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Distributed Kalman Filtering: When to Share Measurements

Marcus Greiff1 and Karl Berntorp1

Abstract— This paper considers the problem of designing
distributed Kalman filters (DKFs) when the sensor measure-
ment noise is correlated. To this end, we analyze several
existing methods in terms of their Bayesian Cramér-Rao
bounds (BCRB), and insights from the analysis motivates a
departure from the conventional estimate-sharing frameworks
in favor of measurement-sharing. We demonstrate that if the
communication bandwidth and computational resources permit,
the minimum mean-square error (MMSE) estimator is imple-
mentable under measurement-sharing protocols. Furthermore,
such approaches may use less communication bandwidth than
standard consensus methods for smaller estimation problems.
The developments are verified in several numerical examples,
including comparisons against previously reported methods.

I. INTRODUCTION
In this paper, we consider the problem of designing dis-

tributed Kalman filters (DKFs) for moderately sized sensor
networks where the measurement noise is correlated. In
general, DKFs can be realized in two ways: either by having
the sensors communicating their local measurements [1],
or their local estimates [2]–[8]. The latter represents the
more popular approach for large sensor networks, as the
communication bandwidth can be made to scale with the
dimensions of the estimates [3]. When the noise in the
sensors are uncorrelated, the problem can be solved for
various underlying assumptions. If nothing is known about
the communication graph (apart from that it is connected),
there exists a large number of consensus DKFs (CDKFs)
that achieve an estimate consensus among the nodes based
on iteratively weighting the estimates in a sensor’s 1-hop
neighborhood [2]. In such consensus filters, the weights can
be designed such that convergence of the estimation error
is ensured (e.g., [2], [9]). However, even in the cases where
few assumptions are made on the communication graph, the
measurement noise among the sensors is generally assumed
to be uncorrelated. For correlated measurement noise, the
estimation problem is significantly more difficult to solve,
and established methods (e.g., [2], [5], [9]) may perform
worse than approaches that rely solely on local information.

Example 1 To illustrate this conceptually, consider two sen-
sors that have no dynamics nor process noise, with states x
that represent the same physical quantity in the two sensors.
Assume that T measurements, {yk}Tk=1, are sampled from

yk =

[
y1k
y2k

]
∼ N

([
c1
c2

]
x,

[
σ2
1 σ2

2

σ2
2 σ2

1

])
, N

(
Cx,R

)
,

with (c1, c2) ∈ R2, σ1 ≥ σ2 ≥ 0. Consider three cases:
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(A) x is estimated locally as x̂A, knowing {y1k}Tk=1 and
the parameters c1 and σ1 (and not {y2k}Tk=1).

(B) x is estimated globally as x̂B with knowledge of
{yk}Tk=1, the parameters c1, c2 and σ1, but assuming
that the noise is uncorrelated (σ2 = 0) in the estimator.

(C) x is estimated globally as x̂C with knowledge of
{yk}Tk=1 and the parameters c1, c2, σ1, and σ2.

Assume that the estimates are computed with the best linear
unbiased estimator (BLUE), provided by the Gauss-Markov
theorem (see [10, Theorem 6.1]). It is simple to verify that
(A) Var(x̂A) = σ2

1/(Tc
2
1),

(B) Var(x̂B) = (σ2
1(c21 + c22) + 2σ2

2c1c2)/(T (c21 + c22)2),
(C) Var(x̂C) = (σ4

1 − σ4
2)/(T (σ2

1(c21 + c22)− 2σ2
2c1c2)),

and Var(x̂A) ≥ Var(x̂C),Var(x̂B) ≥ Var(x̂C) ∀ci, σi, T .
However, if the noise is correlated, it can sometimes be better
to implement (A) over (B). For instance, if c1 = σ1 = 1, then

0 <
c2 + c32

2
≤ σ2

2 < 1⇒ Var(x̂B) ≥ Var(x̂A), ∀T. (1)

The tightness of the inequalities depend nontrivially on the
cross-correlation in R and the structure of C. Note that
Var(x̂B) → Var(x̂C) as σ2 → 0, that is, (B) and (C) are
equivalent if the measurement noise is not cross-correlated.

1) Contributions: We discuss how and when measure-
ment sharing should be considered in favor of estimate
sharing for small to moderately sized sensor networks. In
particular, we study the distributed filtering problem, and
we show that estimate sharing cannot perform better than
the minimum mean-square error (MMSE) estimator imple-
mented using measurement sharing. This is done by analyz-
ing the associated Bayesian Cramér-Rao bounds (BCRBs),
and illustrated by numerical examples. We also demonstrate
numerically that even in the filtering context, it may some-
times be advantageous to consider an estimator in (A) over
(B) when the measurement noise is correlated.

2) Notation: We let x ∼ N (µ,Σ) indicate that x is
Gaussian distributed with mean µ and covariance Σ. The
notation x̂k|k refers to the estimate of x at time step k given
the set of measurements y0:k , {y0, . . . ,yk}, and x̂k|k−1
denotes the one-step prediction of x̂k−1|k−1. In addition, let
x∞|∞ , limk→∞ xk|k and let ya:b = ∅ for any b < a.
With p(x0:k|y0:k), we mean the posterior density function
of the state trajectory x0:k from time step 0 to time step
k given the measurement sequence y0:k, and p(xk|y0:k)
denotes the corresponding marginal (filtering) posterior. The
notation diag(·) is a matrix composition where the arguments
form blocks on the diagonal, and ⊗ is Kronecker product.
Finally, for any symmetric and real matrix, M , we let
M � 0⇔ x>Mx ≥ 0,M � 0⇔ x>Mx > 0 ∀x 6= 0.



II. PRELIMINARIES

In this paper, we consider observable stable linear systems

xk = Akxk−1 + qk, qk ∼ N (0,Qk), (2a)
yk = Ckxk + rk rk ∼ N (0,Rk), (2b)

where E[qkq
>
s ] = 0 and E[rkr

>
s ] = 0 for all k 6= s, and

yk =

y1,k...
yN,k

 , Ck =

C1,k

...
CN,k

 , rk =

r1,k...
rN,k

 , (3a)

such that yi
k = Ci,kxk + ri,k, with correlated noise

Rk =

R11,k · · · R1N,k

...
. . .

...
RN1,k · · · RNN,k

 . (3b)

A connected graph, G, is defined by a set of vertices
V = {Vi}Ni=1 connected by edges Eij . Let d(i, j) denote the
smallest number of edges connecting the nodes Vi and Vj ,
let Ki = maxj d(i, j), and take K̄ = maxiKi. Furthermore,
let Un

i = {j ∈ [1, ..., N ]|d(i, j) ≤ n} denote the n-hop
neighborhood of a vertex Vi (including i). Assume that the
transmission information along an edge takes exactly one
time step and that the measurement yi

k is sampled in the
node Vi at a time step k. Then, if the nodes share their
measurements over the network, the information available to
a node Vi at a time step k can be defined as follows.

Definition 1 Let Yk = {yj
0:k}Nj=1 denote all measurements

at a time step k, and let Yi
k ⊆ Yk be the set of measurements

known to the vertex Vi at a time k, as Yi
k = {yj

0:k−d(i,j)}
N
j=1.

Furthermore, let YNc,i
k = {yj

0:max(k,k+Nc−1−Ki)
}Nj=1 be the

set of all measurements known to vertex Vi at a time step k if
Nc delay-free transmissions are permitted on each time-step.

Consider the conditional density function of the state
xa at a time step a given the measurements up until and
including b. If the initial state distribution is Gaussian,
p(x0) = N (x0|x̂0|0,P0|0), then it follows that p(xa|Yb) =
N (xa|x̂a|b,Pa|b) is Gaussian for all a and b. Furthermore,
the moments x̂a|b,Pa|b are given by the standard discrete-
time KF recursions [11], consisting of a prediction step

x̂k|k−1 = Akx̂k−1|k−1, (4a)

Pk|k−1 = AkPk−1|k−1A
>
k +Qk, (4b)

and an update step

Kk = Pk|k−1C
>
k (C>k Pk|k−1Ck +Rk)−1, (5a)

x̂k|k = x̂k|k−1 +Kk(yk −Ckx̂k|k−1), (5b)
Pk|k = (I −KkCk)Pk|k−1. (5c)

As such, we can compute a Bayesian Cramér-Rao bound
(BCRB) using the Bayesian information matrix in [12], [13],

Jk = Ep(xk,Yk)[−∇xk
∇>xk

log(p(xk,Yk))], (6)

which in the context of (2) can be computed recursively as

Jk = (Qk +AkJ
−1
k−1A

>
k )−1 +C>k R

−1
k Ck, (7)

and where for any unbiased estimate x̂k of xk,

Cov(x̂k|Yk) � BCRB(x̂k|Yk) = [Jk]−1. (8)

The inequality in (8) can be replaced by an equality when
x̂k is computed using (4) and (5). In the more general case,
where the measurements are delayed with K time steps, we
can compute BCRB(x̂k|Yk−K) using the same recursions,
with Ci = 0 for all k −K < i ≤ k. By similar reasoning,

BCRB(x̂k|Yk) � BCRB(x̂k|Yi
k) (9a)

� BCRB(x̂k|Yk−K ∪ yi
0:k) (9b)

� BCRB(x̂k|Yk−K). (9c)

III. DISTRIBUTED FILTERING METHODS

In this section, we introduce four related but different
strategies to solve the distributed filtering problem. This in-
cludes three common approaches based on estimate-sharing
in Sections III-A–III-C, where only one is capable of incor-
porating knowledge of cross-correlated measurement noise.
We also define the MMSE estimator in Section III-D and
show that it is implementable with measurement sharing.

A. Consensus DKFs

The consensus filters locally perform a KF update and
subsequently transmit the estimate to the 1-hop neighbor-
hood [2], [14], [15]. The estimates are combined by one of
many averaging rules, also known as consensus protocols,
defined by a set of weights {wij ∈ R|i = 1, ..., N, j =
1, ..., N,

∑
i wij = 1}. Three common examples include

P1 : wij , N−1, ∀i 6= j, (10a)

P2 : wij , (maxj∈U1
i
|U1

j |)−1, ∀i 6= j, (10b)

P3 : wij , (1 + max(|U1
i |, |U1

j |))−1, ∀i 6= j. (10c)

Here, the protocol P3 being is a common Metropolis weight
scheme [14]. We consider an implementation of these filters
on the information form, with an information vector γk|k
and information matrix Γk|k relating to the estimates of the
CDKF as x̂i

k|k = (Γii
k|k)−1γi

k|k and P ii
k|k = (Γii

k|k)−1. Gen-
erally, these methods perform a large number of iterations at
each time step, and the consensus protocols are implemented
by having the nodes iterate their information vectors (and
information matrices) with their neighbors over Nc steps.
Starting from γ̂

i,(0)
k|k , γ̂i

k|k and Γ
ii,(0)
k|k , Γii

k|k, according to

γ̂
i,(n+1)
k|k =

∑
j∈U1

i

wij γ̂
j,(n)
k|k , Γ

ii,(n+1)
k|k =

∑
j∈U1

i

wijΓ
jj,(n)
k|k ,

(11)
with n < Nc chosen large enough for the iterated estimates
to approach a consensus in the estimates. For the communi-
cation protocols in (10), convergence to the consensus can be
quantified explicitly based on the Laplacian of the graph [2].
In the following, we primarily consider the cases where one
consensus iteration is performed with protocol P , denoted
by P -CDKF-1, and when the consensus iterations are done
until convergence, denoted by P -CDKF-∞.



B. Fused DKFs
An alternative but closely related approach is to implement

a covariance intersection (CI) [16], [17] (or some similar
fusion strategy) to fuse the local estimates in the DKF.
One such example is the fused DKF (here FDKF) proposed
in [5], where the weights wij in (11) are computed based
on the relative uncertainty of the estimates in the 1-hop
neighborhood of a vertex, as

wij =
Trace[(Γ

(n),i
k|k )−1]∑

j∈U1
i

Trace[(Γ
(n),j
k|k )−1]

. (12)

Eq. (12) provides an adaptive method for dynamically up-
dating the weights of the consensus iterations, which are
otherwise static in a CDKF. In [5], it is shown that (12)
yields a conservative estimate of the posterior estimate
covariance, that the resulting estimate is unbiased (when the
measurement noise is uncorrelated), and that the estimates
in the graph asymptotically achieve a consensus. In the
following, we let FDKF-1 denote a filter that obeys a 1-delay
communication constraint with the weights chosen according
to (12) , and FDKF-∞ refers to a filter iterates the estimates
are iterated using (11) until a consensus is reached.

C. Weighted DKFs
The weighted DKFs considered in this paper only prop-

agate the first moments of the local estimates, transmitting
these to the 1-hop neighborhood at each time step [3], [4].
After the update step, these estimates are fused using a set of
weight matrices {Wij}i=N,j=N

i=1,j=1 , subject to the constraints

Wij = 0 if j /∈ U1
i ,

∑
j∈U1

i

Wij = I. (13)

An estimate can then be formed similar to CDKF,

x̂i,reg
k|k =

∑
j∈U1

i

Wijx̂
j
k|k, (14)

where this fused estimate is unbiased and the scheme im-
plementable given G by the constraints imposed in (13). The
appeal of this method lies in that the variance of the weighted
estimate can be expressed in local estimate variance as

P reg
k|k ,Wdiag(P 11

k|k, , ...,P
NN
k|k )W>. (15)

As such, an optimization problem may be posed and solved
offline over the weight matrices to minimize the weighted
posterior covariance of the estimation error as outlined in [3],

minimize
W

Trace(P reg
∞|∞) (16a)

subject to (13) (16b)

Generally, Wij 6= Wji if i 6= j and j ∈ U1
i , and

this approach also takes the cross-correlations in (3b) into
account. The method can be adapted to reduce the number of
parameters by constraining each weight matrix Wij = wijI
for some scalar wij . However, this simplification is not done
in this paper, and we refer to a DKF that uses matrix-valued
weights computed by minimizing (16) as a weighted DKF
(WDKF). We solve (16) using CVX in Matlab [18].
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Fig. 1. A communication graph where each edge shows the cardinality
|Sji | as depicted in red and black. Note that generally |Sji | 6= |S

i
j |.

D. Measurement-Sharing DKFs

From Section II, it is clear that the optimal MMSE
estimator can be implemented if the measurements are shared
among the vertices, and that the corresponding BCRB is
attained. Now, consider an implementation where the nodes
send and receive measurements with the following logic:
• At time step k, the vertex Vi samples a measurement
yi
k and receives a set of measurements Rj

i from the
vertices in the 1-hop neighborhood j ∈ U1

i .
• Consider a set of all received measurements as Ri =⋃

j∈U1
i
Rj

i , and take the most recently acquired mea-
surement with respect to each measurement and form a
set Si = {maxa y

b
a ∈ Ri|b = [1, ..., N ]}.

• Form a set of measurements to be sent to each node
j ∈ U1

i as Sji = Si\(Si ∩Rj
i ), and transmit this set.

The measurements from Vi will reach the node Vj in
d(i, j) time steps. Furthermore, the scheme avoids super-
fluous sending of measurements, and a conservative upper
bound on the cardinality of the set Sji is |Sij | < N , and will
generally be smaller, as clearly demonstrated in Fig. 1.

Note that a KF with an extended state vector Xi
k =

((xi
k)>, ..., (xi

k−Ki
)>)> and a measurement vector Y i

k =
((yi

k−d(i,1))
>, ..., (yi

k−d(i,N))
>)> is not the MMSE estima-

tor. Indeed, in node Vi, such an implementation does not
leverage the cross-correlation in the set Ci , {Rlk|l 6=
k, d(l, i) 6= d(k, i)}. Such estimator may come close to, but
will generally never achieve the BCRB of the estimate vari-
ance if anyRij ∈ Ci is nonzero (as will be shown in Proposi-
tion 1). Instead, the MMSE approach is to store a delayed es-
timate in each node, which at a time step k is computed based
on Yi

k as p(xk−Ki
|Yk−Ki

) = N (xk|x̂k|k−Ki
,Pk|k−Ki

). Us-
ing the measurements in Yi

k\Yk−Ki
, the estimate p(xk|Yi

k)
can then be computed by (4) and (5), implementing (7)
subject to the communication constraints. This filter yields
a tight BCRB. We denote it as SDKF and summarize it in
Algorithm 1. For later comparisons, we denote a global KF
filter operating without communication delays by KF-∞.

IV. THE DISTRIBUTED KALMAN FILTER

The analysis becomes more complicated when introducing
dynamics and process noise in the states. As previously, let
R̄ = diag(R11, ...,RNN ), but now consider two cases:

(B) a KF designed with respect to R̄,
(C) a KF designed with respect to R,



Algorithm 1 Pseudocode of the SDKF
1: Initialize {x̂i

0|0,P
ii
0|0}Ni=1

2: for k = 1 to T do
3: for i = 1 to N do

// Time update
4: Evaluate {x̂i

k−Ki|k−Ki−1,P
ii
k−Ki|k−Ki−1} by (4)

// Local measurement update
5: Assemble yk from Ri

6: Evaluate {x̂i
k−Ki|k−Ki

,P ii
k−Ki|k−Ki

} by (5)
// Externalization

7: for s = k −Ki + 1 to k do
8: Compute Is = {al}ml=1 = {j|d(i, j)<k−s}
9: Form the matrices

C(s) =

Ca1,s

...
Cam,s

 ,Y (s) =

Ya1,s

...
Yam,s

 , ∀al ∈ Is

R(s) =

Ra1a1,s · · · Ra1am,s

...
. . .

...
Rama1,s · · · Ramam,s

 ,∀al ∈ Is.

10: Evaluate {x̂s|s−1,Ps|s−1} using (4)
11: Evaluate {x̂s|s,Ps|s} by (5) w.r.t. R(s),C(s),Y (s)

12: end for
13: end for

// Transmission
14: Send Sj

i to all {Vj |j ∈ U1
i \{i}}

15: Output {x̂k|k,Pk|k}
16: Store {x̂k−K|k−K ,Pk−K|k−K} and Yi

k\Yk−K .
17: end for

Let {x̂B
k|k,P

B
k|k} and {x̂C

k|k,P
C
k|k} denote the estimates in

both cases, respectively. Then the estimate error covariance
can be expressed through the matrix inversion lemma as

PB
k|k = ((C>R̄−1C)(C>R̄−1RR̄−1C)−1(C>R̄−1C)

+ (PB
k|k−1)−1)−1, (17a)

PC
k|k = (C>R−1C + (PC

k|k−1)−1)−1. (17b)

Proposition 1 Given (17), if the two filters are initialized
with the same prior, then, for all time steps k,

PC
k−1|k−1 � P

B
k−1|k−1 ⇔ PC

k|k−1 � P
B
k|k−1 (18)

⇒ PC
k|k � P

B
k|k. (19)

Eq. (19) is strict if C>(R−1 − R̄−1RR̄−1)C � 0.

Proof: The equivalence holds by (4b), and the sec-
ond implication can be shown by analyzing the differ-
ence PB

k|k − P
C
k|k using Schur complements: (19) holds

if M , (C>R̄−1C)−1C>R̄−1RR̄−1C(C>R̄−1C)−1 −
(C>R−1C)−1 � 0, which can also be shown by Schur
complements using the definition of R and R̄.

Here, the gap in the BCRB should inform the decision of
whether a simpler DKF algorithm that ignores the measure-
ment cross-correlation (e.g., a CDKF or FDKF) should be
implemented in favor of a DKF algorithm that exploits this
knowledge (e.g., a WDKF or SDKF). In all of these cases,
the asymptotic variances are best computed and analyzed
offline for the specific problem at hand.

TABLE I
STRUCTURE OF THE ASYMPTOTIC WEIGHT MATRICES.

Filter Stationary Weight Matrix

CDKF-1,FDKF-1 W = W̄ ⊗ Idim(x) ∈ RN dim(x)×N dim(x),
subject to (13), with [W̄ ]ij > 0

CDKF-∞,FDKF-∞ W = (1N w̄>)⊗ Idim(x),
subject to w̄>1N = 1, with w̄i > 0

WDKF W ∈ RN dim(x)×N dim(x),
subject to the constraint in (13)

A. Comparison of BCRBs

Consider the various DKFs, and view the estimate x̂i
k

as a function of the measurements. If the estimates are
computed locally in the node, x̂i

k := x̂i
k(y0:k). If the nodes

communicate with its neighbors in a 1-hop neighborhood,
then x̂i

k := x̂i
k(Yi

k), and if communication is done in Nc

iterations without delay, then x̂i
k := x̂i

k(YNc,i
k ). Therefore,

if NC = 1, YNc,i
k = Yi

k, and if Nc > Ki, YNc,i
k = Yk. Thus,

the filters for which Nc > Ki should be evaluated against
BCRB(x̂k|Yk), while the 1-delay DKFs (including the
CDKF-1, FDKF-1, WDKF, and SDKF) should be evaluated
against BCRB(x̂k|Yi

k). In general, the consensus schemes
will not attain the BCRB (as they generally cannot be written
as an SDKF), and even if the filters can be implemented as
the MMSE estimator for R̄, there will exist a gap between
their error covariance and the covariance of the correspond-
ing MMSE estimator if C>(R−1 − R̄−1RR̄−1)C � 0.

To get a sense of these BCRB-gaps in a general setting,
note that the estimate-sharing schemes all aspire to solve
the optimization problem in (16) over a weighting protocol,
but with various constraints. These protocols are derived
heuristically and fixed in the CDKF and FDKF setting, but
explicitly optimized in the WDKF, with the resulting matri-
ces summarized in Table I. The asymptotic weight matrices
of the CDKF-1 and FDKF-1 are of the same structure as that
of the WDKF, but with the additional constraint that all Wij

are diagonal. Hence, even if the weighting protocol in the
CDKF-1 and FDKF-1 are optimized with reference to (16),
it will never do better than the WDKF if estimate sharing is
done with respect to the same objects (i.e., the estimate and
covariance, or information vector and information matrix).

Remark 1 The gaps in MSE will generally vary among
the nodes in the network when the noise is correlated, and
are best computed for specific nodes of interest to inform
decision-making as to which method to use. However, if R
is known and there is a 1-delay communication constraint,
no method can perform better than the SDKF.

B. Comparison of Bandwidth

The communication bandwidth for the various methods is
summarized in Table II, assuming that a double is represented
in D bits. For simplification, assume that dim(x) ≈ dim(yi)
for all i = 1, ..., N . If the communication graph is large, the
measurement sharing becomes infeasible, as it scales with
the number of measurements in the system. Here, the lowest
possible bandwidth is achieved by the WDKF, which is likely



TABLE II
COMMUNICATION BANDWIDTH FOR THE DISTRIBUTED FILTERS, WITH

NUMBERS RELATED TO G IN FIG. 1 WHEN (dim(yi), dim(x)) = (2, 3).

Method Communication bandwidth For G in Fig. 1

P -CDKF-1 D(dim(x) + 1) dim(x) 12D
P -CDKF-∞ DNc(dim(x) + 1) dim(x) 240D

FDKF-1 D(dim(x) + 1) dim(x) 12D
FDKF-∞ DNc(dim(x) + 1) dim(x) 240D

WDKF D dim(x) 3D
SDKF < D dim(y) < 18D

KF-∞ D
∑N

i=1(N − 1) dim(yi) < 144D

to perform better in the context of cross-correlated noise as it
selects the weights to minimize a posterior MSE. However,
we stress that for small to moderately sized graphs, such as
in Fig. 1, the optimal SDKF can typically be implemented at
a slight increase in communication bandwidth (which differs
among the edges) when compared to the CDKF, FDKF, and
WDKF. Furthermore, note that for the example graph in
Fig 1, the communication bandwidth of sharing all of the
estimates is comparable to running the CDKF and FDKF at
Nc <

144D
12D = 12 iterations. However, the global KF (KF-

∞) achieves an equality in the BCRB, unlike the CDKF-∞
and FKDF-∞, which assume that the noise is not correlated.
The KF-∞ will outperform these methods in terms of MSE.

C. Numerical Example With Dynamics

To illustrate the potential of the SDKF, consider a graph
with N = 9 vertices, x0 ∼ N (03×1, I), C ∈ R45×3 such
that each element [C]ij ∼ N (0, 1), and R ∈ R45×45 is a
random dense positive definite and symmetric matrix. The
states evolve as a linear system characterized by

A = 0.98

1 0.1 0.2
0 1 0.1
0 0 1

 , Q =

 0.12 0.02 −0.03
0.02 0.15 −0.01
−0.03 −0.01 0.19

.
We consider all of the defined filters, including:
(i) P3-CDKF-1 (consensus, Nc = 1, Metropolis-Hastings);

(ii) P3-CDKF-∞ (consensus, Metropolis-Hastings);
(iii) FDKF-1 (consensus, Nc = 1, CI);
(iv) FDKF-∞ (consensus, iterated CI);
(iv) WDKF (offline optimization over 20 iterations);
(vi) SDKF as defined in Algorithm 1.
For the particular realization, λm(M) = 8.85 · 10−3. Thus,
the inequality in (19) is strict, and none of the methods
that disregard the measurement noise correlations (CDKFs,
FDKFs) can attain their theoretical BCRBs. To verify this,
in addition to computing the estimates, we also compute
the true estimation error covariance. As the methods in (i)–
(iv) do not have a consistent covariance estimate, due to the
introduced noise correlations, the MSE of these estimates is
computed empirically from 103 Monte-Carlo runs. Finally,
we compute the BCRBs when only using local informa-
tion (removing all communication with the other nodes)
as BCRB(x̂i

k|y0:k), and when using the global information
without any delays as BCRB(x̂i

k|Yk). When considering the

Fig. 2. MSE in time for the node V5 when considering the graph in Fig 1.
The filters that operate with a delay associated with communication over
the edges are drawn in full, and the filters which communicate without such
constraints are dash-dotted. The figure also shows the traces of the associated
BCRBs when using local (black full) and global (black dashed) information
without delays. Being the MMSE estimator, SDKF (blue) achieves a tight
BCRB under the communication delay constraint, thereby outperforming all
other filters operating under the same communication constraints.

Fig. 3. Stationary MSE in the nodes for various graphs. Top: The
communication graph in Fig 1 (as such, V5 in the top-most subplot depicts
the MSEs in Fig. 2 at a time-step k = 100). Center: A bipartite graph where
all of the nodes communicate through V1. Bottom: A graph with N = 9
nodes connected by 8 edges where the maximum delay is K1 = K9 = 8.

communication graph in Fig. 1, for a specific realization of
the problem, the resulting states and estimates are shown in
Fig. 2. In addition, the MSE of the estimates in node V5 is
shown as a function of time against the BCRBs. In Fig. 3, the
asymptotic estimate covariances and BCRBs are depicted at
the terminal time T = 100 for three graphs:
• G1 is the graph in Figure 1;
• G2 is bipartite, with all nodes communicate with V1;
• G3 is a path graph (Vi and Vi+1 are connected).
When studying the MSEs of the node in V5 for the

simulation run with G1, the CDKF and FDKF filters yield
very similar MSEs. However, when assuming a 1-delay com-
munication (full) the CDKF-1 and FDKF-1 these filters are
outperformed by both the WDKF and SDKF, and when con-



sidering delay-free communication (dash-dotted), the CDKF-
∞ and FDKF-∞ do not come close to the corresponding
BCRB (black). As the SDKF attains the BCRB for the 1-
delay communication case, we see that it outperforms all
other 1-delay approaches, and in this node the gaps are
significant at all times. These conclusions do not just apply
to V5 in G1, but to all vertices in all graphs (see Fig. 3).

When studying the stationary MSE in the 1-delay com-
munication case (see Fig. 3), for all of the nodes, and for all
graphs, the SDKF yields the lowest MSE. The MSE gap be-
tween the SDKF and WDKF is roughly the same in all cases,
but the MSE of the CDKF-1 and FDKF-1 varies greatly.
In particular, irrespective of the communication graph, their
MSE (red/green) is significantly worse than just running a
KF using the local information (black). This is the case
in all of the simulations. Therefore, we conclude that this
performance degradation is more related to the realization
of the measurement model (here the same in all three cases)
than the communication graph (varies in the three cases).

Also, for the communication graph G2, the delay-free
estimates do not achieve a consensus in node V1 in the
maximum of Nc = 30 iterations, which implies that more
consensus iterations are required. However, already with
Nc = 30, the communication bandwidth of running a global
KF is significantly lower (see Table II), and achieves a far
lower stationary MSE in all cases. As such, when considering
cross-correlated measurement noise and the three graphs
G1–G3, there is no reason to implement any filter other
than the SDKF (or possibly the WDKF if the bandwidth
is constrained) under the 1-delay constraint. Similarly, there
is no reason to implement a CDKF-∞ or a FDKF-∞ over
a global KF under a measurement sharing scheme.

V. CONCLUSIONS

In this paper, we have analyzed the distributed estimation
and filtering problem in the context of correlated measure-
ment noise in terms of of BCRBs. This analysis provided
several insights, which can be summarized as follows:
• The distributed methods should always be compared

under the same assumptions on the communication
delays, as the corresponding BCRBs differ.

• For the case where communication over an edge takes
one time-step, no estimator can perform better than the
SDKF, as it attains BCRB(x̂i

k|Yi
k) in all nodes.

• For the case where communication over an edge is
instantaneous, no estimator can perform better than a
global KF, as it attains BCRB(x̂i

k|Yk) in all nodes.
• For small to moderately sized graphs (in the sense

that K̄ is small), there is little distinction between the
communication bandwidth of the 1-delay schemes.

• For small to moderately sized graphs (in a quantitative
sense), the CDKF and FDKF often use more bandwidth
than a global KF if communication is delay free.

In terms of estimation accuracy, for moderately sized net-
works and with correlated measurements, there is never any
reason for using a method other than the SDKF unless the
difference in communication bandwidth and computational

power is deemed significant enough to warrant the imple-
mentation of a WDKF. If the network is larger, such that
the communication bandwidth cannot pass the measurements
and the network topology is known, then the WDKF is
likely favorable, and if the network topology is not known
then CDKF or FDKF should be considered. However, in
the context of correlated measurement noise, the CDKF and
FDKF should be used with caution, as it may sometimes
be favorable to just run a local KF in each node (as shown
in Fig 3, analogous to Example 1). It is also worth noting
that all of the considered filters, including the WDKF, are
easily extended to a linear time-varying setting. Regardless of
the application, the performance of the considered methods
should be evaluated in relation to the BCRB computed by
the SDKF when deciding on which method to implement.
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