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Abstract

Numerous finite-element simulations are required to evaluate the performance of an electric
machine at different operating points, posing a great challenge to the design optimization
of such electric machines. Surrogate modeling approaches have been investigated in recent
years to speed up the analysis and optimization process, including machine learning and deep
learning models. In particular, various convolutional neural network based deep learning
models have been proposed and trained to predict motor performances for a given motor
design. However, larger dataset and relatively long training time are required for such deep
models. In this paper, we present a method for the rapid prediction of 2d flux maps using
ensemble learning technique, with multiple relatively simple regression models. We show
that the technique is much faster to train compared with deep convolutional networks, while
achieving improved accuracy.
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Abstract—Numerous finite-element simulations are required
to evaluate the performance of an electric machine at different
operating points, posing a great challenge to the design optimiza-
tion of such electric machines. Surrogate modeling approaches
have been investigated in recent years to speed up the analysis
and optimization process, including machine learning and deep
learning models. In particular, various convolutional neural
network based deep learning models have been proposed and
trained to predict motor performances for a given motor design.
However, larger dataset and relatively long training time are
required for such deep models. In this paper, we present a
method for the rapid prediction of 2d flux maps using ensemble
learning technique, with multiple relatively simple regression
models. We show that the technique is much faster to train
compared with deep convolutional networks, while achieving
improved accuracy.

Index Terms—Electric machines, design optimization, ma-
chine learning.

I. INTRODUCTION

Electric motors are widely used in many sectors of the
modern society, and becoming more important with the
increasing demands from industries such as electric vehicles,
factory automation, clean energy generation, etc. These new
applications also have higher requirements to the performance
of electric motors, such as higher power density and effi-
ciency, and lower cost. While there are several ways for
motor designer to tackle these challenges, one commonly
used method is optimization during the design phase of the
machines, including parameter based optimization [1] and
more recently topology optimization [2]-[5] to best utilize
the magnetic materials and improve motor performances.

The accurate analysis of electric machines often replies on
finite-element method (FEM) based numerical simulations.
Such simulations can be very time-consuming, especially
when many different operating points are to be assessed for a
design candidate. This poses a great challenge to the design
optimization process of electric machines, when many design
candidates need to be evaluated. It is therefore desirable to
develop alternative method for the rapid prediction of motor
performances.

Surrogate model based optimization has been investigated
to speed up the process [6]. However, traditional surrogate
modeling techniques do not work well for highly nonlinear
problems, such as the current-dependent flux map prediction.
Recently, data-driven approaches have been proposed to
address the problem, by developing machine learning models
for the estimation of output performances of an electric

machine [7], [8]. In particular, deep convolutional neural
network (CNN) based model architectures are commonly
utilized, and are trained with prepared dataset to make pre-
dictions of multiple parameters with motor design candidates
fed into the network as 2D images.

CNN model is capable of capturing the spatial and
temporal dependencies, or features in an image, through the
application of the often many filters in multiple convolution
layers, and achieving superior fitting performance for the
image based dataset over conventional methods. Many deep
learning models have been proposed based on CNN for
image classification tasks trained with ImageNet [9]. Very
deep convolutional networks, such as VGGNet [10] and
ResNet [11], have achieved superior classification accuracy.
CNN based models have also been applied to facilitate
electric machine optimization problems [7], [8], [12]-[14].
In recent study [14], CNN models have been developed
to learn such current-dependent torque characteristics of
motors. However, such deep networks have a huge number
of parameters, often in the order of tens of millions, which
require a large amount of data and resources to train. In
addition, they are susceptible to noisy data and tend to over-
fit with training data, and can have difficulty in generalizing
over unseen data.

In this work, we present an ensemble learning based
technique, by utilizing multiple simple regression models,
each trained to predict only a single output parameter. We
show that this method is much faster to train compared
with deep CNN based models, and better overall prediction
accuracy can also be achieved.

II. PROPOSED ENSEMBLE MODELING PROCESS

In this section, we first introduce the motor design opti-
mization problem we are dealing with, and the dataset used
for machine learning studies. Then we describe the proposed
ensemble learning process with multiple regression models.

A. Problem & Dataset

In this study, we deal with the design optimization of
an interior permanent magnet synchronous motor (IPMSM),
with the nonlinear behavior at different operating points
evaluated. Major parameters, such as the size and architecture
of the motor are fixed, with 48 slots in the stator, 8 poles
in the rotor composed of V-shaped permanent magnets. The
whole rotor core is subject to shape optimization. During
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Figure 1. The cross-section image of an interior permanent magnet motor
for the study.

the optimization process using Normalized Gaussian network
(NGnet) method [2], a total of 27,949 design candidates
are evaluated using FEM simulations. A quarter of the
cross-section of these generated design candidates during the
optimization process are stored in the form of RGB images,
with size 224 x 224 x 3, and serve as input data of the
dataset for machine learning purposes. Fig. 1 shows a few
example images from the dataset. For each design, FEM
simulations are conducted at each operating points(I4, I;) to
identify corresponding flux linkage (¢4, ¢4). The 2D flux
maps can be described using the below quadratic functions
with least-square fitting:

bg = Bavig + Baric + Beziaiq + Byszia + Baaiq + Bgs, (1)
ba = Baoig + Bariz + Bazidiq + Bazia + Baaiq + Bas- (2)

The 12 coefficients, 3,0 through B4, are stored in the form
a 12 x 1 vector and serve as the output data of the dataset.
Our goal is to develop machine learning models to make
prediction of the 12 flux map coefficients for a new design
candidate, such that the normalized root-mean-square error
(RMSE) between the prediction and the ground truth values
is as small as possible.

B. Ensemble Learning Technique

In this work, we need to predict the output of 12 current-
dependent flux map model coefficients using a machine
learning model for a given motor design, which is represented
by a 2d image, which is essentially a high-dimensional input
matrix. This problem is intrinsically a multi-output regression
problem. Many machine learning algorithms have been devel-
oped and sophisticated for single-output regression problems,
which deal with the prediction of a single numeric value.
While some algorithms can in principle handle multi-output
regression problems, such as linear regression model and
decision tree model, they often do not perform well on highly
nonlinear problems with high-dimensional input data. Deep
learning models with more involved architectures are more
commonly used to address such problems. In particular, for

image recognition and classification problems using 2d image
data as input, convolutional neural network (CNN) based
models are among the most popular techniques. Previously,
CNN based models have been applied to speed up the electric
machine design optimization [7], [8], [12]-[14]. In a more
recent study [14], CNN models have been developed to
learn the highly nonlinear current-dependent torque output
of motor design candidates. One main drawback of the CNN
based deep learning models is that the huge number of model
parameters often requires a large dataset and dedicated GPU
for training. It is also challenging to generalize the trained
model to new data, due to their tendency to over-fit with the
training data, especially when the dataset is small.

Instead of tuning the hyper-parameters of deep learning
models, in this work, we utilize ensemble learning technique
to address the problem. In short, we use multiple relatively
simple regression models, each trained to predict only one
output parameter; these models are then ensembled to make
prediction for all the required output parameters. Since each
regression model is much simpler and easier to train, we
can afford to have multiple such models working together
and still be faster than deep learning models. In addition, the
prediction accuracy can be improved, since regression models
can work well for single-output problems. The process of the
proposed method is illustrated in Fig. 2. With a total of 12
regression models trained, we can make a full prediction to
both ¢g and ¢, flux maps.
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Figure 2. Ensemble learning process to predict flux map model parameters
from input motor design images.

C. Regression Models

Two types of regression models are implemented and
tested in this paper: support vector regression (SVR) model,
and multi-layer perceptron (MLP) model.

Support vector regression (SVR) models are built on sup-
port vector machines (SVMs), which are more well-known
for classification problems. SVM is an established machine
learning model built on statistical learning framework, and
offers robust prediction to data samples. The classical SVM
algorithm is a non-probabilistic binary linear classifier. It
takes data samples from two categories and maps these
samples into space, and finds a line, or hyperplane in higher-
dimensional space, that distinctly classifies the data points,



so that the width of the gap between the two categories is
maximized. When a new data sample is fed into the SVM,
it is mapped into a point in the data space in the same
manner, and its category is easily predicted by which side
of the gap the point falls into. SVMs can not only perform
linear classification problems, but also work effectively for
nonlinear problems using kernel method, which implicitly
maps low-dimensional input data into high-dimensional space
with the help of kernel functions. Commonly used nonlinear
kernel functions for SVMs include polynomial functions,
radial basis functions (RBFs), sigmoid functions, etc.

SVR is a supervised learning algorithm that uses the
same principle of SVM for regression problems. For a given
threshold value € , the algorithms finds the best fit line,
or hyperplane, for given training data samples, so that it
has the maximum number of points with a distance smaller
than the threshold value e. Unlike other regression models
which typically minimize the mean-squared error between
prediction and ground truth, SVR tries to find the best fit
within an error threshold €, making it more robust to outliers
and generalizes better to new data.

Multi-layer perceptron (MLP) is a supervised learning
algorithm that learns a nonlinear function between the input
data and corresponding output data, by training on a dataset.
MLP utilizes a feed-forward artificial neural network (ANN)
model, which consists of multiple fully-connected layers.
There may be one or more nonlinear hidden layers in between
the input and output layers, and nonlinear activation functions
such as logistic, tanh, and ReLU are applied to the nodes of
the hidden layers to provide nonlinear mapping between input
and output data. It is a classical machine learning algorithm
for both classification and regression problems.

We use scikit-learn python library for the implementation
of both SVR and MLP models [15].

III. NUMERICAL TEST RESULTS

Th performance of a regression model largely depend
on its hyper-parameters. For SVR, the kernel function can
be polynomial, RBF, or sigmoid; the optimal value of ker-
nel coefficient + can also be different depending on the
dataset and the choice of kernel function; the regularization
parameter C' can also be adjusted to tune the strength of
regularization; different ¢ values can also be specified. By
default, for each SVR model, we use RBF as kernel function,
with v inversely proportional to the variance of the training
data, regularization parameter C' = 1.0, and ¢ = 0.1. We also
individually tune the hyper-parameters for each model using
a grid search approach.

For MLP model, we can tune the number of hidden layers,
the size and the activation function of each hidden layer, the
choice of weight optimization solver, the strength of the Lo
regularization term «, the learning rate , etc. By default, we
use one hidden layer of size 100, with ReLU as activation
function, adam as optimization solver, and o = 0.0001. Grid
search can also be conducted to tune these parameters for
each MLP model.

For comparison purpose, two deep learning models based
on CNN, namely VGG16 and ResNet50 [16], are built and
trained on the same dataset. They are the high-performing
network architectures image classification tasks on ImageNet.

For VGG network, the basic building block includes a
stack of multiple convolution layers (filter size 3 x 3, stride
length 1, padding 1) followed by a MaxPooling layer (2 x
2). Such building blocks can be repeated multiple times in
the model to reach different depths as desired. For VGG16,
16 layers with weight parameters are included in the model.
Original VGG16 model also includes three fully-connected
layers following the convolution blocks, with the last one of
size 1,000 with Softmax activation, representing the classes in
the ImageNet. In our case, since we use it to make predictions
for the 12 flux map parameters, the fully-connected layers are
modified to make the last layer of size 12 without activation
for our regression task.

ResNet, which stands for residual network, allows for
effective training of very deep neural networks that were
previously very challenging or even impossible to train due
to vanishing gradient problem [16]. The innovative feature of
the ResNet is the “skip connections” in convolution blocks
and identity blocks, which adds the input x itself to the output
F(z) of each block including several convolution layers, so
that the output becomes F(z) + x. Skip connections set up
a shortcut for gradients to pass through, which mitigates
the vanishing gradient problem; they also allow the model
to learn an identity function to ensure the higher layers
perform at least as good as the lower layers. As a result,
ResNet improves the efficiency of deeper neural networks
while minimizing the error propagation.

The input RGB image of size 224 x 224 x 3 is fed to
the first convolution layer after zero padding, followed by
batch normalization, ReLU activation, and MaxPooling; four
consecutive stages follow, each composed of a convolution
block and multiple identity blocks. After average pooling, the
output is flattened and connected to a dense layer.

For all the numerical tests, models are trained on 20,124
training data, and test on 7,825 unseen data, corresponding
to a 0.72/0.28 training/test split ratio. The RMS error is
evaluated using the test data for each of the trained model,
and the results are shown in Table I. There are two numbers
shown for SVR and MLP, with the first number showing the
test result for models built with the default settings, the later
number showing the test result for models using parameters
tuned with grid search method. Even with the default model
settings, the prediction performance for the ensemble learning
with regression models already outperform the deep learning
models built with VGG16 and ResNet50. After the fine
tuning, the RMS error is further reduced for both SVR and
MLP models, making the ensemble learning method more
accurate compared with the deep CNN models. The accuracy
of the predicted model parameters is also reflected in the
correlation plot in Fig. 3 using the ensembled MLP models
as an example. For all the 3, parameters, the R value is
higher than 0.97. Similar results for 3; parameters can also be



Table I
COMPARISON OF DIFFERENT MODELS

Model Prediction RMS Error
VGG16 0.205
ResNet50 0.172

SVR 0.162/0.154
MLP 0.165/0.147

obtained. It is worth to note that, in addition to the improved
accuracy, the training process of ensemble models is much
faster and does not require a dedicated GPU, in contrast to
the deep learning models built on CNNs.
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Figure 3. Correlation plot of the predicted flux map coefficients using

ensembled MLP models from 840 through 845, with correlation coefficients
between predicted value and ground truth listed for each plot.

IV. CONCLUSIONS

In this paper, we investigated the surrogate modeling
method for electric motor design optimization. In particular,
a machine learning based surrogate model was developed to
rapidly predict the current-dependent flux map, which would
require a large number of finite-element simulations for each

motor design. We showed that ensemble learning method
with multiple relatively simple regression models can achieve
very good accuracy as compared with much deeper models
built on CNNs, while much lighter to train and deploy. The
proposed method can be easily adopted to other motor design
problems with different output metrics.
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