian meta-learning

to learn a distribution of performance functions from the
source data, and predict the target performance function
by conditioning on the target data. With successful meta-
learning, we expect that the estimated target task performance
function will be significantly more accurate than an initial
estimate that uses only the limited target dataset, and in turn,
expect this to improve the convergence of BO. Our meta-
learning framework comprises a deep kernel network (DKN).
Deep kernel networks comprise of a latent encoder and a final
Gaussian process layer. The latent encoder takes an input r
and transforms it to a latent variable of user-defined size,
thereby lending itself to target systems with a large number
of control parameters. Since the final layer is a Gaussian
process regressor, it integrates seamlessly into classical BO
procedures and well-studied acquisition functions can be used
with the DKN without modification.

III. PRELIMINARIES

In this section, we explain how classical Bayesian opti-
mization is typically used to solve (2) for the closed-loop
system (1) for a fixed θ, assuming the absence of source task
data. We also describe deep kernel networks that will be used
in the next section for meta-learning.

A. Bayesian Optimization (BO)

Classical BO comprises two main components: (1) a
probabilistic surrogate model that maps r → J for r ∈ R,
and (2) an acquisition functions that balances exploration
and exploitation to propose new candidate control parameters
r that are likely to optimize J , based on the predictions
of the surrogate model. Since BO starts with no initial
data available for the system under consideration, classical
BO typically starts with some random sampling on R. For
each such control parameter ri, i ∈ N, the closed-loop
system (1) is allowed to achieve a steady-state after some
suitable wait time tf , after which a measurement J is taken.
This steady-state performance output acts as a proxy for the
objective function value for the corresponding ri, that is,
Ji = J(t0 + itf). This enables us to obtain an initial set
of (rt, Jt) pairs from which a probabilistic surrogate model
can be trained to estimate J on R.

In particular, classical BO methods utilize Gaussian pro-
cess (GP) regression [20] to construct the surrogate model.
The Gaussian process framework works on the principle
that the performance J is a random variable and the joint
distribution of all Ji for the n training data instances is a
multivariate Gaussian distribution. This implies that the GP
can be characterized entirely by a mean function µ : R → R
and a covariance function K : R × R → R; that is,
J ∼ N (µ(r),K(r, r)). A common choice is to set µ ≡ 0,
and to represent the covariance function using kernels K such
as squared exponential kernels or Matérn kernels, which are

parameterized by hyperparameters γ such as length-scales
and variances. At inference, for predicting the performance
of a new instance r̂, the assumption that the predictions
are jointly Gaussian with respect to the training instances
J =

[
J0 . . . Ji . . . Jn

]⊤
yields an estimate Ĵ with

posterior mean and variance given by

E[Ĵ] = K̂⊤K−1J,

Var[Ĵ] = K̄− K̂⊤K−1K̂
(4)

where K = K(J, J |γ) + σ2
wI with σw being an estimate of

the variance of the noise corrupting the performance output
measurement, K̂ = K(J, Ĵ |γ), and K̄ = K(Ĵ , Ĵ |γ). Clearly,
the accuracy of the predictions depends on the choice of
kernel and the kernel hyperparameters γ. In classical BO, γ is
computed by maximizing a log-marginal likelihood function

L(γ) = −1

2
log |K+| −

1

2
J⊤K−1

+ J+ C0, (5)

where C0 is a constant. Although this problem is non-convex
in γ, one can employ stochastic gradient ascent to search for
optimal hyperparameters.

The selection of the next best candidate for r in classical
BO is performed via an acquisition function A : R → R. The
acquisition function uses the predictive distribution given by
the GP to compute the utility of performing an evaluation
of the objective at each ri, given the data obtained thus
far. The next ri at which the objective has to be evaluated
is obtained by solving the maximization problem ri+1 :=
argmaxR A(r). Commonly used acquisition function include
expected improvement (EI) and upper confidence bound
(UCB) [12]. With the new control parameter candidate ri+1,
we wait tf seconds to obtain Ji+1 and iteratively perform
the surrogate model retraining and the acquisition function
evaluation steps with the training set augmented each BO
iteration with the new pair (ri+1, Ji+1).

B. Deep Kernel Networks (DKNs)

While commonly used kernel functions have shown good
performance in some applications, there are advantages to
directly learning the kernel function from data. This is the
idea proposed in deep kernel learning [21], where a base
kernel K(·, ·|γ) with hyperparameters γ is used to transform
the control parameters to a latent space via a non-linear map
Fω(r) induced by a deep neural network, parameterized by
weights ω.

The deep kernel

K̃(r, r′|γ, ω) := K (Fω(r),Fω(r
′)|γ) (6)

is trained by maximizing a log marginal likelihood, similar
to (5), to concurrently compute γ and ω. A noteworthy
benefit of deep kernels is that they can be defined on a
latent space whose dimension may be significantly lower
than the dimensionality of the input, allowing the learning
to be applied on problems where the dimensionality of the
control parameters nr is large. A simple example of the DKN
architecture is shown in Fig. 1.

Fig. 1. Architecture of the deep kernel network used for Bayesian meta-learning. The latent variable representation is learned by the neural network from
multiple source tasks, and fixed during inference. The base kernel is used to estimate the mean and variance of a performance function.

IV. META-LEARNED BAYESIAN OPTIMIZATION WITH
DEEP KERNEL NETWORKS (DKN-BO)

Recall that DS is a collection of data obtained from source
tasks, where the data of the k-th source task is described
in (3). Most recent Bayesian meta-learning paradigms [16],
[17] work under the assumption that all the source tasks
(and the target task) share a set of task-independent hidden
parameters ω and γ (the reasons for using two symbols
here will be explained shortly), and a set of task-specific
parameters {ρk}NS

k=1. Given an input r∗ from an unseen task,
the Bayesian treatment for inference requires estimating the
task-independent parameters ω and γ from the source task
dataset, and then estimating two distributions: the posterior
of the task-specific parameters π(ρk|r∗,DS , ω, γ) and the
posterior for the output π(J∗|r∗, ω, γ). However, as argued
in [15], handling these two distributions requires sampling
or amortized distributions, resulting in significantly complex
network architectures, and bi-level learning has been shown
to require higher-order derivative information, in spite of
which the training might suffer from instabilities. By using
deep kernel networks, one can marginalize out the task-
specific parameters with kernel functions defined in the latent
space, which leads to a simple architecture (see Fig. 1),
allows for quantification of uncertainty during inference,
all the while avoiding the numerical conditioning issues
that are reported to occur [14] during training via bi-level
optimization (e.g., in MAML).

A. Training

The marginal likelihood of the Bayesian meta-learning
module conditioned on ω and γ is given by

π(J |r,DS , ω) =

NS∏
k=1

π(J |r,DS
k , ω, γ), (7)

where

π(J |r,DS
k , ω, γ) ≈

∫ NS∏
k=1

π(J |r,DS
k , ω, γ, ρt) dρt

represents the marginalization over sets of task-specific pa-
rameters. We approximate the Bayesian integral above using
a Gaussian process prior with kernel γ; this is a com-
monly used approach for tackling similar integrals that are
implicitly solved via Bayesian quadrature methods, see for
example, [15], [22].

Consequently, one can cast the meta-learning problem
as learning the parameters ω and γ that characterize a
deep kernel network (6), which is tantamount to optimizing
(maximizing) the log-marginal likelihood

LDKN(ω, γ) =

NS∑
k=1

−1

2
log |K̃| − 1

2
J⊤k K̃

−1Jk + C1, (8)

where K̃ := K̃(rk, r
′
k|γ, ω), Jk is a vector of all labels of

the k-th source task, and C1 is a constant scalar.

In each training iteration, a source task is selected at
random from the set of source tasks, and a random subset of
batch data from this source task is selected. The log-marginal
likelihood is computed using (7), and well-known variants of
stochastic gradient descent methods are used to minimize the
negative of LDKN. In other words, the learnable parameters
are updated by backpropagation

ω ← ω + βω
∂

∂ω
LDKN(ω, γ),

γ ← γ + βγ
∂

∂γ
LDKN(ω, γ),

where βω and βγ are the step sizes of the neural network
component and the base kernel component of the deep kernel
network, respectively. By optimizing the entire DKN in mini-
batches, we can also limit the computational expenditure of
the determinant and inverse operations during loss function
evaluation, without losing guarantees of convergence of the
training loss (up to a small neighborhood of a critical point
of the loss function), as demonstrated in [23, Theorem 3.1].
Let ω⋆ and γ⋆ denote the parameters of the DKN learned at
the termination of the training loop.

B. Inference

As in the few-shot optimization setting, we assume that
very few data points DT are initially available from a target
task T . To predict the control performance J on R for the
target task, and subsequently compute a next candidate r with
Bayesian optimization, we rely primarily on the optimized
task-independent parameters ω⋆ and γ⋆, as the trained DKN
is expected to have learned a suitable surrogate model of
r 7→ J from the set of source tasks. By conditioning on the
target data, we encourage the predictions of the DKN

π(J∗|r∗,DT , ω⋆, γ⋆)

to be biased towards to the target task. Under the assumption
that the target task is similar to the source tasks, we expect
the predictions of the DKN conditioned on limited target
task data to be more accurate and exhibit lower uncertainty
than a regressor trained only on the target data without meta-
learning.

Analogous to the classical BO algorithm described in Sec-
tion III-A, we use the DKN surrogate to predict the control
performance at samples in R, and use these predictions to
optimize an acquisition function. Optimizing the acquisition
function yields the next best control input candidate, given
the target task data collected so far. In subsequent DKN-BO
iterations, even if ω⋆ and γ⋆ are kept constant, since the
kernel covariance matrix K is appended with new target task
data (obtained by evaluating the performance J of the target
task with candidate control inputs r), the DKN predictions
gradually tighten around the true performance function of
the target task. A full pseudocode of DKN-BO is provided
in Algorithm 1.

The authors in [24] propose a method for introducing scale
invariance during training of DKNs so that the target task
labels do not need to be normalized to the unit line (which
would be impossible, since the target task’s maximum and
minimum is unknown). In particular, the proposed method
involves computing Jmin and Jmax, which are the minimum
and maximum performance output observed over all source
tasks, respectively. Each time a batch is sampled during
training, the labels are rescaled to (J−Jmin)/(Jmax−Jmin),
which, over a large number of training iterations allows
the learner to learn trends from the source tasks that are
scale independent, enabling inference for the unseen target
task without normalization. Empirically, we have noticed
improvements in DKN-BO performance when retraining the
base kernel parameters γ as in classical BO while keeping the
neural network weights, i.e. ω, fixed. However, this approach
is closer in spirit to transfer learning than meta-learning, and
thus, we do not retrain the base kernel in this work to avoid
online training expenditure.

Algorithm 1 Meta-Learned Bayesian Optimization with
Deep Kernel Networks (DKN-BO)
Require: R ← set of control inputs
Require: DS ← source task dataset
Require: DT ← target task dataset
Require: βω, βγ ← step sizes ▷ default: 10−4, 10−3

Require: latent vector dimension ▷ default: 8
Require: mini-batch size for training ▷ default: 32
Require: number of training iterations ▷ default: 10000
Require: ω, γ ← random initial DKN parameters
Require: Fω ← latent space encoder
Require: K(·, ·|γ)← base kernel

Training the DKN

1: for each training iteration do
2: k ← choose random source task index
3: for each mini-batch do
4: sample random subsets of data from DS

k

5: compute DKN loss using (8)
6: update ω and γ using SGD/Adam
7: end for
8: end for
9: ω⋆, γ⋆ ← trained DKN weights

Few-Shot BO

10: initialize surrogate model with trained DKN
11: for each DKN-BO iteration do
12: µ, σ ← predict performance function using DKN

conditioned on DT

13: evaluate acquisition function with predictions on R
14: r+ ← next best BO candidate from acq. func.
15: J+ ← evaluate closed-loop performance with r+
16: Append target task dataset with (r+, J+)
17: end for
18: return r⋆ ← control parameter for best performance

observed

V. SIMULATION RESULTS

We consider the following nonlinear system, previously
studied in [25], [26]:

ẋ1 = x2 − θ1x1, (9a)

ẋ2 = −θ2x2
1 + κ(x, r), (9b)

J = 1− θ1x1 − θ2x
2
1, (9c)

where

κ(x, r) = −6x1 + (θ1 − 5)(x2 − θ1x1) + θ2x
2
1 + r,

is a control policy that renders the closed-loop system stable.
For the target system, the true parameters are θ = [2, 5] and
the optimal control parameter is r⋆ = −1.2 at which the
system attains its maximum J⋆ = 1.2; this is not known to
the designer. We choose R = [−10, 10] and Θ = [1, 6]2.

In order to generate the source dataset, we extract NS = 20
unique system parameters from Θ using a 2D uniform
random distribution. We evaluate the performance output J

Fig. 2. Data points (without noise) collected from source tasks shown with circles, limited data from target task shown with squares, and unknown target
performance function shown with a continuous black line. Note that no target data point is at the optimal value.

for a given r by forward simulating each system realized
by sampling from Θ for tf = 10 s, which provides enough
time for the transient response to fade. For each sampled
system parameter, we solve the source optimization task of
maximizing the performance function given in (9c) within
Tk ≡ 50 iterations, which depends on θ and therefore has a
variety of optimizers and optimal values. The source data
collected is illustrated in Fig. 2[A] using colored circles
joined by thin continuous lines, and we observe that indeed
the performance functions are not identical to the target task
performance function which is shown with the continuous
thick black line. Our proposed approach is agnostic to the
optimization strategy used for optimizing each source task;
in fact, a mix of random search and BO are used for source
task optimization and source data collection. The target task
data is collected by evaluating the performance of the target
system at T = 5 randomly selected r values.

Our DKN architecture involves a latent encoder with 100
neurons per hidden layer, with 4 hidden layers following
the input layer. We select a latent dimension of 10, and the
activation functions are ReLUs. The latent output is passed to
a GP with a scaled Matern-3/2 kernel as the covariance and
a constant mean kernel. The entire pipeline is implemented
using PyTorch [27] and GPyTorch [28]. The DKN is
trained for 10000 iterations with the learning rate scheduled
at: βω = 10−3 and βγ = 10−2 for the first 2000 iterations,
and βω = 10−4 and βγ = 10−3 thereafter. We train using
the Adam algorithm and fix the batch-size at 8. The weights
corresponding to the highest log marginal likelihood was
saved as ω⋆ and γ⋆.

Fig. 2[B] illustrates the effectiveness of meta-learning
for predicting the target performance function. With the
same limited target data, the trained DKN generates a more
accurate mean estimate of the true performance function,
as compared to a GP trained for 1000 iterations with a
squared-exponential kernel: see the blue (DKN) and orange
(GP) continuous lines. Furthermore, it is encouraging that the

uncertainty bands for the DKN are less pronounced than the
GP in the areas that are most relevant for optimization.

Fig. 3 demonstrates an instance of DKN-BO for optimizing
control performance. We start the target system at the origin
and simulate the system forward in time, collecting perfor-
mance outputs every 10 s for r value candidates generated
by the DKN-BO procedure. The state variation x1 and x2

shows that we do not assume that we can reset the experiment
each time a new r candidate is selected, and the closed-loop
performance is optimized in an online manner. The corre-
sponding variation of the control parameter r. The bottom
right subplot, which shows the performance output, illustrates
clearly that DKN-BO finds the optimal value within 100 s,
which is comparable to the performance reported in [26],
even though we do not have access to any model information
and do not estimate θ.

Fig. 3. States x, controller parameter r, and performance output J of the
unknown target system during performance optimization by DKN-BO.

We also repeated our experiments 100 times with varying

target datasets, and report the statistics of the simple regret
decay in Fig. 4. We observe that DKN-BO performs well in
a few-shot setting, and converges to a median regret that is
two orders of magnitude below classical GP-BO within 10
iterations. Furthermore, the DKN-BO algorithm is robust to
the target dataset as is evident from its tighter confidence
intervals compared with GP-BO.

Fig. 4. Regret decay of target task’s control performance cost for meta-
learned DKN-BO (without base kernel retraining) and classical BO (median
and 90% confidence interval). The benefit of meta-learning is clearly seen
through the fast convergence of DKN-BO after 10 initial random samples
are provided.

VI. CONCLUSIONS

This paper provides a highly generalizable, computation-
ally simple, and systematic framework for leveraging prior
data for optimizing unseen closed-loop performance opti-
mization tasks, even if the prior data is not from the task to
be optimized. This is done in a few-shot manner using meta-
learned Bayesian optimization and deep kernel networks as
surrogate models. The latent encoding of the DKN enables a
task-independent representation of the controlled inputs to the
closed-loop system, and the base kernel allows conditioning
for task-specific predictions. In future work, we will compare
this approach with transfer learning, where the architecture is
retrained using target task data acquired during the DKN-BO
procedure.

REFERENCES

[1] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe,
“Data-efficient autotuning with bayesian optimization: An industrial
control study,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 730–740, 2019.

[2] R. R. Duivenvoorden, F. Berkenkamp, N. Carion, A. Krause, and A. P.
Schoellig, “Constrained Bayesian optimization with particle swarms
for safe adaptive controller tuning,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 11 800–11 807, 2017.

[3] C. König, M. Khosravi, M. Maier, R. S. Smith, A. Rupenyan, and
J. Lygeros, “Safety-aware cascade controller tuning using constrained
Bayesian optimization,” arXiv preprint arXiv:2010.15211, 2020.

[4] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin, “Goal-
driven dynamics learning via bayesian optimization,” in 2017 IEEE
56th Annu. Conf. on Decis. and Control (CDC). IEEE, 2017, pp.
5168–5173.

[5] J. A. Paulson and A. Mesbah, “Data-driven scenario optimization for
automated controller tuning with probabilistic performance guaran-
tees,” IEEE Contr. Syst. Lett., vol. 5, no. 4, pp. 1477–1482, 2020.

[6] A. Chakrabarty, C. Danielson, S. Bortoff, and C. Laughman, “Accel-
erating self-optimization control of refrigerant cycles with bayesian
optimization and adaptive moment estimation,” Applied Thermal En-
gineering, 2021.

[7] W. Xu, C. N. Jones, B. Svetozarevic, C. R. Laughman, and
A. Chakrabarty, “VABO: Violation-aware bayesian optimization for
closed-loop control performance optimization with unmodeled con-
straints,” in Proc. American Control Conference, 2022, pp. 1–6.

[8] M. Khosravi, A. Eichler, N. Schmid, R. S. Smith, and P. Heer,
“Controller tuning by Bayesian optimization an application to a heat
pump,” in 2019 18th Eur. Control Conf. (ECC). IEEE, 2019, pp.
1467–1472.

[9] A. Pal, L. Zhu, Y. Wang, and G. G. Zhu, “Multi-objective stochastic
Bayesian optimization for iterative engine calibration,” in Proc. of the
Amer. Control Conf. IEEE, 2020, pp. 4893–4898.

[10] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimiza-
tion with safety constraints: safe and automatic parameter tuning in
robotics,” Machine Learning, pp. 1–35, 2021.

[11] R. Lam, M. Poloczek, P. Frazier, and K. E. Willcox, “Advances in
bayesian optimization with applications in aerospace engineering,” in
2018 AIAA Non-Deterministic Approaches Conference, 2018, p. 1656.

[12] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian opti-
mization of machine learning algorithms,” in Proc. NeurIPS, 2012, p.
2951–2959.

[13] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 06–11 Aug 2017, pp. 1126–1135.

[14] A. Antoniou, H. Edwards, and A. Storkey, “How to train your MAML,”
arXiv preprint arXiv:1810.09502, 2018.

[15] M. Patacchiola, J. Turner, E. J. Crowley, M. F. O’Boyle, and A. J.
Storkey, “Bayesian meta-learning for the few-shot setting via deep
kernels,” in Proc. NeurIPS, 2020, pp. 16 108–16 118.

[16] J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn, “Bayesian
model-agnostic meta-learning,” in Proc. NeurIPS, 2018, pp. 7343–
7353.

[17] C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-
learning,” in Proc. NeurIPS, 2018, pp. 9537–9548.

[18] M. O’Connell, G. Shi, X. Shi, and S.-J. Chung, “Meta-learning-based
robust adaptive flight control under uncertain wind conditions,” arXiv
preprint arXiv:2103.01932, 2021.

[19] S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone, “Adaptive-
control-oriented meta-learning for nonlinear systems,” arXiv preprint
arXiv:2103.04490, 2021.

[20] C. K. Williams and C. E. Rasmussen, Gaussian Processes For Machine
Learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[21] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel
learning,” in Artificial Intelligence and Statistics (AISTATS). PMLR,
2016, pp. 370–378.

[22] J. Courts, J. Hendriks, A. Wills, T. B. Schön, and B. Ninness, “Vari-
ational state and parameter estimation,” IFAC-PapersOnLine, vol. 54,
no. 7, pp. 732–737, 2021.

[23] H. Chen, L. Zheng, R. Al Kontar, and G. Raskutti, “Stochastic
gradient descent in correlated settings: A study on gaussian processes,”
NeurIPS, vol. 33, pp. 2722–2733, 2020.

[24] M. Wistuba and J. Grabocka, “Few-shot Bayesian optimization with
deep kernel surrogates,” in Proc. ICLR, 2021.

[25] M. Guay and T. Zhang, “Adaptive extremum seeking control of
nonlinear dynamic systems with parametric uncertainties,” Automatica,
vol. 39, no. 7, pp. 1283–1293, 2003.

[26] D. Nesic, A. Mohammadi, and C. Manzie, “A framework for extremum
seeking control of systems with parameter uncertainties,” IEEE Trans.
Automatic Control, vol. 58, no. 2, pp. 435–448, 2012.

[27] A. Paszke, S. Gross et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” pp. 8024–8035, 2019.

[28] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G.
Wilson, “GPyTorch: Blackbox Matrix-Matrix Gaussian Process In-
ference with GPU Acceleration,” in Advances in Neural Information
Processing Systems, 2018.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-160.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

