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Homogeneous Infeasible Interior Point Method for Convex Quadratic
Programs

Arvind U Raghunathan, Devesh Jha and Diego Romeres

Abstract— Optimization based control is widely used for
stabilizing control of constrained linear dynamical systems.
We present an Infeasible Interior Point Method (IIPM) for
the solution of convex quadratic programs, such as those
arising in Model Predictive Control (MPC) of constrained linear
dynamical systems, using a novel homogeneous formulation [1].
The homogenization is applied on a slacked reformulation of
the QP. We describe a tailored step computation in the IIPM
that addresses the potential loss of sparsity resulting from the
homogenization. We present arguments for the effectiveness
of the slacked formulation in warm-start of IIPM. The algo-
rithm is implemented in Julia. Numerical experiments on the
formulation are provided comparing the proposed approach
against existing IPM implementations on feasible and infeasible
quadratic programs. We also demonstrate that the warms-starts
of the proposed IIPM reduces the computational time by 50%
on an MPC application.

I. INTRODUCTION

Convex Quadratic Programs (QPs) arise in a number of
applications including financial portfolio optimization [2],
control [3], [4], and as relaxations of mixed integer quadratic
programs [5], [6]. Sequential Quadratic Programming (SQP)
algorithms [7] also solve quadratic programs with appro-
priate intertia at each step of the algorithm [8]. There has
been active interest in the development of QP algorithms
for the model predictive control of linear dynamical systems
including Interior Point Methods (IPMs) [9], active set
methods [10], [11], IPMs for Second-Order Cone Programs
(SOCPs) [12], gradient projection methods [13], dual gra-
dient projection methods [14], [15], splitting methods [16],
[17], [18], iterative approaches [19] and semismooth Newton
methods [20]. More recently, there has been interest in the
development of Mixed Integer QP (MIQP) solvers for the
control of hybrid systems [21], [22], [23], [24].

In real-time control applications, it is critical for QP
solvers to robustly certify optimality or infeasibility. Infea-
sibility detection takes increased relevance in the context
of Branch & Bound (BB) methods for solution of MIQPs.
Certification of infeasibility of the relaxation at a particular
node in the BB tree allows to fathom the subtree and is
critical to the overall efficiency of the solution process.

Infeasibility detection has also been addressed in recent
years for first-order methods in [25], [26], [27]. Standard
IPMs for QP (such as in [28]) are incapable of certifying
infeasibility. IPMs based on Homogeneous Self-Dual (HSD)
embedding [29], [30] are known to produce a certificate
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of infeasibility for Linear Programs (LPs). This technique
has been implemented in MOSEK [27] and has also been
extended to handle SOCPs. To detect infeasible QPs with
IPMs, the QPs must first be formulated as a SOCP to
which the HSD embedding is then applied as is done in
the ECOS [12] and SCS [31] solvers.

Raghunathan [1] presented a novel homogeneous formu-
lation of QPs that allows robust detection of infeasibility
in QPs. The homogenization formulates the problem as a
QP as opposed to the SOCP that results when using the
HSD emebdding. In this paper, we have a two-fold objective.
First, we want to investigate the computational efficiency
of an Infeasible Interior Point Method (IIPM) when applied
to the homogeneous formulation of QP introduced in [1].
Secondly, we want to explore the warm-start capabilities of
our formulation. Motivated by the two objectives, we first
present an equivalent slacked reformulation of the QP that
increases the problem variables and constraints. The homog-
enization of [1] is applied to this slacked reformulation to
obtain the Homogeneous Slacked QP (HSQP). We present a
standard predictor-corrector IIPM [32] for the HSQP with a
specialized step computation. The step computation ensures
that the introduction of slacks does not significantly increase
the computations in each iteration. We also show that the
slacked formulation can be effectively used for warm-start of
QPs in the presence of data perturbations. Warm-start refers
to the idea of using the optimal solution for a particular
instance as an initial guess for a slightly perturbed problem.
Such a sequence of perturbed QPs arises in the context of
MPC and in the solution of MIQPs. IPMs are not conducive
for warm-start due to the need for initial iterates to lie
in the interior of the bounds. The slacked formulation of
our homogeneous formulation addresses this deficiency and
is inspired by the slacked formulation of [33] for warm-
starting Linear Programs (LPs). We implemented the IIPM
in Julia [34] and use MKL Pardiso [35] for the linear algebra
computations. Numerical experiments show that our imple-
mentation is faster than existing state-of-the-art IPMs that
do not use the homogeneous formulation in [1]. Finally, we
demonstrate that the warm-start capability of our approach
can reduce the computation times by 50% when applied to
MPC.

The paper is organized as as follows. §II presents the
QP formulation along with the assumptions. The slacked
reformulation of the QP and the homogeneous formulation
are presented in §III. §IV presents the predictor-corrector
IIPM for the slacked formulation, and tailored linear algebra
employed for the step computation. We present the effect



of data perturbations on the iteration complexity in §V and
propose warm-start strategy for the HSQP. §VI presents the
numerical results on more than 800 randomly generated
problems of varying size and density. we also present the
effect of warm-starts on an MPC application. We compare
our approach to existing IPM implementations such as
ECOS [12], Ipopt [8], and MOSEK [36].

Notation. The set of reals is denoted by R and the set of
vectors of dimension n by Rn. The set of n× n symmetric
matrices is denoted by Sn. For a matrix A ∈ Sn, the notation
A ≽ (≻)0 denotes that A is positive semidefinite (definite).
Given a vector u ∈ Rn, U denotes a diagonal matrix with
the elements of the vector on the diagonal. We denote by 1n
the n-vector all ones, and In the identity matrix of size n.

II. PROBLEM FORMULATION

We consider QPs of the form

min
x∈Rn

1

2
xTQx+ qTx (1a)

s.t. Ax = b (1b)
l ≤ x ≤ u (1c)

where Q ∈ Sn, q ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The
vectors l, u ∈ Rn represent the lower and upper bounds on
the variables. For sake of clarity in presentation, we assume
that l, u are all finite. This is not a requirement for our
implementation as described in §VI.

We make the following assumptions on QP (1).
Assumption 1: The equality constraint matrix has full row

rank.
Assumption 2: The Hessian is strictly convex on null-

space of the equality constraints.
Assumption 1 states that the matrix A has full row rank
of m. This is not restrictive and can be easily satisfied
by removing dependent rows if necessary. Assumption 2
requires that the matrix ZTAZ ≻ 0 where Z ∈ Rn×(n−m) is
an orthonormal basis for the null-space of A, i.e. Z is a basis
for {v |Av = 0}. This assumption readily holds for MPC
formulations [25] and also for certain spectral relaxations
of nonconvex MIQPs [5], [6]. Assumption 2 implies that
the optimal solution to QP (1) is unique whenever QP (1)
is feasible. Note that the assumptions do not preclude the
infeasibility of QP (1). We end the section by stating the
conditions for optimality and infeasibility of QP (1).

A point x⋆ minimizes QP (1) if x⋆ ∈ [l, u] and there exist
multipliers λ⋆

x ∈ Rm, z⋆l , z
⋆
u ≥ 0 ∈ Rn, satisfying [32]

Qx⋆ +ATλ⋆
x − z⋆l + z⋆u + q = 0 (2a)

Ax⋆ − b = 0 (2b)
(X⋆ − L)z⋆l = 0 (2c)
(U −X⋆)z⋆u = 0. (2d)

The first-order optimality conditions (2) are necessary and
sufficient for a minimizer of the QP (1) under Assumption 2.

The QP (1) is infeasible if there exist λ◦
x ∈ Rm, and

z◦l , z
◦
u ∈ Rn satisfying

ATλ◦
x − z◦l + z◦u = 0 (3a)

bTλ◦
x − lT z◦l + uT z◦u = −1 (3b)

z◦l , z
◦
u ≥ 0. (3c)

The conditions in (3) are obtained from applying Motzkin’s
Theorem of the Alternative [37, § 2.4] to (1b)-(1c).

III. HOMOGENEOUS SLACKED QP (HSQP)
We begin by presenting the equivalent slacked reformula-

tion of the QP (1).

min
x,sl,su∈Rn

1

2
xTQx+ qTx (4a)

s.t. Ax = b (4b)
x− sl = l (4c)
x+ su = u (4d)
sl, su ≥ 0. (4e)

The variables sl, su are the so-called slack variables and help
to translate the bounds in (1c) into nonnegativity of sl, su
in (4e). The reformulation will be critical to the warm-start of
our IIPM formulation as discussed in §V. It is easily shown
that satisfaction of Assumptions in 1 and 2 for QP (1) implies
the full rank of equalities (4b)-(4d) and strict convexity in
the null space of equalities in the slacked formulation in (4).

We present a new formulation obtained by homogenizing
the equalities in (4) called the Homogeneous Slacked QP
(HSQP) formulation. The HSQP is given by

min
x,sl,su∈Rn,τ

1

2
xTQx+ τqTx+

θ

2
(τ2 − 2τ) (5a)

s.t. Ax− bτ = 0 (5b)
x− sl − lτ = 0 (5c)
x+ su − uτ = 0 (5d)
sl, su, τ ≥ 0 (5e)

where τ ∈ R is an additional nonnegative variable and
θ > 0 is a parameter. Observe that the objective (5a) is
obtained by multiplying the linear term qTx in (4a) with τ
and appending with the term (θ/2)(τ2 − 2τ). The equality
constraints (5b)-(5d) are obtained by multiplying the right-
hand side of (4b)-(4d) with τ . We present conditions on θ
such that Assumption 2 also holds for HSQP in §III-A. Since
HSQP is always feasible, the satisfaction of Assumption 2
ensures that HSQP has an unique solution. §III-B shows that
solving HSQP allows to recover a solution to QP or declare
infeasibility.

A. Conditions on θ

The parameter θ is chosen to satisfy two conditions:
1) θ > 2|θ⋆| where θ⋆ is valid lower bound on the optimal

objective of slacked QP (4)

−1

2
θ < θ⋆ ≤1

2
xTQx+ qTx (6)

∀ (x, sl, su) satisfying (4b) − (4e).

2) θ is chosen large enough so that

ẐT

[
Q q
qT θ

]
Ẑ ≻ 0 (7)



where Ẑ is a basis for the null space of (5b).
The satisfaction of (7) implies that:

1) the Hessian of the objective in (5a) is positive definite
on the null space of the equality constraints (5b)-(5d).

2) HSQP (5) is convex and the first-order optimality con-
ditions are necessary and sufficient for a minimizer.

We refer the interested reader to [1, §III.B] for a discussion
on the computation of θ.

B. Equivalence between QP and HSQP

We collect some simple observations on the HSQP (5).
(O1) HSQP (5) is always feasible. It is easily verified that

(x, sl, su, τ) = 0 satisfies (5b)-(5e).
(O2) HSQP (5) has an optimal solution with optimal value

less than or equal to 0. This follows directly from (O1).
(O3) HSQP (5) has a finite optimum. This follows from (7).

We now state the first-order optimality conditions for
HSQP (5).

A point (x̂, ŝl, ŝu, τ̂) minimizes HSQP (5) if there exist
multipliers (λ̂x, λ̂l, λ̂u) ∈ Rm+2n, (ẑl, ẑu, ẑτ ) ≥ 0 ∈ R2n+1

satisfying the first-order optimality conditions

Qx̂+AT λ̂x + λ̂l + λ̂u + qτ̂ = 0 (8a)

−λ̂l − ẑl = 0 (8b)

λ̂u − ẑu = 0 (8c)
Ax̂− bτ̂ = 0 (8d)

x̂− ŝl − lτ̂ = 0 (8e)
x̂+ ŝu − uτ̂ = 0 (8f)

Ŝlẑl = 0 (8g)

Ŝuẑu = 0 (8h)

θτ̂ − θ + qT x̂− bT λ̂x − lT λ̂l − uT λ̂u − ẑτ = 0 (8i)
τ̂ ẑτ = 0. (8j)

Theorem 1: Suppose θ is chosen to satisfy the conditions
in §III-A. The QP (1) has an optimal solution x⋆ iff the
HSQP (5) has an optimal solution (x̂, ŝl, ŝu, τ̂) with τ̂ > 0.

Proof: Consider the if part. Let (x̂, ŝl, ŝu, τ̂) be an
optimal solution of HSQP (5) and let (λ̂x, λ̂l, λ̂u), (ẑl, ẑu, ẑτ )
be multipliers such that (8) holds. Then, it is easily verified
that x⋆ = x̂/τ̂ , (λ⋆

x, z
⋆
l , z

⋆
u) = (λ̂x/τ̂ , ẑl/τ̂ , ẑu/τ̂) satisfies

the optimality conditions (2) for QP (1), proving the if part.
Consider the only if part. Let x⋆ be an optimal solution

of QP (1) and let (λ⋆
x, z

⋆
l , z

⋆
u) be multipliers such that (2)

holds. Define τ̄ = θ/(θ + qT y⋆ − bTλ⋆
x + lT z⋆l − uT z⋆u).

If τ̄ > 0 then it can be easily verified that (x̂, ŝl, ŝu) =
τ̄(x⋆, x⋆ − l, u− x⋆), τ̂ = τ̄ , (λ̂x, λ̂l, λ̂u) = τ̄(λ⋆

x,−z⋆l , z
⋆
u)

and (ẑl, ẑu) = τ̄(z⋆l , z
⋆
u) satisfy the optimality conditions for

HSQP (8). To show τ̄ > 0 we need to show that θ+ qTx⋆−
bTλ⋆

x + lT z⋆l − uT z⋆u > 0 since θ > 0. Consider

θ + qTx⋆ − bTλ⋆
x + lT z⋆l − uT z⋆u (9a)

= θ + qTx⋆ − (ATλ⋆
x)

Tx⋆ + lT z⋆l − uT z⋆u (9b)

= θ + 2qTx⋆ + (x⋆)TQx⋆ + lT z⋆l − uT z⋆u

+ (x⋆)T (−z⋆l + z⋆u) (9c)

= θ + 2qTx⋆ + (x⋆)TQx⋆ > 0 (9d)

where the equality in (9b) follows by multiplying (2b) by
(ν⋆)T and substituting for bTλ⋆

x with (ATλ⋆
x)

Tx⋆. Mul-
tiplying (2a) by (x⋆)T and substituting for −(AT ν⋆)Tx⋆

as qTx⋆ + (x⋆)TQx⋆ − (x⋆)T (z⋆l − z⋆u) yields (9c). Using
the complementarity constraints (2c)-(2d) in (9c) yields the
equality (9d). The final inequality follows from (6), complet-
ing the proof.

We now show that infeasibility of QP (1) is equivalent to
the vanishing of the optimal solution to HSQP (5).

Theorem 2: Suppose θ satisfies the conditions in §III-A.
The QP (1) is infeasible iff the HSQP (5) has optimal solution
(x̂, ŝl, ŝu, τ̂) = 0.

Proof: Consider the only if part of the claim.
Suppose there exist (λ◦

x, z
◦
l , z

◦
u) satisfying (3). It can

be verified that (x̂, ŝl, ŝu, τ̂) = 0, (λ̂x, λ̂l, λ̂u) =
(θλ◦

x,−θz◦l , θz
◦
u) (ẑl, ẑu, ẑτ ) = (θz◦l , θz

◦
u, 0) satisfies (8).

Hence (x̂, ŝl, ŝu, τ̂) = 0 is an optimal solution to HSQP (5).
Consider the if part of the claim. Suppose (x̂, ŝl, ŝu, τ̂) =

0 is the optimal solution to (5) and let (λ̂x, λ̂l, λ̂u),
(ẑl, ẑu, ẑτ ) be the multipliers in (8). Then (λ◦

x, z
◦
l , z

◦
u) =

(λ̂x, ẑl, ẑu)/(θ+ẑτ ) can be verified to satisfy (3). This proves
the if part of the claim, completing the proof.

IV. INFEASIBLE INTERIOR POINT METHOD (IIPM)

We describe a predictor-corrector IIPM for solving HSQP
in the following. We first present the step computation in §IV-
A and then outline the predictor-corrector IIPM in §IV-B.
The step computation shows that computational work scales
with the size of QP (1) and preserves the sparsity in (1).

A. IIPM Step Computation

Each iteration of the IIPM involves the solution of a linear
system which represents the Newton step of the optimality
conditions in (8). The linear system is of the form

Q∆x+AT∆λx +∆λl +∆λu + q∆τ = rdx (10a)
−∆λl −∆zl = rdl (10b)
∆λu −∆zu = rdu (10c)
A∆x− b∆τ = rpx (10d)

∆x−∆sl − l∆τ = rpl (10e)
∆x+∆su − u∆τ = rpu (10f)

Zl∆sl + Sl∆zl = rcl (10g)
Zu∆su + Su∆zu = rcu (10h)

θ∆τ − bT∆λx − lT∆λl − uT∆λu −∆zτ = rdτ (10i)
zτ∆τ + τ∆zτ = rcτ (10j)

where the right hand quantities will be made precise in Algo-
rithm 1. The linear system in (10) has (7n+m+2) unknowns
and constraints. Additionally, the equality in (10i) can be
quite dense since the vector q, b, l, u can all be component-
wise nonzero. As a result, the linear system in (10) can
be dense even when the data matrices Q,A are sparse. A
direct solution of such a system can result in computational
inefficiency in the solution of the linear system. We show



in the following that the unknowns in (10) can be computed
at expense of factorizing a linear system that is only of size
(n+m). This is precisely the dimensions of the QP (1). Thus,
the introduction of the slacked formulation does not affect
the computational efficiency of the IIPM step computation.

To begin with, we note from (10) that (∆zl,∆zu,∆zτ )
can be expressed using (10g),(10h),(10j) as

∆zl = S−1
l (rcl − Zl∆sl) (11a)

∆zu = S−1
u (rcu − Zu∆su) (11b)

∆zτ = τ−1(rcτ − zτ∆τ) (11c)

We can eliminate (∆zl,∆zu,∆zτ ) from (10) by susbtitut-
ing (11) in (10b),(10c),(10i) to obtain the system

Q∆x+AT∆λx +∆λl

+∆λu + q∆τ = rdx (12a)

Σl∆sl −∆λl = rdl + S−1
l rcl (12b)

Σu∆su +∆λu = rdu + S−1
u rcu (12c)

A∆x− b∆τ = rpx (12d)
∆x−∆sl − l∆τ = rpl (12e)
∆x+∆su − u∆τ = rpu (12f)

qT∆x− bT∆λx − lT∆λl

−uT∆λu + τ−1zτ∆τ = rdτ + τ−1rcτ (12g)

where Σl = ZlS
−1
l , Σu = ZuS

−1
u . Using (12) we express

(∆sl,∆λl,∆su,∆λu) in terms of (∆x,∆λx,∆τ) as

∆sl = −rpl +∆x− l∆τ (13a)

∆λl = Σl(∆x− l∆τ − rpl)− rdl − S−1
l rcl (13b)

∆su = rpu −∆x+ u∆τ (13c)

∆λu = Σu(∆x− u∆τ − rpu) + rdu + S−1
u rcu. (13d)

Substituting (∆sl,∆su) from (13) into (12) obtainQ+Σl +Σu AT q̃
A 0 −b
q̃T −bT Στ

 ∆x
∆λx

∆τ

 =

r̃dx
rpx
r̃dτ

 (14)

where

Στ = θ + τ−1zτ + lTΣll + uTΣuu

q̃ = q − Σll − Σuu.

r̃dx = rdx +Σlrpl + rdl + S−1
l rcl

+Σurpu − rdu − S−1
u rcu.

r̃dτ = rdτ + τ−1rcτ − lT (Σlrpl + rdl + S−1
l rcl)

+ uT (−Σurpu + rdu + S−1
u rcu)

The system in (14) is solved by performing a symmetric
indefinite factorization (defined in [38]) of the matrix(

Q+Σl +Σu AT

A 0

)
= LDLT (15)

to obtain the lower triangular matrix L and D matrix with
1 × 1 or 2 × 2 factors. These factors are used to backsolve

two right hand sides

LDLT
(
w1 w2

)
=

(
q̃ r̃dx
−b rpx

)
︸ ︷︷ ︸(

r1 r2
)

(16)

Using w1, w2 obtained from (16) we express (∆x,∆λx) as(
∆x
∆λ

)
= w2 − w1∆τ. (17)

Substituting (17) into the last equation in (14) yields the
following linear system in the only unknown ∆τ as(

−rT1 w1 +Στ

)
∆τ = r̃dτ − rT1 w2. (18)

The quantities (∆x,∆λx) and other step quantities can be
computed by back substitution in (17), (13) and (11).

The main effort in the step computation is the factorization
of the matrix W which scales with (n+m) as claimed.

B. Predictor-Corrector IIPM

In this section, we present a predictor-corrector IIPM [28]
for the HSQP (5). In the following, we denote by v the
iterate (x, sl, su, τ, λx, λl, λu, zl, zu, zτ ) and subvectors of
v by vp = (x, sl, su, τ), vd = (λx, λl, λu) and vc =
(zl, zu, zτ ). The left hand sides of the equations in (8) are
denoted respectively as Rdx(v), Rdl(v), Rdu(v), Rpx(v),
Rpl(v), Rpu(v), Rcl(v), Rcu(v), Rdτ (v), and Rcτ (v). For
sake of brevity, we will use Rd(v), Rp(v), Rc(v) to denote

Rd(v) = (Rdx(v), Rdl(v), Rdu(v), Rdτ (v)),

Rp(v) = (Rpx(v), Rpl(v), Rpu(v)),

Rc(v) = (Rcl(v), Rcu(v), Rcτ (v)).

In a similar manner, rd, rp, and rc will also denote corre-
sponding collections of the right hand sides in (10).

At each iteration of the IIPM, starting from the iterate
vk the algorithm computes two steps called the predictor or
affine step (∆vk,a) and corrector step (∆vk,c) which are then
combined to produce the new point vk+1. In the following,
we will suppress the dependence on k for sake of clarity of
presentation when the context is unambiguous.

The predictor or affine step ∆va is computed by solv-
ing (10) with the right hand side set as

(rd, rp, rc) = −(Rd(v), Rp(v), Rc(v)). (19)

Using this computed step the algorithm determines the
scalars αa

p = αmax,p(v,∆va) and αa
d = αmax,d(v,∆va)

where the functions αmax,p(v,∆v) and αmax,d(v,∆v) are
defined as

αmax,p(v,∆v) = max

α

∣∣∣∣∣∣∣
α ∈ [0, 1]

sl + α∆sl ≥ 0

su + α∆su ≥ 0

 (20a)

αmax,d(v,∆v) = max

α

∣∣∣∣∣∣∣
α ∈ [0, 1]

zl + α∆zl ≥ 0

zu + α∆zu ≥ 0

 . (20b)



The scalars αa
p, α

a
d determine the largest step length so that

the (sal , s
a
u, z

a
l , z

a
u) components of the iterate va (defined

below) are nonnegative

vap = vp + αa
p∆vap , v

a
d = vd + αa

d∆vad ,

vac = vc + αa
d∆vac .

(21)

The corrector step ∆vc is also computed from (10) by
setting the right sides as

(rd, rp) = (0, 0)

rc =(σµ1n −∆Sa
l ∆zal , σµ1n −∆Sa

u∆zau,

σµ−∆τa∆zaτ )

(22)

where µ = ∥Rc(v)∥1/(2n+1) and µa = ∥(Rc(v
a)∥1/(2n+

1) and σ = (µa/µ)3. A combined step is defined as ∆v =
∆va +∆vc and the next iterate vk+1 is obtained as

(vk+1
p , vk+1

d , vk+1
c )

= (vkp , v
k
d , v

k
c ) + κ(αc

p∆vp, α
c
d∆vd, α

c
d∆vc)

(23)

where κ ∈ (0, 1) is a damping factor and αc
p =

αmax,p(v,∆v), αc
d = αmax,d(v,∆v).

The termination of the algorithm is based on the error in
satisfying the dual, primal and complementarity conditions
are respectively denoted as ed(v), ep(v), ec(v) given by

ed(v) =
∥Rd(v)∥∞

1 + max {∥Q∥∞, ∥q∥∞}
(24a)

ep(v) =
Rp(v)

1 + ∥b∥∞
(24b)

ec(v) = max

{∥∥∥∥Rcl(v)

1 + |l|

∥∥∥∥
∞

,

∥∥∥∥Rcu(v)

1 + |u|

∥∥∥∥
∞

, Rcτ (v)

}
.

(24c)

Note that the division in the first two terms of (24c) are
componentwise. Algorithm 1 summarizes the steps for com-
puting an optimal point to HSQP satisfying the errors (24)
to a tolerance of ϵ.

Algorithm 1: IIPM for HSQP (5)
Data: κ ∈ (0, 1) and ϵ > 0.

1 Choose v0 with s0l , s
0
u, τ

0, z0l , z
0
u, z

0
τ > 0.

2 Set k = 0.
3 while max{ed(vk), ep(vk), ec(vk)} > ϵ do
4 Solve (10) by setting (rd, rp, rc) as defined

in (19) to obtain ∆vk,a.
5 Determine vk,a using (21).
6 Solve (10) by setting (rd, rp, rc) as defined

in (22) to obtain ∆vk,c.
7 Determine the new iterate vk+1 using (23).
8 Set k = k + 1.

V. WARM-START OF IIPM

MPC and global optimization of MIQPs involve the so-
lution of a sequence of QPs that are closely related through
perturbations in the problem data. By problem data, we refer

to D = {Q, q,A, b, l, u}. The nominal QP that has been
solved using D is referred to simply as D, and the optimal
solution is denoted by v⋆(D) where v⋆ is a collection as
defined in §IV-B. The perturbed QP, for which a solution is
desired, is referred to by D+∆D = {Q+∆Q,A+∆A, b+
∆b, l+∆l, u+∆u}. In the case of MPC for linear dynamical
systems, only ∆b ̸= 0 for the QPs solved at successive time
instants. In the global optimization of MIQPs, ∆l ̸= 0 or
∆u ̸= 0 for the QPs at parent and child nodes. Warm-start
refers to the idea of using v⋆(D) to determine the solution
v⋆(D+∆D). For small ∆D, it is typically expected that the
algorithm converges in fewer iterations as compared to not
using v⋆(D).

IIPMs are in general not conducive for warm-starting due
to the strict positivity requirement for certain components of
the initial iterate v0 (refer to Line 2 in Algorithm 1). We refer
the interested to [33] for an excellent survey on the attempts
at warm-starts for IIPM. Engau et al [33] applied an IIPM
on a slacked reformulation of Linear Programs (LPs). The
slacked formulation allowed to warm-start the algorithm for
D+∆D in an effective manner. Our slacked formulation is
inspired by [33]. To the best of our knowledge, the slacked
approach has not been considered for warm-start of QPs.

As shown in § IV-A, the addition of slacks does not
increase the computational effort in the IIPM. We show in the
following how the slacks help to reduce initial infeasibility
for D +∆D. We consider MPC i.e. only ∆b ̸= 0.

The iteration complexity of IIPMs scales as [28], [33]

log

(
max

{
∥Rd(v

0)∥∞
ϵ

,
∥Rp(v

0)∥∞
ϵ

,
nζ2

ϵ

})
where the initial iterate v0 is chosen as

v0p = (ζ1n, ζ1n, ζ1n), v
0
d = (0, 0, 0),

v0c = (ζ1n, ζ1n),
(25)

and ζ ≥ ∥(x⋆, s⋆l , s
⋆
u, z

⋆
l , z

⋆
u)(D)∥∞. If the perturbation

∆D is sufficiently small then ζ is likely to be an upper
bound for the solution of the D + ∆D as well, i.e. ζ ≥
∥(x⋆, s⋆l , s

⋆
u, z

⋆
l , z

⋆
u)(D+∆D)∥∞. We propose to choose the

initial iterate for D +∆D for some β ∈ (0, 1) as

vws
p = (x⋆, βs⋆l + (1− β)ζ1n, βs

⋆
u + (1− β)ζ1n,

βτ⋆ + (1− β)) (26a)
vws
d = (λ⋆

d, λ
⋆
l , λ

⋆
u), (26b)

vws
c = (βz⋆l + (1− β)ζ1n, βz

⋆
u + (1− β)ζ1n). (26c)

Since only ∆b ̸= 0 in the MPC context we have by
substituting vws into (8) that

∥Rd(v
ws)∥∞ ≤ (1− β)max(|τ⋆ − ζ|, ∥z⋆l − ζ1n∥∞,

∥z⋆u − ζ1n∥∞)

∥Rp(v
ws)∥∞ ≤ max(∥∆b∥∞, (1− β)∥s⋆l − ζ1n∥∞,

(1− β)∥s⋆u − ζ1n∥∞)

∥Rc(v
ws)∥∞ ≤ ζ2.

For all ∆b sufficiently small, the initial residuals using the
warm start iterate vws will be smaller than that using the



v0 in (25). As a result the worst-case iteration complexity
when using the warm-start iterate vws is never worse than
using v0 in (25). This is the rationale for using the iterate
vws. However, the typical savings that can be obtained
in computational time depend on the magnitude of the
perturbation ∆D.

Another aspect in the above analysis is that ζ is never
available for D. IIPMs typically resort to setting ζ = 1
in (25) for lack of a better estimate. For example, the authors
of [39] set ζ = 1 in (25) and use a convex combination
of v0 and v⋆(D) when performing a warm-start. They do
not employ a slacked formulation. Our approach of setting
components to be a convex combination is inspired by [39].

VI. NUMERICAL EXPERIMENTS

We implemented the predictor-corrector IIPM described
in Algorithm 1 using Julia [34]. The matrix factorization
required for the step computations in §IV-A is performed
using MKL Pardiso [35]. The goal of the numerical exper-
iments is to demonstrate: (i) the computational efficiency
of the homogeneous formulation based IIPMs on feasible
QPs; (ii) the robustness of the homogeneous formulation
for detecting infeasible QPs; and (iii) effectiveness of the
slacked formulation in warm-start of QPs arising in MPC.
In this paper, we compare our performance on (i)-(iii) with
other IPM implementations such as ECOS [12], Ipopt [8]
and MOSEK [36]. ECOS and MOSEK both employ the HSD
formulation for IPMs to convert QPs to SOCPs whereas Ipopt
uses the standard IPM formulation for QPs [28]. We executed
ECOS, Ipopt and MOSEK though their JuMP interfaces [40].
We refer to our approach as HSQP in the following. All tests
were performed on a MacBook with 2.6 GHz Intel Core i7
processor and 16 GB of memory.

A. Strictly Convex and Feasible QPs

We generated 8 different test sets of strictly convex QPs
to benchmark HSQP against other popular IPM solvers. In
particular, we generate QPs with two different variable sizes
n ∈ {100, 1000}, constraint size m ∈ {100, 1000}. We also
used two different densities for the Q and the A matrix,
d ∈ {0.1, 0.5}. The Q matrix is modified as Q+max(−1.1∗
σmin(Q), 0), with σmin(Q) the smallest eigenvalue of Q, in
order to make it positive definite. All variables are imposed
bounds of 0 and 1. Thus, we created 8 different problem sets
for each combination of (n,m, d). For each set we created
100 random QPs and present the statistics of times taken by
each of the solver.

Figures 1 and 2 show box plots for each solver over
the 100 instances in the test set. Figure 1 consists of
QPs of smaller dimensions (n,m) = (100, 25), (100, 50).
On these instances, MOSEK and HSQP perform compa-
rably on both densities of 0.1, 0.25. ECOS and Ipopt are
slower but the overall computational times are small. The
computational times of all solvers increase with problem
density as expected. On the larger instances of (n,m) =
(1000, 250), (1000, 500) we see that HSQP performs better

Fig. 1. Comparison of the CPU times for solving the smaller feasible
instances. The horizontal axis shows the instances set as a combination of
(n,m, d).

Fig. 2. Comparison of the CPU times for solving the larger feasible
instances. The horizontal axis shows the instances set as a combination
of (n,m, d).

than all other approaches with MOSEK being quite compa-
rable.

B. Strictly Convex and Infeasible QPs

We use the same test set generated in §VI-A and create
the infeasible instances by changing the right hand side of
the first constraints to

∑
j max(0, Aij) + 1 which is incon-

sistent with the variable bounds of [0, 1]. For the infeasible
instances, we exclude Ipopt from the comparisons since Ipopt
cannot detect infeasibility. Our goal is to compare the IIPM
performance on such instances. To this end to deactivated
the presolve option in MOSEK. Figure 3 shows the box
plots for the solvers on the larger instances. All solvers are
able to correctly detect infeasibility of the instances. The
computational times of HSQP are better than those of ECOS
and MOSEK.



Fig. 3. CPU time comparison in solving the larger infeasible instances.
The horizontal axis shows the instances set as a combination of (n,m, d).

C. MPC Problems & Warm-start

We consider the problem of driving a spacecraft system
to the origin [20]. The system has 6 states, 3 inputs and
starts from the initial state of −[2.8, 0.01, 1][km] at rest. We
consider 4 different horizon lengths, N , for MPC. The length
of the horizon determines the number of variables n = 9N+
6 and constraints m = 6N + 6 of the QP that is solved at
each time-step. For each N we solve the MPC problems 100
times. Figure 4 shows the box plots for all four solvers and
also HSQP with the warm-start (HSQP-ws) for all solves
of QPs after the first one. We used a value β = 0.99 to
obtain vws in (26) to initialize the IIPM. The Q,A matrices
in the MPC instances have densities that scale as 1/N which
makes them sparser than the test sets we generated. On these
problem, ECOS and HSQP are comparable for N = 10, 20
while ECOS is better for larger N . The HSQP-ws reduces
the computational times by almost 50% when compared to
HSQP. This clearly demonstrates the benefit of using the
slacked QP formulation. Further, HSQP-ws resulted to be
the fastest among all the solver as it does better than ECOS
for all the horizon lengths.

VII. CONCLUSIONS & FUTURE WORK

We presented a predictor-corrector IIPM using a novel
homogeneous formulation of convex QPs. The homogeneous
formulation is obtained on slacked reformulation of QPs. We
showed that the increase in dimensions due to the slacks does
not affect the complexity of the step computation. Further,
we also presented arguments for why the slacked formulation
is conducive to warm-starts. Numerical experiments have
shown that the formulation compares favorably against the
existing implementations. Our approach is also shown to
reduce the computational time per iteration by 50% when
warm-starts are used in the MPC applications.

We also outline a number of directions for future work.

• MPC problems have a block-diagonal structure in the
Hessian and an almost block-diagonal structure in the

Fig. 4. CPU time comparison in solving the MPC problem to control the
spacecraft system

constraints that can be exploited in the step compu-
tation [9]. This can reduce the computational work
involved for the matrix factorization in §IV-A. The
decomposition in combination with the warm-starts can
allow our approach to solve MPC at higher frequencies
which is critical in robotic applications.

• More extensive comparisons on other problem classes
and other algorithms.

• We will also explore the implementation of algorithms
such as ADMM or active-set on the homogeneous
formulation. These algorithms are more amenable to
warm-starts that the IIPM. However, they have not been
studied in the context of the homogeneous formulation.

• We also intend to the make the code publicly available
for the wider community by the time of submission of
the paper.
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