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Abstract
Recent work shows that deep neural networks (DNNs) first learn clean samples and then
memorize noisy samples. Early stopping can therefore be used to improve performance when
training with noisy labels. It was also shown recently that the training trajectory of DNNs can
be approximated in a low-dimensional subspace using PCA. The DNNs can then be trained
in this subspace achieving similar or better generalization. These two observations were
utilized together, to further boost the generalization performance of vanilla early stopping on
noisy label datasets. In this paper, we probe this finding further on different real-world and
synthetic label noises. First, we show that the prior method is sensitive to the early stopping
hyper-parameter. Second, we investigate the effectiveness of PCA, for approximating the
optimization trajectory under noisy label information. We propose to estimate low-rank
subspace through robust and structured variants of PCA, namely Robust PCA, and Sparse
PCA. We find that the subspace estimated through these variants can be less sensitive to
early stopping, and can outperform PCA to achieve better test error when trained on noisy
labels.
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Abstract

Recent work shows that deep neural networks (DNNs) first learn clean samples
and then memorize noisy samples. Early stopping can therefore be used to improve
performance when training with noisy labels. It was also shown recently that the
training trajectory of DNNs can be approximated in a low-dimensional subspace
using PCA. The DNNs can then be trained in this subspace achieving similar or
better generalization. These two observations were utilized together, to further
boost the generalization performance of vanilla early stopping on noisy label
datasets. In this paper, we probe this finding further on different real-world and
synthetic label noises. First, we show that the prior method is sensitive to the
early stopping hyper-parameter. Second, we investigate the effectiveness of PCA,
for approximating the optimization trajectory under noisy label information. We
propose to estimate low-rank subspace through robust and structured variants of
PCA, namely Robust PCA, and Sparse PCA. We find that the subspace estimated
through these variants can be less sensitive to early stopping, and can outperform
PCA to achieve better test error when trained on noisy labels.

1 Introduction

Deep neural networks have been successful in a wide variety of real-world tasks. However, they owe
a major chunk of their success to large, carefully curated, and manually annotated datasets [7, 20].
In several applications, however, the annotations can be costly or difficult to obtain. Thus, several
applications use unreliable annotation sources such as search engines, or crowd-sourcing [24, 22].
Thus, the annotations/labels on training data may be noisy leading to a distribution shift at test time.

Deep neural networks can easily memorize very large datasets [25], and they eventually memorize the
noisy labels, leading to poor generalization. Several works have pointed out that deep neural networks
tend to learn samples with clean labels early in training, and then memorize noisy labels during later
stages [15, 19, 2]. This property has been leveraged in different ways to improve generalization
performance when training labels are noisy.

The recent work of [12, 13] showed that neural networks can be trained in very low-dimensional
subspaces while achieving similar or better generalization. They then utilize this property, in
conjunction with early stopping to train on datasets with noisy labels. They first sample the model
trajectory formed by gradient descent and early stop so the model has not yet fitted to the noisy
labels. Then, they use principal component analysis (PCA) on the model trajectory to construct a
low-dimensional subspace of the trajectory. Finally, they train a new network from initialization in
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the subspace. By leveraging early stopping and the low-dimensional optimization objective, they
show an impressive generalization boost over vanilla early stopping.

However, it is unclear whether the success of the above method stems from the use of early stopping
or due to the low-dimensional subspace for training the neural network. In many scenarios, the
choice of early stopping may be unclear due to noisy validation data. Also, while early stopping is a
useful defense against label noise recent work has also shown that real-world label noises and some
synthetic label noises can be learned early adversely affecting generalization [18, 23, 26]. Intuitively,
fitting random labels for DNNs should require a larger dimensional optimization trajectory [14].
Hence, restricting the optimization trajectory to be low-dimensional should provide a regularization
against noisy labels. However, it is unclear whether PCA-based dimensionality reduction for the
optimization trajectory is ideal for training with noisy labels.

In this work, we attempt to probe these questions. We first show that leveraging a low-dimensional
model trajectory to regularize against noisy labels is fragile to early stopping. We then explore the
different subspace estimation algorithms, namely Robust-PCA and Sparse-PCA to better regularize
the recovered subspace. These variants have additional properties, which we discuss in detail below
that may be useful for training with noisy labels. We conduct experiments for these PCA variants on
different synthetic and real-world noisy variations of the CIFAR-10 dataset [10]. We find that while
Robust-PCA does not always outperform PCA, Sparse-PCA is consistently less sensitive to early
stopping and often outperforms PCA to achieve better generalization.

2 Background

For a deep neural network (DNN), we let w ∈ Rn denote its parameters. Let the parameter trajectory
during regular training be denoted by {ws

i }i=0,1,...,t, where ws
0 denotes initial parameters, and ws

i
denotes the parameters of DNN after a specific number of update iterations (usually an epoch). The
dynamic linear dimensionality reduction (DLDR) algorithm proposed by [12] shows that neural
networks can be trained in low-dimensional subspaces. The algorithms consist of two stages, sampling
the subspace, and training the model on the sampled subspace. [12] show that neural networks can
show equal or better test accuracy in the generated subspace for common datasets such as CIFAR-
10 [10] and Imagenet [4] on a variety of common architectures. The algorithms are detailed as
Algorithm 1 and 2.

Algorithm 1 DLDR Sampling
Sample parameter trajectory {ws

0, w
s
1 . . . w

s
t } along training;

w̄ = 1
t

∑t
i=1 w

s
i ;

W = {ws
1 − w̄, ws

2 − w̄ . . . ws
t − w̄};

Perform SVD on WTW and truncate till d largest eigenvectors {v1, v2 . . . vd} and eigenvalues
{σ2

1 , σ
2
2 . . . σ

2
d} are obtained;

ui =
1
σi
Wvi;

P = [u1, u2 . . . ud];

Algorithm 2 Subspace Training
k ← 0;
w0 ← ws

1;
while not converged do

Sample batch of data Bk

Compute gradient gk on batch Bk

wk+1 ← wk − αPPT gk; ▷ α denotes learning rate
k ← k + 1;

end while

Intuitively, in order to fit random labels, the dimensionality of the subspace required should be larger.
Thus, the DLDR algorithm controls the regularization by two mechanisms. First, sampling the
subspace till an early epoch provides regularization, as the model learns clean labels in the early
epochs [2, 15, 19]. Second, decreasing the dimensionality of the subspace provides an additional
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regularization, and reduces fitting to noisy labels. Thus, the early stop epoch and subspace dimension-
ality control the regularization, with these denoted by t and d, respectively. The prior work of [12]
conducted experiments by synthetically creating corrupted CIFAR-10 labels, and using the above
algorithm to show an impressive boost over vanilla SGD on clean test accuracy.

3 Proposed Method

By the Eckart-Young theorem, PCA provides optimal low-rank approximation by maximizing the
Frobenius norm. As discussed, the DLDR framework uses SVD/PCA to create the low-rank subspace
for optimization. For training with noisy labels, we instead propose alternative techniques for
subspace estimation, namely Robust-PCA and Sparse-PCA to regularize the subspace estimate.
While there exist multiple other variations of PCA with interesting properties, a detailed study of
all these variants is beyond the scope of this paper. We leave further exploration of these variants
as future work. We detail the advantages, Robust and Sparse-PCA have over PCA for training with
noisy labels below.

Robust-PCA: Since PCA focuses on finding subspaces that maximize the variance of data, it is
sensitive to the presence of outliers [21, 5, 8]. Robust-PCA instead is much less susceptible to sparse
large outliers compared to PCA [11, 5]. For classification with noisy labels, gradients from the noisy
data can be considered outliers, and PCA may over-emphasize them. Robust-PCA may therefore
function better for training with noisy labels.

Sparse-PCA: Deep networks are usually over-parameterized allowing them to overfit to noisy
labels [25]. A line of work has shown that only a few of these parameters are critical to general-
ization [6, 17]. Recent work also showed training only the critical parameters can improve training
on noisy labels [19], which proposed to update a pre-defined fraction of the parameters that they
selected as critical. These ‘critical’ parameters are based on a heuristic inspired by the Lottery Ticket
Hypothesis [6]. In a similar essence, we propose to use Sparse-PCA to create the model trajectory.
Sparse-PCA functions similar to PCA with an additional constraint that the principal components
should be sparse. Thus, with Sparse-PCA, only a fraction of network weights can be updated, provid-
ing further regularization against noisy labels. The sparsity for each eigenvector is a hyper-parameter
choice. Sparse-PCA also has an additional property of retaining consistency even when the number
of samples is very few. PCA, however, is not consistent in this setting [16]. This property may be
beneficial since DNNs have a very large number of parameters (in the order of millions), but the
trajectory is approximated using very few samples (up to 100). Lastly, Sparse-PCA does not guarantee
that different principal components are orthogonal (unlike PCA) without additional constraints. Since
we only require the components to span a subspace, this property does not affect the algorithm.

There are multiple algorithms present in the literature for solving Robust-PCA and Sparse-PCA.
For Robust-PCA, we use the SGD solver implementation by HyperSpy [3]. For Sparse-PCA, we
use the OPIT solver proposed in [1]. Thus, compared to DLDR we only change the subspace
estimation algorithm and use Robust-PCA and Sparse-PCA instead of vanilla PCA and do not modify
Algorithm 2. We find that Sparse-PCA often works better than PCA, and can often outperform it
while being less susceptible to the choice of early stopping.

4 Experiments

We evaluate our proposed approach on the CIFAR-10 dataset [10]. For synthetic noise, we randomly
perturb a fraction of labels in the training set, consistent with existing literature. We discuss the
different forms of label noises below:

1. Symmetric - This is a form of synthetic noise, where the noisy labels from every single
class are uniformly split among all other classes.

2. Pairflip - In this synthetic noise, the noisy labels from each class are flipped into its adjacent
class. This form of noise simulates noisy labels in fine-grained classification and is generally
more easily learned during early epochs than symmetric noise [23].

3. CIFAR10-N - A collection of noisy human annotations of the CIFAR-10 training set [18].
We use the ‘worst’ subset of annotations, which takes a union of noisy labels across the
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Figure 1: Comparison of different PCA variants across different synthetic and real label noises on
CIFAR-10. Results are presented using PreActResnet-18, with subspace dimension kept as d = 15.

dataset by 3 independent annotators. The noise level for CIFAR10-N ‘worst’ is around 40%.
This type of noise is also learned easily during early epochs.

We evaluate the performance of all the models using the test split of CIFAR-10. We train a
PreActResNet-18 [9] model with batch size 128 and use the common data augmentations, i.e.,
random crop with a padding of 4 pixels on each side, and horizontal flipping. For the first phase of
training, while sampling the model checkpoints for subspace estimation, we use an SGD optimizer
with 0.9 momentum, and weight decay of 5e− 4. We train for a total of 100 epochs with an initial
learning rate of 0.1 and decay it by a factor of 10 at the 50th and 75th epochs. We sample checkpoints
at every epoch for the subspace estimation. We use the same model checkpoints for PCA, Robust
PCA, and Sparse-PCA for a fair comparison.

For the second phase of training, after the subspace is estimated, we train the network for 20 epochs
projecting the gradient to the subspace after each iteration as shown in Algorithm 2. We set the
initial learning rate to 1, and decay it by a factor of 10 at the 10th and 15th epochs. The learning
rate can be set fairly high, due to subspace projection [12]. We use an SGD optimizer with 0.9
momentum and no weight decay. We experiment with different subspace early stop epoch t, and
keep the subspace dimensionality d = 15 for all algorithms. We report additional experiments
varying subspace dimension, d in Appendix A.1. For Sparse-PCA, we use a sparsity level of 90%
for each eigenvector. For Robust PCA, we use default hyperparameters defined by HyperSpy. For
PCA, we use the default implementation provided by the authors [12]. Figure 1 shows experimental
results of different PCA variants on various types of label noises. We also show two baselines, SGD
performance at the optimal early stop (SGD Best), and SGD final checkpoint performance.

We observe that for pairflip noise of 45%, Sparse-PCA can always outperform PCA and always
obtains higher accuracy than SGD best accuracy. PCA however is extremely sensitive to early
stopping and often performs even worse than optimal SGD early stop. Robust-PCA is slightly less
sensitive to early-stopping than PCA for t > 60. For symmetric noise, Sparse-PCA does not clearly
outperform PCA but shows similar or better performance when t > 50. Sparse-PCA also consistently
performs better than SGD with optimal early stopping. Robust-PCA shows worse performance
than PCA for symmetric noise. For the worst subset of CIFAR-10N annotations, Sparse PCA can
outperform PCA when t > 40, and more consistently outperforms SGD with optimal early stopping.
Robust-PCA shows similar performance to PCA, with no clear distinction. While none of the PCA
variants consistently outperform PCA across all early-stopping thresholds, Sparse-PCA is often less
sensitive to it. Sparse-PCA also achieves better generalization compared to PCA, on the challenging
forms of label noise that are learned early, i.e., Pairflip and CIFAR10-N worst.

5 Conclusion

In this work, we probe how early stopping combined with learning in low-dimensional subspaces
can improve generalization when training with noisy labels. We first show that the prior work on
this topic is sensitive to the choice of early stopping, and may not offer much benefit for challenging
forms of label noise that may be learned early. We then investigate the use of PCA variants to recover
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a low-dimensional subspace and find that Sparse-PCA often outperforms the prior method. We hope
this work will open new theoretical and empirical studies on exploiting low-dimensional subspaces
for noisy label training.
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Figure 2: Comparison of PCA variants on noisy CIFAR-10. Subspace dimension, d = 10.

Figure 3: Comparison of PCA variants on noisy CIFAR-10. Subspace dimension, d = 20

A Appendix

A.1 Subspace Dimension

[12], relies on subspace dimension as a regularization mechanism, in addition to early stopping. Thus,
in this section, we experiment with modifying the subspace dimension for all the PCA variants, to
d = 10 and d = 20 as shown in Figure 2 and 3. We observe similar trends as discussed previously.
Sparse PCA tends to be less susceptible to early stopping compared to PCA. Sparse PCA also still
outperforms PCA across all the noisy datasets and obtains better generalization.

7


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2022-156.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


