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Abstract—In this paper, we present a Model-Based Rein-
forcement Learning (MBRL) algorithm named Monte Carlo
Probabilistic Inference for Learning COntrol (MC-PILCO). The
algorithm relies on Gaussian Processes (GPs) to model the system
dynamics and on a Monte Carlo approach to estimate the
policy gradient. This defines a framework in which we ablate
the choice of the following components: (i) the selection of the
cost function, (ii) the optimization of policies using dropout,
(iii) an improved data efficiency through the use of structured
kernels in the GP models. The combination of the aforementioned
aspects affects dramatically the performance of MC-PILCO.
Numerical comparisons in a simulated cart-pole environment
show that MC-PILCO exhibits better data efficiency and control
performance w.r.t. state-of-the-art GP-based MBRL algorithms.
Finally, we apply MC-PILCO to real systems, considering in
particular systems with partially measurable states. We discuss
the importance of modeling both the measurement system and
the state estimators during policy optimization. The effectiveness
of the proposed solutions has been tested in simulation and on
two real systems, a Furuta pendulum and a ball-and-plate rig.

Index Terms—Model learning for Control, Dynamics, Learning
and Adaptive Systems, Robot Learning

I. INTRODUCTION

IN recent years, reinforcement learning (RL) [1] has achieved
outstanding results in many different environments, and has

shown the potential to provide an automated framework for
learning different controllers by self-experimentation. However,
model-free RL (MFRL) algorithms might require a massive
amount of interactions with the environment in order to solve
the assigned task. This data inefficiency puts a limit to RL’s
potential in real-world applications, due to the time and cost
of interacting with them. In particular, when dealing with
mechanical systems, it is critical to learn the task with the least
possible amount of interaction, to reduce wear and tear and
avoid any damage to the system. A promising way to overcome
this limitation is model-based reinforcement learning (MBRL).
MBRL is based on the use of data from interactions to build
a predictive model of the environment and to exploit it to plan
control actions. MBRL increases data efficiency by using the
model to extract more valuable information from the available
data [2].
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On the other hand, MBRL methods are effective only
inasmuch as their models resemble accurately the real systems.
Hence, deterministic models might suffer dramatically from
model inaccuracy, and the use of stochastic models becomes
necessary in order to capture uncertainty. Gaussian Processes
(GPs) [3] are a class of Bayesian models commonly used in
RL methods precisely for their intrinsic capability to handle
uncertainty and provide principled stochastic predictions [4][5].

Related work. PILCO (Probabilistic Inference for Learning
COntrol) [6] is a successful MBRL algorithm that uses GP
models and gradient-based policy search to achieve substantial
data efficiency in solving different control problems, both in
simulation as well as with real systems [7][8]. In PILCO, long-
term predictions are computed analytically, approximating the
distribution of the next state at each time instant with a Gaussian
distribution by means of moment matching. In this way, the
policy gradient is computed in closed form. However, the use
of moment matching introduces two relevant limitations. (i)
Moment matching models only unimodal distributions. (ii) The
computation of the moments is shown to be tractable only when
considering Squared Exponential (SE) kernels and differentiable
cost functions. The unimodal approximation is too crude of
an assumption on the long-term system dynamics for several
systems. Moreover, it introduces relevant limitations in case that
initial conditions or the optimal solution are multimodal. For
instance, in case that the initial variance of the state distribution
is high, the optimal solution might be multimodal, due to
dependencies on initial conditions. Also the limitation on the
kernel choice might be very stringent, as the SE kernel imposes
smooth properties on the GPs posterior estimator and might
show poor generalization properties in data that have not been
seen during training [9], [10], [11], [12].

PILCO has inspired several other MBRL algorithms that try
to improve it in different ways. Limitations due to the use of SE
kernels have been addressed in Deep-PILCO [13], where the
system evolution is modeled using Bayesian Neural Networks
[14], and long-term predictions are computed combining
particle-based methods and moment matching. Results show
that, compared to PILCO, Deep-PILCO requires a larger
number of interactions with the system in order to learn the
task. This fact suggests that using neural networks (NNs) might
not be advantageous in terms of data efficiency, due to the
considerably high amount of parameters needed to characterize
the model. A more articulated approach has been proposed in
PETS [15], where the authors use a probabilistic ensemble of
NNs to model the uncertainty of the system dynamics. Despite
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the positive results in the simulated high-dimension systems,
also the numerical results in PETS show that GPs are more
data-efficient than NNs when considering low-dimensional
systems, such as the cart-pole benchmark. An alternative
route has been proposed in [16], where the authors use a
simulator to learn a prior for the GP model before starting
the reinforcement learning procedure on the actual system
to control. This simulated prior improves the performance of
PILCO in areas of the state space with no available data points.
However, the method requires an accurate simulator that may
not always be available to the user.

Limitations due to the gradient-based optimization were
addressed in Black-DROPS [17], which adopts a gradient-free
policy optimization. In this way, also non-differentiable cost
functions can be used, and the computational time can be im-
proved with the parallelization of the black-box optimizer. With
this strategy, Black-DROPS achieves similar data efficiency to
PILCO’s, but significantly increases asymptotic performance.

Other approaches focused on improving the accuracy of long-
term predictions, overcoming approximations due to moment
matching. A first attempt has been proposed in [18], where
long-term distributions are computed relying on particle-based
methods. Based on the current policy and the one-step-ahead
GP models, the authors simulate the evolution of a batch
of particles sampled from the initial state distribution. Then,
the particle trajectories are used to approximate the expected
cumulative cost. The policy gradient is computed using the
strategy proposed in PEGASUS [19], where by fixing the initial
random seed, a probabilistic Markov decision process (MDP) is
transformed into an equivalent partially observable MDP with
deterministic transitions. Compared to PILCO, results obtained
were not satisfactory. The poor performance was attributed
to the policy optimization method, and in particular, to its
inability to escape from the numerous local minima generated
by the multimodal distribution.

Another particle-based approach is PIPPS [20], where
they proposed the total propagation algorithm to compute
the gradient instead of the PEGASUS strategy. The total
propagation algorithm combines the gradient obtained
with the reparameterization trick with the likelihood ratio
gradient. The reparameterization trick has been introduced
with successful results in stochastic variational inference
(SVI) [21], [22]. In contrast with the results obtained in SVI,
where just a few samples are needed to estimate the gradient,
the authors of [20] highlighted several issues related to the
gradient computed with the reparameterization trick, due to
its exploding magnitude and random direction. [20] concluded
that policy gradient computation via particle-based methods
and the reparameterization trick was not a feasible strategy.
To overcome these issues, PIPPS relies on the likelihood
ratio gradient to regularize the gradient computed with the
reparameterization trick. The algorithm performs similarly to
PILCO with some improvements in the gradient computation,
and in the overall performance in the presence of additional
noise.

Proposed approach. In this work, we propose an MBRL
algorithm named Monte Carlo Probabilistic Inference for

Learning COntrol (MC-PILCO). Like PILCO, MC-PILCO
is a policy gradient algorithm, which uses GPs to describe
the one-step-ahead system dynamics and relies on a particle-
based method to approximate the long-term state distribution
instead of using moment matching. The gradient of the expected
cumulative cost w.r.t. the policy parameters is obtained by back-
propagation [23] on the associated stochastic computational
graph, exploiting the reparameterization trick. Differently from
PIPPS, where they focused on obtaining regularized estimates
of the gradient, we have interpreted the optimization problem as
a stochastic gradient descent (SGD) problem [24]. This problem
has been studied in depth in the context of neural networks,
where overparameterized models are optimized using noisy
estimates of the gradient [25]. Analytical and experimental
studies show that the shape of the cost function and the
nonlinear activation function adopted can affect dramatically
the performance of SGD algorithms [26], [27], [28]. Motivated
by the results obtained in this field, w.r.t. the previous particle-
based approaches, we considered: (i) the use of less peaked
cost functions, i.e., less penalizing costs, to avoid the presence
of regions where the gradient is numerically almost null. (ii)
During policy optimization, we applied dropout [29] to the
policy parameters, in order to improve the ability to escape
from local minima and obtain better performing policies.

In addition, we propose a solution to deal with partially
measurable systems which are particularly relevant in real
applications, introducing MC-PILCO4PMS. Indeed, unlike
simulated environments, where the state is typically assumed
to be fully measurable, the state of real systems might be only
partially measurable. For instance, only positions are often
directly measured in real robotic systems, whereas velocities
are typically computed by means of estimators, such as state
observers, Kalman filters, and numerical differentiation with
low-pass filters. In this context, during policy optimization,
it is important to distinguish between the states generated
by the models, which aim at describing the evolution of
the real system state, and the states provided to the policy.
Indeed, providing to the control policy the model predictions
corresponds to assuming ability to measure directly the
system state, which, as mentioned before, is not possible in
the real system. To deal with this problem, we estimate the
actual states observed in the real system by applying to the
predicted states the models of both the measurement system
and the online estimators, and passing these estimates to
the policy during training. In this way, we obtain robustness
w.r.t. the delays and distortions caused by online filtering.
Thanks to the flexibility of our particle-based approach, it is
possible to easily reproduce a wide variety of filters and state
estimators, e.g., numerical differentiation, low-pass filters,
Kalman filters, etc.

Contributions. We present MC-PILCO, an MBRL algorithm
based on particle-based methods for long-term predictions that
features cost shaping, use of dropout during policy optimization,
extension to any kernel functions, and the introduction of the
so called speed-integration scheme. The effectiveness of the
proposed method has been ablated and shown both in simulation
and on real systems. We considered systems with up to 12-
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dimensional state space that are typical dimensions for GP-
based MBRL algorithms. First, the advantage of each of these
features has been shown on a cart-pole swing-up benchmark
and validated with statistical tests. Results show a significant
increase in performance, both in terms of convergence and
data efficiency, as well as the capability to handle multi-modal
distributions. Second, MC-PILCO outperforms the state-of-the-
art GP-based MBRL algorithms PILCO and Black-DROPS
on the same simulated cart-pole system. Third, we validated
MC-PILCO on a higher-dimensional system, by successfully
learning a joint-space controller for a trajectory tracking of a
simulated UR5 robotic arm. These results support the novel
conclusion that, by properly shaping the cost function and using
dropout during policy optimization, the reparameterization trick
can be used effectively in GP-based MBRL and Monte Carlo
methods do not suffer of gradient estimation problems, contrary
to what was asserted in the previous literature. Furthermore,
the property of using any kernel function was tested using a
combination of an SE and a polynomial kernel [30], as well as
a semi-parametrical kernel [10], [11], [12]. Results obtained
both in simulation and on a real Furuta pendulum show that
structured kernels can increase significantly data efficiency,
limiting the interaction time required to learn the tasks.

Finally, we extended the algorithm to partially measurable
systems, such as most existing real systems, introducing MC-
PILCO4PMS. We propose the idea of having different state
estimators during model learning and policy optimization. In
particular, when training the policy, it is essential to incorporate
in the state predicted by the models the distortions caused by
the online estimators and measurement devices in the real
system. The effectiveness of this approach is validated on a
simulated cart-pole and on two real systems, namely, a Furuta
pendulum and a ball-and-plate system.

To recap, the main results of this paper are:

‚ Design of MC-PILCO, a GP-based policy-gradient MBRL
algorithm that relies on Monte Carlo simulation with the
reparameterization trick to update the policy;

‚ We show that by properly shaping the cost function and
using dropout during policy optimization, the reparame-
terization trick can be effective in policy-gradient MBRL;

‚ We analyze behaviors occurring in real setups due to
filtering and state estimators, and we propose MC-
PILCO4PMS, a modified version of MC-PILCO capable
of dealing with partially measurable systems.

The article is structured as follows. In Section II, some
background notions are provided: we state the general problem
of model-based policy gradient methods, and present modelling
approaches of dynamical systems with GPs. In Section III,
we present MC-PILCO, our proposed algorithm, detailing the
policy optimization and model learning techniques adopted. In
Section IV, we discuss MC-PILCO4PMS, a variation of the
proposed algorithm, specifically designed for the application to
systems with partially measurable state. In Section V, we
analyze several aspects affecting the performance of MC-
PILCO, such as the cost shape, dropout, and the kernel choice.
In Section VI we validate and analyse MC-PILCO in different

tests on simulated environments, while, in Section VII, we
refer to MC-PILCO4PMS providing a proof of concept and the
results obtained on a real Furuta pendulum and a ball-and-plate
system. Finally, we draw conclusions in Section VIII.

II. BACKGROUND

In this section, we first introduce the standard framework
considered in model-based policy gradient RL methods, and
then discuss how to use Gaussian Process Regression (GPR) for
model learning. In the latter topic, we focus on three aspects:
some background notions about GPR, the description of the
model for one-step-ahead predictions, and finally, we discuss
long term predictions, focusing on two possible strategies,
namely, moment matching and a particle-based method.

A. Model-Based policy gradient

Consider the discrete-time system described by the unknown
transition function fp¨, ¨q,

xt`1 “ fpxt,utq `wt,

where, at each time step t, xt P Rdx and ut P Rdu are,
respectively, the state and the inputs of the system, while
wt „ N p0,Σwq is an independent Gaussian random variable
modeling additive noise. The cost function cpxtq is defined to
characterize the immediate penalty for being in state xt.

Inputs are chosen according to a policy function πθ : x ÞÑ u
that depends on the parameter vector θ.

The objective is to find the policy that minimizes the expected
cumulative cost over a finite number of time steps T , i.e.,

Jpθq “
T
ÿ

t“0

Ext rcpxtqs , (1)

with an initial state distributed according to a given ppx0q.
A model-based approach for learning a policy consists,

generally, of the succession of several trials; i.e., attempts
to solve the desired task. Each trial includes three main phases:

‚ Model Learning: the data collected from all the previous
interactions are used to build a model of the system
dynamics (at the first iteration, data are collected by
applying possibly random exploratory controls);

‚ Policy Update: the policy is optimized in order to minimize
the cumulative cost Jpθq. The optimization algorithm
iteratively approximates Jpθq by simulating the system
according to the current model and policy parameters θ,
and updates θ.

‚ Policy Execution: the current optimized policy is applied to
the system and the data are stored for model improvement.

Model-based policy gradient methods use the learned model to
predict the state evolution when the current policy is applied.
These predictions are used to estimate Jpθq and its gradient
∇θJ in order to update the policy parameters θ following a
gradient-descent approach.
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B. GPR and one-step-ahead predictions

A common strategy with GPR-based approaches consists of
modeling the evolution of each state dimension with a distinct
GP. Let’s denote by ∆

piq
t “ x

piq
t`1´x

piq
t the difference between

the value of the i-th component at time t`1 and t, and by ypiqt
the noisy measurement of ∆

piq
t with i P t1, . . . , dxu. Moreover,

let x̃t “ rxt,uts be the vector that includes the state and the
input at time t, also called the GP input. Then, given the data
D “

´

X̃,ypiq
¯

, where ypiq “ rypiqt1 , . . . , y
piq
tn s

T is a vector of

n output measurements, and X̃ “ tx̃t1 , . . . , x̃tnu is the set of
GP inputs, GPR assumes the following probabilistic model,
for each state dimension,

ypiq “

»

—

–

hpiqpx̃t1q
...

hpiqpx̃tnq

fi

ffi

fl

`

»

—

—

–

e
piq
t1
...
e
piq
tn

fi

ffi

ffi

fl

“ hpiqpX̃q ` epiq,

where epiq is a zero-mean Gaussian i.i.d. noise with standard
deviation σi, hpiqp¨q is an unknown function modeled a priori
as a zero-mean Gaussian Process, and i P t1, . . . , dxu. In
particular, we have hpiq „ N p0,KipX̃, X̃qq, with the a priori
covariance matrix KipX̃, X̃q P Rnˆn defined element-wise
through a kernel function kip¨, ¨q, namely, the element in j-th
row and k-th column is given by kipx̃tj , x̃tkq. A crucial aspect
in GPR is the kernel choice. The kernel function encodes
prior assumptions about the process. One of the most common
choices for continuous functions is the SE kernel, defined as

kSEpx̃tj , x̃tkq :“ λ2e´||x̃tj´x̃tk ||
2
Λ´1 , (2)

where the scaling factor λ and the matrix Λ are kernel
hyperparameters which can be estimated by marginal likelihood
maximization. Typically, Λ is assumed to be diagonal, with
the diagonal elements named length-scales.

Remarkably, the posterior distribution of hpiqp¨q can be
computed in closed form. Let x̃t be a general GP input at
time t. Then, the distribution of ∆̂

piq
t , the estimate of ∆

piq
t , is

Gaussian with mean and variance given by

Er∆̂piqt s “ kipx̃t, X̃qΓ
´1
i y

piq, (3)

varr∆̂
piq
t s “ kipx̃t, x̃tq ´ kipx̃t, X̃qΓ

´1
i kTi px̃t, X̃q, (4)

with Γi and kipx̃t, X̃q defined as

Γi “ pKipX̃, X̃q ` σ
2
i Iq,

kipx̃t, X̃q “ rkipx̃t, x̃t1q, . . . , kipx̃t, x̃tnqs.

Recalling that the evolution of each state dimension is modeled
with a distinct GP, and assuming that the GPs are conditionally
independent given the current GP input x̃t, the posterior
distribution for the estimated state at time t` 1 is

ppx̂t`1|x̃t,Dq „ N pµt`1,Σt`1q, (5)

where

µt`1 “ xt `
”

Er∆̂p1qt s, . . . ,Er∆̂
pdxq
t s

ıT

, (6)

Σt`1 “ diag
´”

varr∆̂
p1q
t s, . . . , varr∆̂

pdxq
t s

ı¯

. (7)

C. Long-term predictions with GP dynamical models

In MBRL, the policy πθ is evaluated and improved based on
long-term predictions of the state evolution: ppx̂1q, . . . , ppx̂T q.
The exact computation of these quantities entails the application
of the one-step-ahead GP models in cascade, considering the
propagation of the uncertainty. More precisely, starting from a
given initial distribution ppx0q, at each time step t, the next
state distribution is obtained by marginalizing (5) over ppx̂tq,
namely,

ppx̂t`1q “

ż

ppx̂t`1|x̂t, πθpx̂tq,Dqppx̂tqdx̂t. (8)

Unfortunately, computing the exact predicted distribution
in (8) is not tractable. There are different ways to solve it
approximately, and here we discuss two main approaches:
moment matching, adopted by PILCO, and a particle-based
method, the strategy followed in this work.

1) Moment matching: Assuming that the GP models use
only the SE kernel as a prior covariance, and considering a
normal initial state distribution x0 ∼ N pµ0,Σ0q, the first and
the second moments of ppx̂1q can be computed in closed form
[31]. Then, the distribution ppx̂1q is approximated to be a
Gaussian distribution, whose mean and variance correspond
to the moments computed previously. Finally, the subsequent
probability distributions are computed iterating the procedure
for each time step of the prediction horizon. For details about
the computation of the first and second moments, we refer
the reader to [31]. Moment matching offers the advantage
of providing a closed-form solution for handling uncertainty
propagation through the GP dynamics model. Thus, in this
setting, it is possible to analytically compute the policy gradient
from long-term predictions. However, as already mentioned in
Section I, the Gaussian approximation performed in moment
matching is also the cause of two main weaknesses: (i) The
computation of the two moments has been performed assuming
the use of SE kernels, which might lead to poor generalization
properties in data that have not been seen during training
[9], [10], [11], [12]. (ii) Moment matching allows modeling
only unimodal distributions, which might be a too restrictive
approximation of the real system behavior.

2) Particle-based method: The integral in (8) can be approx-
imated relying on Monte Carlo approaches, in particular on
particle-based methods, see, for instance, [17] [20]. Specifically,
M particles are sampled from the initial state distribution
ppx0q. Each one of the M particles is propagated using the
one-step-ahead GP models (5). Let xpmqt be the state of the
m-th particle at time t, with m “ 1, . . . ,M . At time step t,
the actual policy πθ is evaluated to compute the associated
control. The GP model provides the Gaussian distribution
p
´

x
pmq
t`1|x

pmq
t , πθpx

pmq
t q,D

¯

from which xpmqt`1, the state of
the particle at the next time step, is sampled. This process is
iterated until a trajectory of length T is generated for each
particle. The overall process is illustrated in Figure 1. The long-
term distribution at each time step is approximated with the
distribution of the particles. Note that this approach does not
impose any constraint on the choice of the kernel function and
the initial state distribution. Moreover, there are no restrictions
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Fig. 1: Example of three particles propagating through the stochastic
model (Gaussian distributions represented as ellipses).

on the distribution of ppx̂tq. Therefore, particle-based methods
do not suffer from the problems seen in moment matching,
at the cost of being more computationally heavy. Specifically,
the computation of (5) entails the computation of (3) and
(4), which are, respectively, the mean and the variance of
the delta states. Regarding the computational complexity, it
can be noted that Γ´1

i y
piq is computed a single time offline

during the training of the GP model (same computation is
needed in the moment matching case), and the number of
operations required to compute (3) is linear w.r.t. the number
of samples n. The computational bottleneck is the computation
of (4), which is Opn2q. Then, the cost of a single state
prediction is Opdxn2q, leading to a total computational cost
of OpdxMTn2q. Depending on the complexity of the system
dynamics, the number of particles necessary to obtain a good
approximation might be high, determining a considerable
computational burden. Nevertheless, the computational burden
can be substantially mitigated via GPU parallel computing, due
to the possibility of computing the evolution of each particle
in parallel.

III. MC-PILCO
In this section, we present the proposed algorithm. MC-

PILCO relies on GPR for model learning and follows a Monte
Carlo sampling method to estimate the expected cumulative
cost from particles trajectories propagated through the learned
model. We exploit the reparameterization trick to obtain the
policy gradient from the sampled particles and optimize the
policy. This way of proceeding is very flexible, and allows
using any kind of kernels for the GPs, as well as providing more
reliable approximations of the system’s behaviour. MC-PILCO,
in broad terms, consists of the iteration of three main steps,
namely, update the GP models, update the policy parameters,
and execute the policy on the system. In its turn, the policy
update is composed of the following three steps, iterated for a
maximum of Nopt times:
‚ simulate the evolution of M particles, based on the current
πθ and on the GP models learned from the previously
observed data;

‚ compute Ĵpθq, an approximation of the expected cumula-
tive cost, based on the evolution of the M particles;

‚ update the policy parameters θ based on ∇θĴpθq, the
gradient of Ĵpθq w.r.t. θ, computed by backpropagation.

In the remainder of this section, we discuss in greater depth
the model learning step and the policy optimization step.

A. Model Learning

Here, we describe the model learning framework considered
in MC-PILCO. We begin by showing the proposed one-step-
ahead prediction model, and analyzing the advantages w.r.t. the
standard model described in Section II-B. Then, we discuss
the choice of the kernel functions. Finally, we briefly detail the
model’s hyperparameters optimization and the strategy adopted
to reduce the computational cost.

1) Speed-integration model: Let the state be defined as
xt “ rqTt , 9qTt s

T , where qt P Rdx{2 is the vector of the
generalized coordinates of the system at time step t, and,
9qt represents the derivative of qt w.r.t. time. MC-PILCO
adopts a one-step-ahead model, hereafter denoted as speed-
integration dynamical model, which exploits the intrinsic
correlation between the state components q and 9q. Indeed,
when considering a sufficiently small sampling time Ts (small
w.r.t. the application), it is reasonable to assume constant
accelerations between two consecutive time-steps, obtaining
the following evolution of qt,

qt`1 “ qt ` Ts 9qt `
Ts
2
p 9qt`1 ´ 9qtq. (9)

Let Iq (respectively I 9q) be the ordered set of the dimension
indices of the state x associated with q (respectively 9q ). The
proposed speed-integration model learns only dx{2 GPs, each
of which models the evolution of a distinct velocity component
∆
pikq
t , with ik P I 9q . Then, the evolution of the position change,

∆
pikq
t , with ik P Iq, is computed according to (9) and the

predicted change in velocity.
Many previous MBRL algorithms, see for instance [6], [17],

adopted the standard model described in Section II-B, and
hereafter denoted as full-state dynamical model. The full-state
model predicts the change of each state component with a
distinct and independent GP. Doing so, the evolution of each
state dimension is assumed to be conditionally independent
given the current GP input, and it is necessary to learn a number
of GPs equal to the state dimension dx. Then, compared to the
full-state model, the proposed speed-integration model halves
the number of GPs to be learned, decreasing the cost of a
state prediction to Opdx2 MTn2q. Nevertheless, this approach
is based on a constant acceleration assumption, and works
properly only when considering small enough sampling times.
However, MC-PILCO can use also the standard full-state model,
which might be more effective when sampling time is longer.

2) Kernel functions: Regardless of the GP dynamical model
structure adopted, one of the advantages of the particle-based
policy optimization method is the possibility of choosing any
kernel functions without restrictions. Hence, we considered
different kernel functions as examples to model the evolution
of physical systems. However, readers can consider a custom
kernel function appropriate for their application.

Squared exponential (SE). The SE kernel described in (2)
represents the standard choice adopted in many different works.

SE + Polynomial (SE+Ppdq). Recalling that the sum of
kernels is still a kernel [3], we considered also a function given
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by the sum of a SE and a polynomial kernel. In particular, we
used the Multiplicative Polynomial (MP) kernel, which is a
refinement of the standard polynomial kernel, introduced in
[30]. The MP kernel of degree d is defined as the product of
d linear kernels, namely,

k
pdq
P px̃tj , x̃tkq :“

d
ź

r“1

´

σ2
Pr ` x̃

T
tjΣPr x̃tk

¯

.

where the ΣPr ą 0 matrices are distinct diagonal matrices. The
diagonal elements of the ΣPr , together with the σ2

Pr
elements

are the kernel hyperparameters. The resulting kernel is

kSE`P pdqpx̃tj , x̃tkq “ kSEpx̃tj , x̃tkq ` k
pdq
P px̃tj , x̃tkq. (10)

The idea motivating this choice is the following: the MP
kernel allows capturing possible modes of the system that
are polynomial functions in x̃, which are typical in mechanical
systems [9], while the SE kernel models more complex
behaviors not captured by the polynomial kernel.

Semi-Parametrical (SP). When prior knowledge about the
system dynamics is available, for example given by physics
first principles, the so called physically inspired (PI) kernel can
be derived. The PI kernel is a linear kernel defined on suitable
basis functions φpx̃q, see for instance [10]. More precisely,
φpx̃q P Rdφ is a (possibly nonlinear) transformation of the GP
input x̃ determined by the physical model. Then, we have

kPIpx̃tj , x̃tkq “ φ
T
px̃tj qΣPIφpx̃tkq,

where ΣPI is a dφ ˆ dφ positive-definite matrix, whose
elements are the kPI hyperparameters; to limit the number
of hyperparameters, a standard choice consists in considering
ΣPI to be diagonal. To compensate possible inaccuracies of
the physical model, it is common to combine kPI with an SE
kernel, obtaining so called semi-parametric kernels [12], [10],
expressed as

kSP px̃tj , x̃tkq “ kPIpx̃tj , x̃tkq ` kSEpx̃tj , x̃tkq.

The rationale behind this kernel is the following: kPI encodes
the prior information given by the physics, and kSE compen-
sates for the dynamical components unmodeled in kPI .

3) Model optimization and reduction techniques: In MC-
PILCO, the GP hyperparameters are optimized by maximizing
the marginal likelihood (ML) of the training samples, see [3]. In
Section II-C2, we saw that the computational cost of a particle
prediction scales with the square of the number of samples n,
leading to a considerable computational burden when n is high.
In this context, it is essential to implement a strategy to limit the
computational complexity of a prediction. We implemented a
Subset of Data technique (refer to [32] for further details on this
method and others) with an input selection procedure inspired
by [33], where the authors proposed an online importance
sampling strategy. After optimizing the GP hyperparameters
by ML maximization, the samples in D are downsampled to a
subset Dr “

´

X̃r,y
piq
r

¯

, which is then used to compute the
predictions. This procedure first initializes Dr with the first
sample in D, then, it computes iteratively the GP estimates of
all the remaining samples in D, using Dr as training samples.
Each sample in D is either added to Dr if the uncertainty of

the estimate is higher than a threshold βpiq or it is discarded.
The GP estimator is updated every time a sample is added to
Dr. The trade-off between the reduction of the computational
burden and the severity of the approximation introduced is
regulated by tuning βpiq. The higher the βpiq, the smaller the
number of samples in Dr. Inversely, using values of βpiq that
are too high might compromise the accuracy of GP predictions.

B. Policy optimization

Here, we present the policy optimization strategy adopted in
MC-PILCO. We start by describing the general-purpose policy
structure considered. Later, we show how to exploit backprop-
agation and the reparameterization trick to estimate the policy
gradient from particle-based long-term predictions. Finally, we
explain how to implement dropout in this framework.

1) Policy structure: In all the experiments presented in this
work, we adopted an RBF network policy with outputs limited
by an hyperbolic tangent function, properly scaled. We call
this function squashed-RBF-network, and it is defined as

πθpxq “ umax tanh

˜

1

umax

nb
ÿ

i“1

wie
||ai´x||

2
Σπ

¸

. (11)

The policy parameters are θ “ tw, A,Σπu, where w “

rw1 . . . wnbs and A “ ta1 . . .anbu are, respectively, the
weights and the centers of the Gaussian basis functions, while
Σπ determines the shape of the Gaussian basis functions; in
all experiments we assumed Σπ to be diagonal. The maximum
control action umax is constant and chosen depending on the
system to control. It is worth mentioning that MC-PILCO can
deal with any differentiable policy, so more complex functions,
such as deep neural networks, could be considered too.

2) Policy gradient estimation: MC-PILCO derives the policy
gradient by applying the reparameterization trick to the
computation of the estimated expected cumulative cost in (1),
obtained relying on Monte Carlo sampling [34]. Given a control
policy πθ and an initial state distribution ppx0q, the evolution of
a sufficiently high number of particles is predicted as described
in Section II-C2. Thus, the sample mean of the costs incurred
by the particles at time step t approximates each Extrcpxtqs.
Specifically, let xpmqt be the state of the m-th particle at time
t, with m “ 1, . . . ,M and t “ 0, . . . , T . The Monte Carlo
estimate of the expected cumulative cost is computed with the
following expression:

Ĵpθq “
T
ÿ

t“0

˜

1

M

M
ÿ

m“1

c
´

x
pmq
t

¯

¸

. (12)

The evolution of every particle x
pmq
t at the next

time step is sampled from the normal distribution
ppx

pmq
t`1|x

pmq
t , πθpx

pmq
t q,Dq „ N pµt`1,Σt`1q, defined in (6)-

(7). Hence, the computation of Ĵpθq entails the sampling from
probability distributions that depend on policy parameters
θ. The presence of such stochastic operations makes it
impossible to compute straightforwardly the gradient of (12)
w.r.t. the policy parameters. The reparameterization trick [21]
allows to still differentiate through the stochastic operations
by re-defining the probability distributions involved in the
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(a) Original computational graph. (b) Reparameterized computational graph.

Fig. 2: (Left) Original computational graph of the GP model predictions for two time steps. (Right) Computational graph
modified by the reparameterization trick. Squares and circles represent, respectively, deterministic and stochastic operations.

computation of ∇θĴ . In fact, instead of sampling directly
from N pµt`1,Σt`1q, it is possible to sample a point ε from
a zero-mean and unit-variance normal distribution with the
same dimension of µt`1. Then, ε can be mapped into the
desired distribution as xpmqt`1 “ µt`1`Lt`1ε, where Lt`1 is the
Cholesky decomposition of Σt`1, namely, Σt`1 “ Lt`1L

T
t`1.

In this way, the reparameterization trick makes the dependency
of xpmqt`1 from θ purely deterministic, allowing to compute
∇θĴ simply by backpropagation. Figure 2 illustrates how the
reparameterization trick works in the context of MC-PILCO.
Then, policy parameters θ are updated using the Adam solver
[35]; we will denote the Adam step size with αlr.

3) Dropout: To improve exploration in the parameter space
and increase the ability of escaping from local minima during
policy optimization, we considered the use of dropout [29].
The adopted procedure is described assuming that the policy
is the squashed-RBF-network in (11); similar considerations
can be applied to different policy functions. When dropout is
applied to the policy in (11), weights w are randomly dropped
with probability pd at each evaluation of the policy. This
operation is performed by scaling each weight wi with a random
variable ri „ Bernoullip1 ´ pdq, where Bernoullip1 ´ pdq
denotes a Bernoulli distribution, assuming value 1{p1´pdq with
probability 1´ pd, and 0 with probability pd. This operation is
equivalent to defining a probability distribution for w, obtaining
a parameterized stochastic policy. In particular, as shown in
[36], the distribution of each wi can be approximated with
a bimodal distribution, defined by the sum of two properly
scaled Gaussian distributions with infinitely small variance ξ2,
namely,

pdN p0, ξ2q ` p1´ pdqN
ˆ

wi
1´ pd

, ξ2

˙

.

The use of a stochastic policy during policy optimization
allows increasing the entropy of the particles’ distribution.
This property increments the probability of visiting low-cost
regions and escaping from local minima. In addition, we also

verified that dropout can mitigate issues related to exploding
gradients. This is probably due to the fact that the average of
several different values of w is used to compute the gradient
and not a single value of w, i.e., different policy functions are
used, obtaining a regularization of the gradient estimates.

By contrast, the use of a stochastic policy might affect the
precision of the obtained solution due to the additional entropy.
We also need to take into consideration that the final objective is
to obtain a deterministic policy. For these reasons, we designed
an heuristic scaling procedure to gradually decrease the dropout
rate, pd, until it equals 0. The scaling action is triggered by
a monitoring signal s, defined from the statistics of the past
history of Ĵ . Define the cost change, ∆Ĵj “ Ĵpθjq´ Ĵpθj´1q,
where θj denotes the policy parameters at the j-th optimization
step. Then, s is computed as a filtered version of the ratio

between Er∆Ĵjs and
b

Vr∆Ĵjs, that are, respectively, the
mean and the standard deviation of ∆Ĵj computed with an
Exponential Moving Average (EMA) filter. The expression of
s at the j-th optimization step is the following:

Er∆Ĵjs “ αsEr∆Ĵj´1s ` p1´ αsq∆Ĵj ,

Vr∆Ĵjs “ αspVr∆Ĵj´1s ` p1´ αsqp∆Ĵj ´ Er∆Ĵj´1sq
2q,

sj “ αssj´1 ` p1´ αsq
Er∆Ĵjs

b

Vr∆Ĵjs
, (13)

with αs a coefficient of the exponential moving average filter,
which determines the memory of the filter. At each iteration of
the optimization procedure, the algorithm checks if the absolute
value of the monitoring signal s in the last ns iterations is
below the threshold σs, namely,

r|sj´ns | . . . |sj |s ă σs, (14)

where ă is an element-wise operator, and the condition in (14)
is true if it is verified for all the elements. If the condition is
verified, pd is decreased by the quantity ∆pd, and both the
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learning rate of the optimizer, αlr, and σs, are scaled by an
arbitrary factor λs. Then, we have

pd “ pd ´∆pd, (15a)
αlr “ λsαlr, (15b)
σs “ λsσs. (15c)

The procedure is iterated as long as

pd ě 0 and αlr ě αlrmin , (16)

where αlrmin is the minimum value of the learning rate.
The rationale behind this heuristic scaling procedure is the

following. The sj signal is small, if Er∆Ĵjs is close to zero,
or if Vr∆Ĵjs is particularly high. The first case happens when
the optimization reaches a minimum, while the high variance
denotes that the particles’ trajectories cross regions of the
workspace where the uncertainty of the GPs predictions is high.
In both cases, we are interested in testing the policy on the real
system, in the first case to verify if the configuration reached
solves the task, and in the second case to collect data where
predictions are uncertain, and so to improve model accuracy.
MC-PILCO is summarized in pseudo-code in Algorithm 1.

We conclude the discussion about policy optimization by
reporting, in Table I, the optimization parameters used in all
the proposed experiments, unless expressly stated otherwise.
However, it is worth mentioning that some adaptation could be
needed in other setups, depending on the problem considered.

Parameter Description Value
pd dropout probability 0.25
∆pd pd reduction coeff. 0.125
αlr Adam step size 0.01
αlrmin minimum step size 0.0025
αs EMA filter coeff. 0.99
σs monitoring signal treshold 0.08
ns num. iterations monitoring 200
λs σs reduction coeff. 0.5
M number of particles 400

TABLE I: Standard values for the policy optimization parameters.

IV. MC-PILCO FOR PARTIALLY MEASURABLE SYSTEMS

In this section, we discuss the application of MC-PILCO to
systems where the state is partially measurable, i.e., systems
whose state is observable, but only some components of
the state can be directly measured, while the rest must be
estimated from measurements. For simplicity, we introduce the
problem discussing the case of a mechanical system where
only positions (and not velocities) can be measured, but similar
considerations can be done for any partially measurable system
with observable state. Then, we describe MC-PILCO for
Partially Measurable Systems (MC-PILCO4PMS), a modified
version of MC-PILCO, proposed to deal with such setups.

Consider a mechanical systems where only joint positions
can be measured. This can be described as a partially mea-
surable system, where in the state xt “ rqTt , 9qTt s

T only qt is
measured. Consequently, the 9qt elements are estimated starting
from the history of qt measurements through proper estimation
procedures, possibly performing also denoising operations of
qt in case that the measurement noise is high. In particular,

Algorithm 1: MC-PILCO
init policy πθp¨q, cost cp¨q, kernel kp¨, ¨q, maximum

optimization steps Nopt, number of particles M ,
learning rate αlr, min. learning rate αlrmin , dropout
probability pd, dropout probability reduction ∆pd and
other monitoring signal parameters: σs, λs, ns.

Apply exploratory control to system and collect data
while task not learned do

1) Model Learning:
Learn GP models from sampled data - Sec. III-A;
2) Policy Update:
Initialize monitoring signal s0 “ 0;
for j “ 1...Nopt do

Simulate M particles rollouts with GP models
and current policy πθj p¨q;

Compute Ĵpθjq from particles (12);
Compute ∇θĴpθjq through backpropagation;
Gradient-based policy update Ñ πθj`1

p¨q ;
Update monitoring signal sj with (13);
if (14) is True then

Update pd, αlr and σs with (15);
end
if (16) is False then

break;
end

end
3) Policy Execution:
apply updated policy to system and collect data

end
return trained policy, learned GP model;

it is worth distinguishing between estimates computed online
and estimates computed offline. The former are provided to the
control policy to determine the system control input, and they
need to respect real-time constraints, namely, velocity estimates
are causal and computations must be performed within a given
interval. For the latter, we do not have to deal with such
constraints. As a consequence, offline estimates can be more
accurate, taking into account acausal information and limiting
delays and distortions.

In this context, we verified that, during policy optimization,
it is relevant to distinguish between the particle state predictions
computed by the models and the data provided to the policy.
On the one hand, GPs should simulate the real system
dynamics, independently of additional noise given by the
sensing instrumentation, they need to work with the most
accurate estimates available, possibly obtained with acausal
filters; delays and distortions might compromise the accuracy
of long-term predictions. On the other hand, providing to the
policy directly the particle states computed with the GPs during
policy optimization, correspond to train the policy assuming to
access directly to the system state, which is not possible in the
considered setup. Indeed, relevant discrepancies between the
particle states and the state estimates computed online, during
the interaction with the real system, might compromise the
effectiveness of the policy. Most of the previous GP-based
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MBRL algorithms do not focus on these aspects, and assume
direct access to the state. In our opinion, a correct understanding
of the state estimation problem, for both modeling and control
purposes, is fundamental for a robust deployment of MBRL
solutions to real-world applications.

To deal with the above issues, we introduce MC-
PILCO4PMS an extension of MC-PILCO, that carefully takes
into account the presence of online state estimators during
policy training. With respect to the algorithm described in
Section III, we propose the two following additions:

Offline estimation of GPs training data. We compute
the state estimates used to train the GP models with offline
estimation techniques. In particular, in our real experiments,
we considered two options,
‚ Computation of the velocities with the central difference

formula, i.e., 9qt “ pqt`1 ´ qt´1q{p2Tsq, where Ts is the
sampling time. This technique can be used only when the
measurement noise is limited, otherwise the 9q estimates
might be too noisy.

‚ Estimation of the state with a Kalman smoother [37], with
state-space model given by the general equations relating
positions, velocities, and accelerations. The advantage of
this technique is that it exploits the correlation between
positions and velocities, increasing regularization.

Simulation of the online estimators. During policy op-
timization, instead of simulating only the evolution of the
particles states, we simulate also the measurement system and
the online estimators. The state fed to the policy, denoted by
x̄t, is computed to resemble the state that will be estimated
online. Given the m-th particle, this is given by

x̄
pmq
t “ ϕ

´

q̄
pmq
t . . . q̄

pmq
t´mq , x̄

pmq
t´1 . . . x̄

pmq
t´1´mϕ

¯

,

where ϕ denotes the online state estimator, with memory mq

and mϕ, and q̄pmqt is a fictitious noisy measurement of the
m-th particle positions. More precisely, let qpmqt the positions
of the xpmqt particle state, then, we have

q̄
pmq
t “ q

pmq
t ` e

pmq
t , (17)

where epmqt P Rdx{2 is Gaussian i.i.d. noise with zero mean
and covariance diagprσp1qx̄ . . . σ

pdx{2q
x̄ sq. The σpiqx̄ s values must

be tuned in accordance with the properties of the measurement
system, e.g., the accuracy of the encoder. Then, the control
input of the m-th particle is computed as πθpx̄

pmq
t q, instead

of πθpx
pmq
t q. Differences in particles generation between MC-

PILCO and MC-PILCO4PMS are summed up in the block
scheme reported in Figure 3.

V. MC-PILCO: ABLATION STUDIES

In this section, we analyze several aspects affecting the
performance of MC-PILCO, such as the shape of the cost
function, the use of dropout, the kernel choice, and the proba-
bilistic model adopted, namely, full-state or speed-integration
dynamical model. The purpose of the analysis is to validate
the choices made in the proposed algorithm, and show the

Policy GP
Model

(a) MC-PILCO

Online State
Estimator

Policy GP
Model

+

(b) MC-PILCO4PMS

Fig. 3: Block schemes illustrating particles generation in MC-
PILCO (top) and MC-PILCO4PMS (bottom).

effect that they have on the control learning procedure. MC-
PILCO has been implemented in Python, exploiting the PyTorch
library [38] automatic differentiation functionalities; the code
is publicly available1.

We considered the swing-up of a simulated cart-pole, a
classical benchmark problem, to perform the ablation studies.
The system and the experiments are described in the following.
The physical properties of the system are the same as the
system used in PILCO [6]: the masses of both cart and pole
are 0.5 [kg], the length of the pole is L “ 0.5 [m], and the
coefficient of friction between cart and ground is 0.1. The state
at each time step t is defined as xt “ rpt, 9pt, θt, 9θts, where
pt represents the position of the cart and θt the angle of the
pole. The target states corresponding to the swing-up of the
pendulum is given by pdes “ 0 [m] and |θdes| “ π [rad]. The
downward stable equilibrium point is defined at θt “ 0 [rad].
As done in [6], in order to avoid singularities due to the angles,
xt is replaced in the algorithm with the state representation

x˚t “ rpt, 9pt, 9θt, sinpθtq, cospθtqs (18)

The control action is the force that pushes the cart horizontally.
In all following experiments, we considered white measurement
noise with standard deviation of 10´2, and as initial state dis-
tribution N pr0, 0, 0, 0s, diagpr10´4, 10´4, 10´4, 10´4sqq. The
sampling time is 0.05 seconds. The policy is a squashed-RBF-
network with nb “ 200 basis functions. It receives as input x˚t
and umax “ 10 [N]. The exploration trajectory is obtained by
applying at each time step t a random control action sampled
from Up´10, 10q. GP reduction techniques were not adopted.

1Code available at https://www.merl.com/research/license/MC-PILCO

https://www.merl.com/research/license/MC-PILCO
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In this work, in all the experiments carried out with MC-
PILCO, the cost function is a saturating function with the
same general structure. The saturation is given by a negative
exponential of the xt ´ xdes squared norm, namely,

cpxtq “ 1´ exp
´

´
`

xt ´ x
des

˘T
L
`

xt ´ x
des

˘

¯

,

where L is a diagonal matrix. The diagonal elements of L
are the inverse of the squared cost length-scales, and they
allow weighting the different components of xt ´ xdes, for
instance based on their range of variation. Notice that this
general structure of the cost can be applied to any system,
and generalizes also to tasks with time-variant target, such as
trajectory tracking tasks. Then, the cost function considered
for the cart-pole cost is the following,

cpxtq “ 1´ exp

˜

´

ˆ

|θt| ´ π

lθ

˙2

´

ˆ

pt
lp

˙2
¸

, (19)

where the absolute value on θt is needed to allow different
swing-up solutions to both the equivalent target angles of
the pole, π and ´π. The length-scales lθ and lp define the
shape of the cost function as cp¨q goes to its maximum value
more rapidly with small length-scales. Therefore, higher cost
is associated to the same distance from the target state with
lower lθ and lp. The lower the length-scale the more selective
the cost function.

Other algorithms, like PILCO [6] and Black-DROPS [17],
used an alternative cost function for solving the cart-pole swing-
up, with the saturation given by the negative exponential of
the squared Euclidean distance between xt and xdes, namely,

cpilcopxtq “ 1´ exp

˜

´
1

2

ˆ

dt
0.25

˙2
¸

, (20)

where d2
t “ p2

t`2ptLsinpθtq`2L2p1`cospθtqq is the squared
euclidean distance between the tip of the pole and its position
at the unstable equilibrium point with pt “ 0 [m]. Since we
compare MC-PILCO with PILCO and Black-DROPS in Section
VI-A, the results for the cart-pole system are rendered w.r.t.
(20) to allow direct comparisons with previous literature.

All the comparisons consist of a Monte-Carlo study com-
posed of 50 experiments. Every experiment is composed of
5 trials, each of length 3 seconds. The random seed varies at
each experiment, corresponding to different explorations and
initialization of the policy, as well as different measurement
noise realizations. For each trial, we report the median value
and confidence interval defined by the 5-th and 95-th percentile
of the cumulative cost computed with cpilcop¨q, as well as the
success rates observed. We mark two values of the cumulative
cost indicatively associated with a swing-up for which the
pole oscillates once or twice before reaching the upwards
equilibrium. Trivially, the solution we aim for is the one that
entails only one oscillation. Finally, we label a trial as "success"
if |pt| ă 0.1 [m] and 170 [deg] ă |θt| ă 190 [deg] @t in the
last second of the trial.

To evaluate the statistical significance of the reported results,
we tested the cumulative cost distributions with a Mann-
Whitney U-test [39], and the success rates with a Barnard’s
exact test [40]. The significance level of both tests is set to 0.05.
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Fig. 4: Median and confidence intervals of the cumulative cost cpilco
p¨q

per trial obtained using plθ “ 3, lp “ 1q or plθ “ 0.75, lp “ 0.25q.
In both cases, we used GP speed-integration models with SE kernels
and no dropout was applied. In the cumulative cost plot, we marked
each trial with an *, to indicate the statistical significance of the
difference between the two options. Instead, the difference between
success rates is not statistically significant.

Success Rates
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

l=(0.75,0.25) 0% 4% 42% 68% 70%
l=(3,1) 0% 6% 54% 72% 82%

For the sake of space, we point out statistically significant
results on the plots and tables and we explicitly report p-values
only when objective conclusions are drawn.

A. Cost shaping

The first test regards the performance obtained varying the
length-scales of the cost function in (19). Reward shaping is a
known important aspect of RL and here we analyze it for MC-
PILCO. In Figure 4, we compare the evolution of the cumulative
costs obtained with plθ “ 3, lp “ 1q and plθ “ 0.75, lp “ 0.25q
and we report the observed success rates. The latter set of
length-scales defines a more selective cost as the function shape
becomes more skewed. In both cases, we adopted the speed-
integration model with SE kernel and no dropout was used
during policy optimization. The results show that with plθ “
3, lp “ 1q MC-PILCO performs better. Indeed, the median and
variance of plθ “ 0.75, lp “ 0.25q are higher w.r.t. the ones of
plθ “ 3, lp “ 1q (the difference is statistically relevant at every
trial, with p-value 2.7 ¨ 10´4 at trial 1 and smaller than 10´4

in all subsequent trials). Observing the cumulative costs, it is
possible to appreciate also a difference in the quality of the
policies learned in the two cases. When using plθ “ 3, lp “ 1q,
MC-PILCO learned to swing-up the cart-pole with only one
oscillation in the majority of the experiments, while it has never
been obtained with plθ “ 0.75, lp “ 0.25q. The success rates
obtained with plθ “ 3, lp “ 1q are greater than the counterpart,
but this difference is not statistically significant, showing that
the benefits of less selective cost functions are not sufficient,
alone, to guarantee a clear advantage in terms of success rates.
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Fig. 5: Median and confidence intervals of the cumulative cost cpilco
p¨q

per trial obtained using, or not, dropout. In both cases, we adopted
GP speed-integration model with SE kernels, lθ “ 3 and lp “ 1.
Success rates are reported below. In both cumulative cost plot and
success rate table, we marked each trial with an *, to indicate the
statistical significance of the difference between the two options.

Success Rates
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Dropout OFF 0% 6% 54%* 72%* 82%*
Dropout ON 0% 14% 76%* 98%* 100%*

These facts suggest that the use of too selective cost functions
might decrease significantly the probability of converging
to a solution. The reason might be that with small valued
length-scales, cpxtq is very peaked, resulting in almost null
gradient, when the policy parameters are far from a good
configuration, and increasing the probability of getting stuck
in a local minimum. Instead, higher values of the length-scales
promote the presence of non-null gradients also far away from
the objective, facilitating the policy optimization procedure.
These observations have already been made in PILCO, but the
authors did not encountered difficulties in using a small length-
scale such as 0.25 in (20). This may be due to the analytic
computation of the policy gradient made possible thanks to
moment matching, as well as to the different optimization
algorithm used. On the other hand, the length-scales’ values
seems to have no effect on the precision of the learned solution.
To confirm this, in Table III (rows 4 and 5), are reported the
average distances from the target states obtained by successful
policies at trial 5 during the last second of interaction. No
significant difference in terms of precision in reaching the
targets is observed.

B. Dropout

In this test, we compared the results obtained using, or
not, the dropout during policy optimization. In Figure 5, we
compare the evolution of the cumulative cost obtained in the
two cases and we show the obtained success rates. In both
scenarios, we adopted the speed-integration model with SE
kernel and a cost function with length-scales plθ “ 3, lp “ 1q.
When using dropout, MC-PILCO solved the task at trial 4 in

the 98% of the experiments, and it managed to reach a 100%
success rate by trial 5. Instead, without dropout, the correct
policy was not always found, even in the last trial. Notice that,
when dropout is not used, the upper bounds of the cumulative
costs in the last two trials are higher, meaning that the task
cannot always be solved correctly. The statistical tests show
that the advantages of dropout are statistically significant from
trial 3 to trial 5 (cumulative cost p-values: r0.33, 1.1, 0.29s ¨
10´3; success rate p-values: r11, 0.13, 0.90s ¨ 10´3). This fact
suggests that dropout increases the probability of escaping
from local minima, promoting the identification of a better
policy. Additionally, Table III (rows 3 and 5), shows that
dropout also helps in decreasing the cart positioning error at
the end of the swing-up (in both mean and standard deviation).
Thus, we found empirically that dropout not only helps in
stabilizing the learning process and in finding better solutions
more consistently, but it can also improve the precision of the
learned policies.

C. Kernel function

In this test, we compared the results obtained using as
kernels the SE, the SE+Pp2q or the SP, see Section III-A. Our
aim is to test if the use of structured kernels can increase
data efficiency. The kernels are listed from the least to the
most structured: SE+Pp2q can capture polynomial contributions
more efficiently than SE, which are typical of robotic systems,
and the SP kernel favours modes derived from the system
equations (without assuming to know physical parameters)2. In
all the cases, we adopted a speed-integration model, the cost
function was defined with length-scales plθ “ 3, lp “ 1q,
and dropout was used. In Figure 6, we present, for each
trial, the obtained cumulative costs and success rates. We
can observe that the use of structured kernels, such as SP
and SE+Pp2q, can be beneficial in terms of data efficiency,
compared to adopting the standard SE kernel. In fact, the
fastest convergence is observed in the SP case, where a success
rate of 100% is obtained at trial 3, after only 9 seconds of
experience. Also at trial 2, the gap between the SP performance
and the ones of SE and SE+Pp2q is considerable. The statistical
tests show that the differences w.r.t the SE+Pp2q and SE kernel
are statistically significant from trial 1 to trial 3, confirming
the augmented data efficiency (SP vs SE+Pp2q cumulative
cost p-values: ă 10´4 at trials 1 and 2, 3.9 ¨ 10´3 at trial
3; SP vs SE+Pp2q success rate p-values: r22, 0.37, 6.0s ¨ 10´3

; SP vs SE cumulative cost p-values: always ă 10´4; SP vs
SE success rate p-values: 2.2 ¨ 10´2 at trial 1 and ă 10´4

later). Moreover, the cumulative cost distributions obtained
by SE+Pp2q and SE differ statistically after trial 1 (p-values:
ă 10´4 at trial 2, r0.42, 3.6, 6.2s ¨ 10´3 later), observing a
statistically significant success rate improvement at trial 2 (p-
value: 6.0 ¨10´3) when comparing the performance of SE+Pp2q

and SE kernels. These differences can be explained by the

2SP basis functions are obtained by isolating, in each ODE defining cart-pole
laws of motion, all the state-dependent components that are linearly related. In
particular, we have φ 9ppx, uq “ r 9θ2 sinpθq, sinpθqcospθq, u, 9xs for the cart
velocity GP, and φ 9θpx, uq “ r

9θ2 sinpθqcospθq, sinpθq, u cospθq, 9x cospθqs
for the pole velocity GP.
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Fig. 6: Median and confidence intervals of the cumulative cost cpilco
p¨q

per trial obtained using GP speed-integration model with kernel SE,
SE+Pp2q and SP. In all the cases, lθ “ 3, lp “ 1, and dropout was
used. Success rates are reported below. In both cumulative cost plot
and success rate table, we marked each trial to indicate the statistical
significance of the difference between the three options. The labels
adopted are, *: SE+Pp2q vs SE; :: SP vs SE; ˛: SP vs SE+Pp2q.

Success Rates
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

SE 0%: 14%*: 76%: 98% 100%
SE+P(2) 0%˛ 36%*˛ 88%˛ 98% 100%
SP 8%:˛ 70%:˛ 100%:˛ 100% 100%

capacity of a more structured kernel to better generalize outside
of the training set, i.e., to learn dynamical properties of the
system that hold also in areas of the state-action space with
scarce data points. In fact, some dynamics components of the
cart-pole system are polynomial functions of the GP input
x̃t “ px

˚
t ,utq, with x˚t defined in (18), leading SE+Pp2q to

achieve better data efficiency during the first trials compared
to SE. With one step further, the SP kernel exploits features
determined by a direct knowledge of the physical model, thus
it reaches a even higher level of data efficiency.

D. Speed-integration model

In this test, we compared the performance obtained by
the proposed speed-integration dynamical model and by the
standard full-state model. In both cases, SE kernels were
adopted, the cost function was defined with length-scales
plθ “ 3, lp “ 1q, and dropout was used. The success rates
obtained at each trial are reported in Table II. We can observe
that the performance obtained by the two structures are quite
similar, in fact the differences between success rates observed at
trial 2 and 3 are not statistically significant. Also the precision
in reaching the target state is comparable, as reported in Table
III (rows 3 and 6). Hence, the proposed speed-integration model
performs similarly compared to the full-state counterpart but
offers the advantage of reducing the computational burden by
halving the number of GPs employed.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Full-state 0% 12% 70% 98% 100%
Speed-int. 0% 14% 76% 98% 100%

TABLE II: Success rates per trial obtained using full-state or
speed-integration dynamical models. The difference between
the two options is not statistically significant.

VI. MC-PILCO EXPERIMENTS

In this section, we describe different experiments conducted
on simulated scenarios to test the validity of the proposed MC-
PILCO algorithm. First, we compare MC-PILCO to other GP-
based MBRL algorithms, namely PILCO and Black-DROPS,
on the cart-pole benchmark. Second, we analyse MC-PILCO
and PILCO computational time requirements. Moreover, we
tested the capacity of our algorithm to handle bimodal state
distributions in the cart-pole benchmark. Finally, we tested
MC-PILCO in a higher DoF system, namely a UR5 robotic
manipulator, where we solved a trajectory tracking task.

A. Comparison with other algorithms

We tested PILCO3, Black-DROPS4, and MC-PILCO on
the cart-pole system, previously described in Section V. In
MC-PILCO, we considered the cost function (19) with length-
scales plθ “ 3, lp “ 1q, and adopted the SE kernel, as it
is the one employed by the other algorithms. PILCO and
Black-DROPS optimized their original cost/reward function
(20). To be consistent with the previous literature, we used
the latter cost function as common metric to compare the
results. For fairness, we verified if also PILCO and Black-
DROPS benefits from higher length-scales in (20). Moreover,
we tested Black-DROPS with cost function (19) and increasing
the length-scales from small values to plθ “ 3, lp “ 1q.
The performance of both the algorithms deteriorated as we
increased the length-scales. For these reasons, we report the
results of both algorithms achieved with (20), which gave the
best performance. The observed cumulative costs and success
rates are reported in Figure 7. MC-PILCO achieved the best
performance both in transitory and at convergence. In fact, it
obtained a statistically significant improvement in terms of
success rate w.r.t. the other algorithms from trial 2 to 5 (MC-
PILCO vs PILCO p-values: 4.7 ¨ 10´2 at trial 2 and ă 10´4

later; MC-PILCO vs Black-DROPS p-values: 4.7 ¨ 10´2 at
trial 2, ă 10´4 at trials 3 and 4, and 3.3 ¨ 10´3 at trial 5).
Moreover, MC-PILCO cumulative cost distributions show lower
median and variance w.r.t. counterparts, with differences always
statistically significant up to trial 4 (MC-PILCO vs PILCO,
p-values: 3.5 ¨ 10´3 at trial 1 and ă 10´4 later; MC-PILCO
vs Black-DROPS p-values: ă 10´4 at trial 1 and 2, 4.6 ¨ 10´4

at trial 3 and 1.1 ¨ 10´2 at trial 4). On the contrary, PILCO
showed poor convergence properties, while Black-DROPS can
outperform PILCO, but without reaching MC-PILCO level of
performance. Finally, results in Table III (rows 1, 2, 3, 7 and
8), also show that MC-PILCO policies are more precise in
reaching the target.

3PILCO code available at http://mlg.eng.cam.ac.uk/pilco
4Black-DROPS code available at https://github.com/resibots/blackdrops

http://mlg.eng.cam.ac.uk/pilco/
https://github.com/resibots/blackdrops
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Fig. 7: Median and confidence intervals of the cumulative cost cpilco
p¨q

per trial obtained with PILCO, Black-DROPS and MC-PILCO (with
speed-integration model, SE kernel, dropout activated, lθ “ 3 and
lp “ 1). Success rates are reported below. In both cumulative cost plot
and success rate table, we marked each trial to indicate the statistical
significance of the difference between the three algorithms. In the
following, we report the list of labels adopted, *: MC-PILCO vs
PILCO, :: MC-PILCO vs Black-DROPS

Success Rates
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

PILCO 2% 4%* 20%* 36%* 42%*
Black-DROPS 0% 4%: 30%: 68%: 86%:
MC-PILCO 0% 14%*: 76%*: 98%*: 100%*:

ep [m] eθ [rad]
1 S.I. SE+Pp2q (3,1) drop. on 0.008˘ 0.003 0.011˘ 0.04
2 S.I. SP (3,1) drop. on 0.008˘ 0.003 0.011˘ 0.005
3 S.I. SE (3,1) drop. on 0.010˘ 0.005 0.011˘ 0.005
4 S.I. SE (0.75,0.25) drop. off 0.016˘ 0.009 0.012˘ 0.008
5 S.I. SE (3,1) drop. off 0.019˘ 0.014 0.015˘ 0.009
6 F.S. SE (3,1) drop. on 0.011˘ 0.005 0.011˘ 0.005
7 Black-DROPS 0.025˘ 0.011 0.033˘ 0.019
8 PILCO 0.027˘ 0.012 0.045˘ 0.019

TABLE III: Average distances from the target states (pt “ 0 and
θt “ ˘π) obtained during the last second of interaction with the
cart-pole by the successful policies learned by PILCO, Black-DROPS
and the various MC-PILCO configurations analyzed in Section V.
Different configurations are labeled reporting the adopted dynamical
model structure (speed-integration, S.I., or full-state, F.S.), kernel
function, cost length-scales, and if dropout was used or not. Values
are reported as mean ˘ standard deviation, calculated over the total
number of successful runs at trial 5.

B. Computational time analysis

We analyzed the time required by MC-PILCO and PILCO to
compute the approximation of the cumulative cost expectation
and its gradient w.r.t. the policy parameters. We left Black-
DROPS out of this comparison, because of the different nature
of its optimization strategy, which is based on a black-box
gradient-free algorithm. We remark that the algorithms are
implemented in different languages, which significantly affects
computational time (PILCO is implemented in MATLAB, MC-
PILCO in Python). MC-PILCO relies on the speed-integration
dynamical model, which halves the number of GPs employed.

For these reasons, we are more interested in the behavior
of computational time as a function of training samples and
system dimension than in absolute values of time reported.
Figure 8 shows that both with MC-PILCO and PILCO the
average computational time scales with the square of the
training samples n, as expected from the analysis in Section
II-C. As regards the dependencies w.r.t. system dimensions, we
considered three systems of increasing dimension: a pendulum
(dx “ 2), a cart-pole (dx “ 4), and a cart-double-pendulum
(dx “ 6). MC-PILCO scales linearly, while for PILCO the
linear model is not enough to fit the average computational
time; PILCO scales at least quadratically. This fact represents
a great advantage of the particles based approximation used by
MC-PILCO w.r.t. the moment matching approach followed by
PILCO. Figure 8 also reports MC-PILCO computational time
as a function of the particles number. In accordance with the
results in Section II-C, MC-PILCO complexity scales linearly
with the number of particles. Finally, we tested MC-PILCO
on a GPU instead of a CPU: the average times collected are
almost constant w.r.t. the number of samples and particles. As
expected, MC-PILCO is highly parallelizable.

We conclude the computational time analysis reporting the
average and the standard deviation of the time required to run
MC-PILCO and PILCO for 5 trials, computed in the 50 runs.
On average, PILCO and MC-PILCO took, respectively, 1692
and 2060[s], with standard deviations 94 and 157[s]. The times
are similar, but PILCO is faster than MC-PILCO, even though
it requires more time to compute a single approximation of the
cumulative cost expectation and its gradient. This is due to the
optimization algorithm adopted, which performs fewer steps
but converges to worse policies. As previously highlighted, the
performance gap between the two algorithms is considerable.
At the last trial, PILCO converges only in 42% of the runs,
while MC-PILCO in 100%. For the sake of completeness, we
tried to increase the maximum number of function evaluations
admitted by the PILCO optimization algorithm. Computational
time increased without improving success rate.

C. Handling bimodal distributions

One of the main advantages of particle-based policy opti-
mization is the capability to handle multimodal state evolutions.
This is not possible when applying methods based on moment
matching, such as PILCO. We verified this advantage by
applying both PILCO and MC-PILCO to the simulated cart-pole
system, when considering a very high variance on the initial
cart position, σ2

p “ 0.5, which corresponds to have unknown
cart’s initial position (but limited within a reasonable range).
With this initial condition, the optimal initial cart direction and
the swing-up direction depend on whether the initial position of
the cart is positive or negative. The aim is to be in a situation
in which the policy has to solve the task regardless of the
initial conditions and needs to have a bimodal behaviour in
order to do so. Note that the situation described could be
relevant in several real applications. We kept the same setup
used in previous cart-pole experiments, changing the initial
state distribution to a zero mean Gaussian with covariance
matrix diagpr0.5, 10´4, 10´4, 10´4sqq. MC-PILCO optimizes
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Fig. 8: Average time required to compute the distribution of long-term
predictions and its gradient as a function of: GP training samples
(top-left, on the simulated cart-pole), system dimension (top-right,
with 300 training samples), number of particles (bottom-left, with 300
training samples on the simulated cart-pole). For all the algorithms
and systems, the policy was a RBF network with 200 basis functions.
Hardware adopted: CPU: Intel i7-6700K, GPU: Nvidia RTX 2080 Ti.

the cost in (19) with length-scales plθ “ 3, lp “ 1q. We tested
the policies learned by the two algorithms starting from nine
different cart initial positions (-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5,
2 [m]). In Section VI-A, we observed that PILCO struggles
to consistently converge to a solution and the high variance
in the initial conditions accentuates this issue. Nevertheless,
in order to make the comparison possible, we cherry-picked
a random seed for which PILCO converged to a solution in
this particular scenario. In Figure 9, we show the results of
the experiment. MC-PILCO is able to handle the initial high
variance. It learned a bimodal policy that pushes the cart in two
opposite directions, depending on the cart’s initial position, and
stabilizes the system in all the experiments. On the contrary,
PILCO’s policy is not able to control the cart-pole for all the
tested starting conditions. Its strategy is always to push the
cart in the same direction, and it cannot stabilize the system
when the cart starts far away from the zero position. The state
evolution under MC-PILCO’s policy is bimodal, while PILCO
cannot find this type of solutions because of the unimodal
approximation enforced by moment matching.

In this example, we have seen that a multimodal state
evolution could be the correct solution, when starting from
a unimodal state distribution with high variance, due to
dependencies on initial conditions. In other cases, multimodal-
ity could be directly enforced by the presence of multiple
possible initial conditions that would be badly modeled with a
single unimodal distribution. MC-PILCO can handle all these
situations thanks to its particle-based method for long-term
predictions. Similar results were obtained when considering
bimodal initial distributions.
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Fig. 9: (Left) MC-PILCO policy applied to the cart-pole system
starting from nine different sparse cart initial positions, namely: -2,
-1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2 [m], see middle figures and same pole
angle. All 9 trajectories are reported in the figures.. The policy is
able to complete the task in all cases, pushing the cart in different
directions depending on its initial condition. The pole trajectories
have a bimodal distribution. (Right) PILCO policy applied starting
from the same cart initial positions. This policy struggles to adapt
to different starting conditions, and it cannot swing up the cart-pole
when starting from the initial positions further away from zero.
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Fig. 10: Joint-space control scheme for UR5 robotic arm.

D. Trajectory tracking task on UR5 manipulator

The objective of this experiment is to test MC-PILCO in a
more complex system with higher DoF. We used MC-PILCO
to learn a joint-space controller for a UR5 robotic arm (6 DoF)
simulated in MuJoCo [41]. Let the state at time t be xt “
rqTt , 9qTt s

T , where qt, 9qt P R6 are joint angles and velocities,
respectively. The objective for the policy πθ is to control the
torques τ t in order to follow a desired trajectory pqrt , 9qrt q for
t “ 0, . . . , T . Let et “ qrt ´ qt, 9et “ 9qrt ´ 9qt be position and
velocity errors at time t, respectively. The policy is a multi-
output squashed-RBF-network with nb “ 400 Gaussian basis
functions and umax “ 1 [N¨m] for all the joints, that maps
states and errors into torques, πθ : qt, 9qt, et, 9et ÞÑ τ t. The
control scheme is represented in Figure 10.

In this experiment, we considered a control horizon of 4
seconds with a sampling time of 0.02 seconds. The reference
trajectory has been calculated to make the end-effector draw a
circle in the X-Y operational space. The initial exploration, used
to initialize the speed-integration dynamical model, is provided
by a poorly-tuned PD controller. We used SE+P(1) kernels in
the GP dynamical model. The GP reduction thresholds were
set to 10´3. GP input was built using extended state x˚t “
r 9qt, sinpqtq, cospqtqs. M “ 200 is the number of particles



15

−700 −650 −600 −550 −500
X [mm]

−200

−150

−100

−50

Y 
[m

m
] Exploration

Trial 1
Trial 2
Reference

Fig. 11: End-effector trajectories obtained in exploration and for each
trial of policy learning together with the desired circle. Let eee be
the error between the desired and the actual end-effector trajectories.
In the table below, we report, in millimeters, the maximum and mean
errors (˘ 3ˆstandard deviation) at each trial.

Exploration Trial 1 Trial 2
mean(eee) [mm] 140.66˘158.94 21.15˘41.71 0.65˘0.69
max(eee) [mm] 196.70 40.79 1.08

used for gradient estimation. The cost function considered is
defined as,

cpxtq “ 1´ exp

˜

´

ˆ

||qrt ´ qt||

0.5

˙2

´

ˆ

|| 9qrt ´ 9qt||

1

˙2
¸

.

We assumed full state observability with measurements per-
turbed by white noise with standard deviation of 10´3. The
initial state distribution is a Gaussian centered on pqr0, 9qr0q with
standard deviation of 10´3. Policy optimization parameters are
the same reported in Table I, with the exception of ns “ 400
and σs = 0.05, to enforce more restrictive exit conditions.

In Figure 11, we report the trajectory followed by the end-
effector at each trial, together with the desired trajectory. MC-
PILCO considerably improved the high tracking error obtained
with the PD controller after only 2 trials (corresponding to 8
seconds of interaction with the system). The learned control
policy followed the reference trajectory for the end-effector
with a mean error of 0.65 [mm] (standard deviation of 0.23
[mm]), and a maximum error of 1.08 [mm].

VII. MC-PILCO4PMS EXPERIMENTS

In this section, we provide the experimental results obtained
by MC-PILCO4PMS. First, we propose a proof of concept on
the simulated cart-pole benchmark, to better show the validity of
of the concepts introduced in Section IV. Later, we we test MC-
PILCO4PMS when applied to real systems. In particular, we
experimented on two benchmark systems5: a Furuta pendulum,
and a ball-and-plate (Figure 12).

5A video of the experiments is available at https://youtu.be/–73hmZYaHA.

Arm

Pendulum

Base

Fig. 12: (Left) Furuta pendulum controlled in the upward equilibrium
point by the learned policy. (Right) Ball-and-plate system.
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Fig. 13: Comparison of 400 simulated particles rollout (left) and the
trajectories performed applying repetitively the policy 400 times in
the system (right) with the simulated cart-pole system. Each and all
trajectories are shown with a line. Results obtained without simulating
online filtering are on the top plots, while the ones obtained considering
the low-pass filters are on the bottom. The plots refer to the policy
learned after 5 trials with the system.

A. MC-PILCO4PMS proof of concept

Here, we test the relevance of modeling the presence of
online estimators using the simulated cart-pole system, but
adding assumptions that emulate a real world experiment. We
considered the same physical parameters and the same initial
conditions described in Section V, but assuming to measure
only the cart position and the pole angle. We modeled a possible
measurement system that we would have in the real world
as an additive Gaussian i.i.d. noise with standard deviation
3 ¨ 10´3. In order to obtain reliable estimates of the velocities,
samples were collected at 30 [Hz]. The online estimates of
the velocities were computed by means of causal numerical
differentiation followed by a first order low-pass filter, with
cutoff frequency 7.5 [Hz]. The velocities used to train the GPs
were derived with the central difference formula. To verify the
effectiveness of MC-PILCO4PMS (described in Section IV)
two policy functions were trained. The first policy is obtained

https://youtu.be/--73hmZYaHA
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with MC-PILCO by neglecting the presence of online filtering
during policy optimization and assuming direct access to the
state predicted by the model. On the contrary, the second policy
is trained with MC-PILCO4PMS, which models the presence
of the online estimators. Exploration data were collected with
a random policy. To avoid dependencies on initial conditions,
such as policy initialization and exploration data, we fixed the
same random seed in both experiments. In Figure 13, we report
the results of a Monte Carlo study with 400 runs. On the left,
the final policy is applied to the learned models (ROLLOUT)
and on the right to the cartpole system (TEST). Even though
the two policies perform similarly when applied to the models,
which is all can be tested offline, the results obtained by testing
the policies in the cartpole system are significantly different.
The policy optimized with modeling the presence of online
filtering solves the task in all 400 attempts. In contrast, in
several attempts, the first policy does not solve the task, due to
delays and discrepancies introduced by the online filter and not
considered during policy optimization. We believe that these
considerations on how to manipulate the data during model
learning and policy optimization might be beneficial for other
algorithms than MC-PILCO.

B. Furuta pendulum

The Furuta pendulum (FP) [42] is a popular benchmark
system used in nonlinear control and RL. The system is
composed of two revolute joints and three links. The first link,
called the base, is fixed and perpendicular to the ground. The
second link, called arm, rotates parallel to the ground, while
the rotation axis of the last link, the pendulum, is parallel to
the principal axis of the second link, see Figure 12. The FP is
an under-actuated system as only the first joint is actuated. In
particular, in the FP considered the horizontal joint is actuated
by a DC servomotor, and the two angles are measured by optical
encoders with 4096 [ppr]. The control variable is the motor
voltage. Let the state at time step t be xt “ rθht , 9θht , θ

v
t ,

9θvt s
T ,

where θht is the angle of the horizontal joint and θvt the angle
of the vertical joint attached to the pendulum. The objective
is to learn a controller able to swing-up the pendulum and
stabilize it in the upwards equilibrium (θvt “ ˘π [rad]) with
θht “ 0 [rad]. The trial length is 3 seconds with a sampling
frequency of 30 [Hz]. The cost function is defined as

cpxtq “ 1´ exp

˜

´

ˆ

θht
2

˙2

´

ˆ

|θvt | ´ π

2

˙2
¸

` cbpxtq,

(21)
with

cbpxtq “
1

1` exp
`

´10
`

´ 3
4π ´ θ

h
t

˘˘

`
1

1` exp
`

´10
`

θht ´
3
4π

˘˘ .

The first part of the function in (21) aims at driving the
two angles towards θht “ 0 and θvt “ ˘π, while cbpxtq
penalizes solutions where θht ď ´ 3

4π or θht ě
3
4π. We set

those boundaries to avoid the risk of damaging the system
if the horizontal joint rotates too much. Offline estimates of
velocities for the GP model have been computed by means of
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Fig. 14: (Left) Pendulum angle’s trajectories for each trial. (Right)
Horizontal joint angle’s trajectories for each trial. For all the kernels,
the angles are plotted up to the trial that solved the task.

central differences. For the online estimation, we used causal
numerical differentiation: 9qt “ pqt ´ qt´1q{pTsq, where Ts is
the sampling time. Instead of xt, we considered the extended
state x˚t “ r 9θht ,

9θvt , sinpθ
h
t q, cospθ

h
t q, sinpθ

v
t q, cospθ

v
t qs

T in
GP input. The policy is a squashed-RBF-network with nb “
200 basis functions that receives as input rpθht ´θ

h
t´1q{Ts, pθ

v
t ´

θvt´1q{Ts, sinpθ
h
t q, cospθ

h
t q, sinpθ

v
t q, cospθ

v
t qs

T . The explo-
ration trajectory has been obtained using as input a sum
of ten sine waves of random frequencies and same am-
plitudes. The initial state distribution is assumed to be
N pr0, 0, 0, 0sT , diagpr5 ¨10´3, 5 ¨10´3, 5 ¨10´3, 5 ¨10´3sq. The
GP reduction thresholds were set to 10´3. We solved the task
using the three different choices of kernel functions described in
Section III-A2: squared exponential (SE), squared exponential +
polynomial of degree d (SE+Ppdq) and semi-parametrical (SP)6.
In Figure 14, we show the resulting trajectories for each trial.
MC-PILCO4PMS managed to learn how to swing up the Furuta
pendulum in all cases. It succeeded at trial 6 with kernel SE, at
trial 4 with kernel SE+Pp2q, and at trial 3 with SP kernel. These
experimental results confirm the higher data efficiency of more
structured kernels and the advantage of allowing any kernel
function offered by our MBRL method. Moreover, we can
observe the effectiveness of the cost function (21) in keeping

6SP basis functions can be obtained by isolating, in each ODE defining FP
laws of motion, all the linearly related state-dependent components. In particu-
lar, we have φ 9θh px, uq “ rp

9θvq2sinpθvq, 9θh 9θvsinp2θvq, 9θh, us for the arm
velocity GP, and φ 9θv px, uq “ rp

9θhq2sinp2θvq, 9θv , sinpθvq, u cospθvqs for
the pendulum velocity GP.
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θht always inside the desired boundaries in all the trials and for
any kernel tested. Considering penalties similar to cbpxtq inside
the cost function could be enough to handle soft constraints
also in other scenarios.

C. Ball-and-plate

The ball-and-plate system is composed of a square plate
that can be tilted in two orthogonal directions by means of
two motors. On top of it, there is a camera to track the ball
and measure its position on the plate. Let pbxt , b

y
t q be the

position of the center of the ball along X-axis and Y-axis,
while θp1qt and θ

p2q
t are the angles of the two motors tilting

the plate, at time t. So, the state of the system is defined as
xt “ rb

x
t , b

y
t ,

9bxt ,
9byt , θ

p1q
t , θ

p2q
t , 9θ

p1q
t , 9θ

p2q
t s

T . The drivers of the
motors allow only position control, and do not provide feedback
about the motors angles. To keep track of the motor angles,
we defined the control actions as the difference between two
consecutive reference values sent to the motor controllers, and
we limited the maximum input to a sufficiently small value,
such that the motor controllers are able to reach the target
angle within the sampling time. Then, in first approximation,
the reference angles and the motor angles coincide, and we
have up1qt “ θ

p1q
t`1´ θ

p1q
t and up2qt “ θ

p2q
t`1´ θ

p2q
t . The objective

of the experiment is to learn how to control the motor angles
in order to stabilize the ball around the center of the plate.
Notice that the control task, with the given definition of inputs,
is particularly difficult because the policy must learn to act
in advance, and not only react to changes in the ball position.
The cost function is defined as

cpxtq “ 1´ exp p´gtpxtqq , with

gtpxtq “

ˆ

bxt
0.15

˙2

`

ˆ

byt
0.15

˙2

`

´

θ
p1q
t

¯2

`

´

θ
p2q
t

¯2

.

The trial length is 3 seconds, with a sampling frequency of
30 [Hz]. Measurements provided by the camera are very
noisy, and cannot be used directly to estimate velocities
from positions. We used a Kalman smoother for the offline
filtering of ball positions (bxt , b

y
t ) and associated velocities

(9bxt ,
9byt ). In the control loop, instead, we used a Kalman

filter [43] to estimate online the ball state from noisy
measures of positions. Concerning the model, we need
to learn only two GPs predicting the evolution of the
ball velocity because we directly control motor angles,
hence, their evolution is assumed deterministic. GP inputs,
x̃t “ rx

˚
t , uts, include an extended version of the state, x˚t “

rbxt , b
y
t ,

9bxt ,
9byt , sinpθ

p1q
t q, cospθ

p1q
t q, sinpθ

p2q
t q, cospθ

p2q
t q, pθ

p1q
t ´

θ
p1q
t´1q{Ts, pθ

p2q
t ´ θ

p2q
t´1q{Tss

T where angles have been replaced
by their sines and cosines, and motor angular velocities have
been estimated with causal numerical differentiation (Ts is
the sampling time). The SE+Pp1q kernel (10) is used, where
the linear kernel acts only on a subset of the model inputs,
x̃lint “ rsinpθ

p1q
t q, sinpθ

p2q
t q, cospθ

p1q
t q, cospθ

p2q
t q, uts. We

diminished the GP reduction threshold to 10´4 w.r.t. the FP
experiment because of the small distances the ball can cover
in a time step. The policy is a multi-output RBF network
(11), with nb “ 400 basis functions, that receives as inputs
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Fig. 15: Ten different ball trajectories obtained under the final policy
learned by MC-PILCO4PMS. Steady-state positions are marked with
black crosses. The dashed circle has the same diameter as the ball.

the estimates of pbxt , b
y
t ,

9bxt ,
9byt , θ

p1q
t , θ

p1q
t´1, θ

p2q
t , θ

p2q
t´1q computed

with the Kalman filter; maximum angle displacement is
umax “ 4 [deg] for both motors. The policy optimization
parameters used were the same described in Table I, with
the difference that we set αlr “ 0.006 as initial learning rate.
The reduction of the learning rate is related to the use of
small length-scales in the cost function, that are necessary
to cope with the small range of movement of the ball. For
the same reason, we set also αlrmin “ 0.0015 and σs “ 0.05.
Initial exploration is given by two different trials, in which
the control signals are two triangular waves perturbed by
white noise. Mostly during exploration and initial trials, the
ball might touch the borders of the plate. In those cases, we
kept data up to the collision instant. A peculiarity of this
experiment in comparison to the others seen before is a wide
range of initial conditions. In fact, the ball could be positioned
anywhere on the plate’s surface, and the policy must control it
to the center. The initial distribution of bx0 and by0 is a uniform
Up´0.15, 0.15q, which covers almost the entire surface (the
plate is a square with sides of about 0.20 [m]). For the other
state components, θp1qt and θ

p2q
t , we assumed tighter initial

distributions Up´10´6, 10´6q. MC-PILCO4PMS managed
to learn a policy able to control the ball around the center
starting from any initial position after the third trial, 11.33
seconds of interaction with the system. We tested the learned
policy starting from ten different points, see Figure 15. The
mean steady-state error, i.e., the average distance of the final
ball position from the center observed in the ten trials, was
0.0099 [m], while the maximum measured error was 0.0149
[m], which is lower than the ball radius of 0.016 [m].

VIII. CONCLUSIONS

In this paper, we have presented the MBRL algorithm
MC-PILCO. The proposed framework uses GPs to derive a
probabilistic model of the system dynamics, and updates the
policy parameters through a gradient-based optimization that
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exploits the reparameterization trick and approximates the
expected cumulative cost relying on a Monte Carlo approach.
Compared to similar algorithms proposed in the past, our
Monte Carlo approach worked by focusing on two aspects,
that are (i) proper selection of the cost function, and (ii)
introduction of dropout during policy optimization. Extensive
experiments on the simulated cart-pole benchmark confirm
the effectiveness of the proposed solution, and show the
relevance of the two aforementioned aspects when optimizing
the policy combining the reparameterization trick with particle-
based methods. Particles-based approximation offers other two
advantages in comparison to the moment-matching approach
of PILCO, namely, the possibility of using structured kernels,
such as polynomial kernels and semi-parametrical kernels, and
the ability of handling multimodal distributions. In particular,
experimental results show that the use of structured kernels
can increase data efficiency, reducing the interaction-time
required to learn the task. MC-PILCO was also used to
learn from scratch a joint-space controller for a (simulated)
robotic manipulator, proving able to handle such a relatively
high-DoF task. Moreover, we compared MC-PILCO with
PILCO and Black-DROPS (two state-of-the-art GP-based
MBRL algorithms) on the cart-pole benchmark. MC-PILCO
outperformed both algorithms in this scenario, exhibiting better
data efficiency and asymptotic performance.

Furthermore, we analyzed common problems that arise
when trying to apply MBRL to real systems. In particular,
we focused on systems with partially measurable states (e.g.,
mechanical systems) which are particularly relevant in real
applications. In this context, we proposed a modified version
of our algorithm, called MC-PILCO4PMS, through which
we verified the importance of taking into account the state
estimators used in the real system during policy optimization.
Results have been validated on two different real setups,
specifically, a Furuta pendulum and a ball-and-plate system.

In future works, we are interested in testing the proposed
algorithms in more challenging scenarios, e.g., manipulation
tasks in real world environments. The issues regarding the
impossibility of measuring directly the velocity states tackled
in MC-PILCO4PMS could be further analyzed by considering
the recently introduced "Velocity-free" framework [44]. Finally,
the application to manipulation tasks will also require the
introduction of safe exploration techniques and guarantees
from the state-of-the-art in safe RL [45].
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