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ABSTRACT

We investigate a novel multi-task learning framework that disentan-
gles domain-shared features and domain-specific features for do-
main generalization in anomalous sound detection. Disentangle-
ment leads to better latent features and also increases flexibility
in post-processing due to the availability of multiple embedding
spaces. The framework was at the core of our submissions to the
DCASE2022 Challenge Task 2. We ranked 5th out of 32 teams in
the competition, obtaining an overall harmonic mean of 67.57% on
the blind evaluation set, surpassing the baseline by 13.5% and trail-
ing the top rank by 3.4%. We also explored machine-specific loss
functions and domain generalization methods, which showed im-
provements on the development set, but were less effective on the
evaluation set.

Index Terms— Anomaly detection, disentanglement, multi-
task learning, domain generalization, representation learning

1. INTRODUCTION

Machine condition monitoring using acoustic sensors is an impor-
tant topic for industry with applications such as factory automa-
tion and predictive maintenance. Automatic detection of anomalous
sounds is a particularly important application, however, all possible
types of anomalous sounds may not be known in advance, and pur-
posefully damaging machinery to collect anomalous sound record-
ings is undesirable. Thus, there has been much recent research inter-
est in the field of unsupervised anomalous sound detection, where
only data collected under normal operating conditions is available
for training machine learning models.

Much of the recent progress in unsupervised anomalous sound
detection has been driven by DCASE challenges on the topic [1–3].
Typical approaches include those based on autoencoder-like archi-
tectures [4–10], where a model trained only on normal data to re-
construct its input should exhibit large reconstruction error when
presented with an anomalous example at inference time. Another
class of approaches, which we refer to as surrogate task models,
use an alternative supervised training task to learn a model of nor-
mality, and then measure deviations from normal to predict anoma-
lies. Example surrogate tasks include outlier exposure [6, 11], pre-
dicting metadata (e.g., machine instance) or attributes (e.g., operat-
ing load) [12–14], and learning to predict what augmentations (e.g.,
time-stretching or pitch-shifting) were applied to an audio clip [15].

As in many areas where deep learning-based models have be-
come the predominant approach, unsupervised anomalous sound
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detection suffers from issues related to robustness. To better tackle
such issues, the anomalous sound detection tasks of both the 2021
and 2022 DCASE challenges focused on performance under do-
main shift, where acoustic conditions differ based on environmental
background noise or other machine operating conditions. The goal
is to develop methods that should perform equally well in a source
domain, where most of the (normal) training data comes from, and
in a target domain, where only a few normal examples are available.
The 2021 challenge task [2] assumed the domain (source or target)
of the audio sample was known at inference time (a configuration
referred to as domain adaptation), while the 2022 task [3] assumes
the domain is unavailable at inference time (a configuration referred
to as domain generalization).

While many well-known techniques exist for domain general-
ization (see [16] for an overview), we focus our efforts on disen-
tangled representation learning [17], where subsets of learned fea-
ture dimensions correspond to specific factors in the dataset. Disen-
tanglement has been successfully applied for music information re-
trieval in the audio domain [18] and in approaches to domain adap-
tation for image classification [19]. Specifically, we consider learn-
ing feature representations for each normal sound example in the
training set, where subsets of features are learned using different
surrogate tasks. In the case of the DCASE 2022 Task 2 dataset,
we learn a subset of domain-shared features, whose surrogate task
is to predict the section index regardless of domain (each section
is dedicated to a specific type of domain shift, with other condi-
tions being shared across domains), and subsets of domain-specific
features each associated with a surrogate task consisting of pre-
dicting a particular machine attribute (e.g., specific states or envi-
ronmental conditions of the machine), which are typically different
across domains and sections. We demonstrate experimentally that
our disentangled model performs better than a multi-task learning
model where features are not disentangled, and further show that by
weighting individual anomaly scores computed over different dis-
entangled dimensions, we obtain an ensemble-like system using a
single model. Furthermore, by examining the anomaly score in spe-
cific disentangled dimensions, we can better understand which at-
tribute may have caused the anomaly, improving the explainability
of deep learning models.

As discussed in our challenge report [20], we also explored
machine-specific variations to the loss function. While they led to
significant improvements on the dev set, they ultimately performed
worse on the eval set. This paper thus focuses on our best perform-
ing disentangled models.
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2. DISENTANGLED ANOMALY DETECTOR

In this paper, we investigate an approach that disentangles a learned
latent representation into domain-shared and domain-specific fea-
tures for domain generalization in anomalous sound detection, as
illustrated in Fig. 1. In particular, we refer to sections as domain-
shared features and to attributes as domain-specific features. For ex-
ample, in Fan’s section 00, machine noises occurring in the source
domain are of type W and X, while those occurring in the target do-
main are of type Y and Z. Therefore, section 00 is common to both
domains but the machine noises are different across domains.

2.1. Surrogate Task Training
During training, we have a dataset of N normal training exam-
ples for a given machine type, D = {(X(n), y(n))}Nn=1, where
X ∈ RF×T is a magnitude spectrogram with F frequencies and
T time frames, and y = [ys, ya1 , . . . , yaM ] ∈ NM+1 is a vector of
categorical surrogate task labels, where ys represents machine sec-
tion and yam represents the categorical label of the m-th attribute
among the M different attributes available for the given machine
type. We obtain a domain-shared (section) embedding zS and a
domain-specific (attribute) embedding zA as:

zS = ΦSec[CNN(X)] ∈ RDS , zA = ΦAtt[CNN(X)] ∈ RDA

(1)
where CNN(·) is a shared convolutional neural network, while
ΦSec and ΦAtt represent section and attribute specific linear em-
bedding layers, respectively (implemented as 1 × 1 convolutions).
All parameters are trained by minimizing L = LSec +LAtt, where

LSec = log
exp(w0,ys · zS + b0,ys)∑C
c=1 exp(w0,c · zS + b0,c)

, (2)

LAtt =

M∑
m=1

log
exp(wm,ym · zA + bm,ym)∑Cm

cm=1 exp(wm,cm · zA + bm,cm)
(3)

are the cross-entropy losses for section and attributes, respectively,
wi,j and bi,j are learned weight vectors and biases of the associated
classifiers, c indexes the C = 6 sections and cm indexes the Cm

values of the m-th attribute. Because not all attributes are present
among all audio examples of a given machine type in the DCASE
2022 Task 2 dataset, the attribute loss in (3) is combined over all
attributes in a multi-task learning fashion from the same embedding
zA, rather than learning disentangled feature dimensions for each
attribute. If an attribute is unknown for an audio example, the cor-
responding term in the sum of (3) is ignored.

We note that our formulation of attribute learning in (3) as a
multi-task learning problem with a different objective for each at-
tribute differs from [21] where every possible combination of sec-
tion and attribute corresponded to a different class.

2.2. Inference Approaches
The nearest neighbor (NN) algorithm is a simple and effective ap-
proach for anomaly detection [22, 23] given feature vectors of nor-
mal samples. As illustrated in Fig. 1, during inference we use the
NN distance between a test embedding zq and all corresponding
training set embeddings z(j)q for computing an anomaly score, i.e.,

DNN(zq,D) = min
j∈D

Dcos(zq, z
(j)
q ), (4)

where Dcos(·, ·) is the cosine distance between two embedding vec-
tors. The disentangled model allows us to explore multiple infer-
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Figure 1: Block diagram of disentangled anomaly detector. In the
figure, NN stands for Nearest Neighbor. In the training phase, ex-
clusive latent spaces were assigned to sections and attributes.

ence approaches depending on which embedding dimensions we
use for zq in (4) as discussed below.
Disentangled Concatenated: Use the concatenated embedding
zC = [zTS , z

T
A]

T in (4) as shown in the bottom-left of Fig. 1.
Disentangled Weighted: As illustrated in the bottom-right of
Fig. 1, we take a weighted average of NN distances separately com-
puted for section embedding zS and attribute embedding zA, i.e.,

Dwt
NN(zS , zA,D) = wSDNN(zS ,D) + wADNN(zA,D) (5)

where wS and wA are scalar weights, which are optimized after
training is complete based on dev set performance. The best weights
for each machine are shown in Table 4.
Disentangled Sections: Use only section embedding zS in (4).
Disentangled Attributes: Use only attribute embedding zA in (4).

At test time, the section label of the test sample is known, there-
fore, we limit the training set samples from D when computing the
NN distance to be only those samples belonging to the appropri-
ate section. Furthermore, our CNN architecture, detailed in Sec-
tion 3.3, operates on spectrogram chunks of T = 32 time frames
(∼1 s), while each test sample is 10 s long. Using a chunk hop size
of one frame, we obtain 282 embedding vectors per 10 s audio file.
Following [22], we merged the embedding vectors for each sample
by calculating their mean, except for valve where merging based
on standard deviation provided significant gains. We then use the
merged embedding vectors for computing the anomaly score.

3. EXPERIMENTAL SETUP

3.1. Dataset

There are seven different machine types in the DCASE 2022 Task
2 dataset [3] — ToyCar, ToyTrain, Bearing, Fan, Gearbox, Slider,
and Valve. ToyCar and ToyTrain are from the ToyADMOS2 dataset
[24], and the five other machines are from the MIMII DG dataset
[25]. The data under each machine type is divided into sections,
each of which corresponds to a specific type of domain shift. For
example, in Fan, section 00 refers to different machine noise be-
tween source and target domains, while section 01 refers to different
factory noise.

For each audio file, information about its section as well as one
or more attributes is given. For machines belonging to the MIMII
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DG dataset [3], only information on the domain shifting attribute,
such as the type of machine noise in Fan’s section 00 and the type
of factory noise in Fan’s section 01, was present. For ToyCar and
ToyTrain, which belong to the ToyADMOS2 dataset [24], informa-
tion on all attributes was present in the filenames, even for those
attributes that are not the domain shifting one. For the multi-task
attribute learning (3), we make use of all present attributes, and rep-
resent them as categorical variables using all possible values found
in the training set.

3.2. Audio Features and Training Strategy

The dataset contained 10 s audio files at a sampling rate of 16 kHz.
We adopted short-time Fourier transform magnitude spectrograms
as features for the neural network. The hop size was set to 32 ms
and the window size was 128 ms (2048 samples). While training
the neural network, the number of time steps for each audio exam-
ple was 32 frames. Therefore, the input shape for the network was
1025×32. One epoch is defined as training the network on all 6000
audio files (six sections with 1000 examples in each section). For
each audio file, a random chunk of 32 frames is selected for train-
ing. The advantages of this technique were reduced RAM usage,
less chance of overfitting within epochs, and improved generaliza-
tion compared with the baseline.

We adopted the Adam optimizer using a batch size of 32. In
most cases, the learning rate was set to 10−4. For ToyCar, we
found a minor improvement by setting it to 10−5. We trained the
models for a maximum of 300 epochs, saved the model’s weights
every 5 epochs, tested the anomaly detector’s performance on the
development set, and selected the best performing model for each
machine. We were unable to observe a clear relationship between
the performances on the surrogate task and detection of anomalies.
For instance, an improvement in the classification accuracy of sec-
tions (the surrogate task) was not necessarily accompanied by an
improvement in anomaly detection. A similar observation has been
made by previous studies using autoencoder-based models [10].

3.3. Neural Network Architecture

Morita et al. [22] found that the MobileFaceNet architecture [26]
performed better than MobileNetV2 [27] as a feature extractor. We
observed a similar improvement in initial experiments, and hence
adopted MobileFaceNet. The parameter settings for MobileFaceNet
can be found in Table 1. The output of the global depth-wise con-
volution (GDC) layer is a 512-D embedding vector. This is con-
nected to the linear embedding layers (i.e., 1x1 convolutions) LSec

and LAtt defined in Section 2, and associated softmax classification
layers. Additionally, we explore minor modifications to the embed-
ding and softmax layers as explained in Section 3.5.

3.4. Evaluation Metrics

We evaluate our models independently for each section and ma-
chine type using the three official metrics [3]: area under the ROC
curve in the source (AUC (S)) and target (AUC (T)) domains, where
the normal test samples are compared against anomalies from both
domains, along with the domain agnostic partial AUC (pAUC) com-
puted under low false-alarm-rate conditions.

For threshold-dependent metrics, we followed a similar ap-
proach to the baseline [3] and assumed the scores follow a gamma
distribution. The parameters of the gamma distribution are esti-
mated from the NN anomaly scores computed on the training set

Table 1: MobileFaceNet [26] architecture, where all convolutions
are 2D and dw-Conv refers to depth-wise convolution. In the net-
work, Linear Conv 1 × 1 (sec) is connected to Softmax (sec), and
Linear Conv 1× 1 (att) is connected to the other softmax layers for
attributes. For each layer, we show the expansion factor (t), number
of channels (c), number of repeats (n), and stride (s). All convolu-
tions excluding the final linear layers use PReLU activations.

Input Operator t c n s

1x32x1025 Conv 3x3 - 64 1 2
64x16x513 dw-Conv 3x3 - 64 1 1
64x16x513 Bottleneck 2 64 5 2
64x8x257 Bottleneck 4 128 1 2

128x4x129 Bottleneck 2 128 6 2
128x2x65 Bottleneck 4 128 1 2
128x1x33 Bottleneck 2 128 2 1
128x1x33 Conv 1x1 - 512 1 1
512x1x33 Linear GDC 1x33 - 512 1 1
512x1x1 Linear Conv 1x1 (sec) - 128 1 1
512x1x1 Linear Conv 1x1 (att) - 128 1 1
128x1x1 Softmax (sec) - 6 - -
128x1x1 Softmax (att1) - C1 - -

...
...

...
128x1x1 Softmax (attM ) - CM - -

samples independently for each section (excluding self neighbors).
For five machines, we set the anomaly detection threshold as the
90th percentile of the gamma distribution. For Fan and Bearing, we
observed low sensitivity and hence adopted 60th percentile.

3.5. Other Models Considered

ArcFace [29] was shown to improve class separability by adding
angular margin to the loss. We investigated this technique’s advan-
tage by training on section indices. The feature scale and margin
parameters were set to 32 and 0.5 respectively. We found ArcFace
did not work well in a multi-task learning setting, probably because
all attributes were not present in every example.
Conventional Multi-task Learning (MTL): In this framework, the
GDC layer from Table 1 is connected to a single 2D convolutional
1×1 layer with 256 channels. In other words, the features are in an
entangled latent space.
Machine-Specific Loss (MSL): Although not the focus of this pa-
per, we also compare performance against the other two systems
we submitted to the challenge: (S1) MSL as described in [20] and
(S2) an ensemble of MSL and the attentive neural process (ANP)
approach in [10] as detailed in Table 4.

4. RESULTS

Development Set results are shown in Table 2. Training using only
section labels obtains an overall harmonic mean of 72.82%, which
is significantly higher than both the baselines. This improvement is
attributed to adopting the Nearest Neighbor algorithm during post-
processing [22] and to our new training strategy explained in Sec-
tion 3.2. Adopting ArcFace, which is essentially training on sec-
tion indices with additive angular margin, improved the overall per-
formance to 73.62%, while the AUC(T) improved from 67.34% to
71.79%. MTL, which trains on sections and attributes, obtained a
lower overall performance of 72.47%, but improved the AUC(T) to
70.72%. Note that the MTL model does not use ArcFace. The Dis-
entangled Sections (Disent Sec) model only considers the section
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Table 2: Results of different models on the development test set. We merge the three metrics and all sections to obtain a single number per
machine using the harmonic mean. We also report the harmonic mean across machines and sections for each of the three metrics.

System ToyCar ToyTrain Bearing Fan Gearbox Slider Valve AUC (S) AUC (T) pAUC Overall

MSL+ANP (S2) 76.43 59.96 73.93 68.89 85.37 85.93 95.83 87.55 73.43 70.36 76.43
MSL (S1) 76.43 59.37 73.93 68.85 83.03 85.37 95.63 86.78 73.34 69.68 75.93

Disent Wt (S4) 76.95 59.74 72.07 63.91 81.38 85.14 94.50 86.09 71.65 68.21 74.57
Disent Cat (S3) 76.43 58.67 67.09 63.18 80.99 85.37 95.01 84.61 70.59 67.02 73.34
Disent Sec 76.84 56.64 72.07 62.35 81.04 84.84 94.42 86.43 68.64 68.01 73.45
Disent Att 75.26 59.74 60.82 63.02 78.86 78.88 92.72 82.12 69.31 64.09 71.08

MTL 75.61 59.37 68.24 59.14 80.63 83.51 94.49 81.35 70.72 66.83 72.47
Sec ArcFace 72.31 58.09 71.30 68.85 79.37 82.50 92.87 86.50 71.19 66.04 73.62
Sec Softmax 76.20 52.85 73.93 64.39 81.43 85.89 90.11 86.05 67.34 67.92 72.82

ANP-Boot 59.84 50.87 55.54 55.31 64.38 64.11 52.63 69.26 50.87 54.24 57.10
AE Baseline 51.06 39.61 54.80 58.54 63.07 57.99 50.59 68.74 41.91 53.76 52.62
MN Baseline 54.23 51.18 59.16 57.21 59.91 50.26 62.42 63.87 50.14 55.69 56.01

Table 3: Official results of different models on the evaluation test set. We were unable to present the results in the same format as Table 2
because we do not have access to all the scores.

System ToyCar ToyTrain Fan Gearbox Bearing Slider Valve Overall

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

Top rank [28] 88.45 81.83 70.46 61.14 57.34 57.33 86.04 64.22 68.85 54.45 78.26 66.39 83.87 75.22 70.97

Disent Cat (S3) 93.88 78.67 58.23 54.73 48.17 50.34 86.76 79.43 72.54 61.86 73.64 60.70 83.72 62.93 67.57
Disent Wt (S4) 93.30 75.47 57.30 54.93 46.93 50.33 86.34 78.47 71.96 64.26 75.94 64.29 83.05 64.01 67.49
MSL (S1) 93.88 78.67 55.53 54.33 44.50 50.84 86.47 68.54 69.94 61.64 73.64 60.70 78.51 66.08 65.66
MSL+ANP (S2) 93.88 78.67 54.92 54.22 44.29 50.97 82.37 70.76 69.94 61.64 75.96 62.40 77.69 65.39 65.57

MN Baseline 42.79 53.44 51.22 50.98 50.34 55.22 51.34 48.49 58.23 52.16 62.42 53.07 72.77 65.16 54.02
AE Baseline 61.18 60.21 43.14 49.36 41.16 50.12 61.92 51.95 59.93 53.95 58.95 54.16 54.26 51.30 52.94

Table 4: Detailed model setups. We indicate the best MSL for S1.
The ensemble weights (Ens. wt.) of S2 and the disentanglement
weights (Disent. wt.) of S4 were calculated via a grid search.

Ens. wt. (S2) Disent. wt. (S4)

Machine MSL (S1) MSL ANP wS wA

ToyCar Disent Cat 0.60 0.40 0.90 0.10
ToyTrain MTL 0.70 0.30 0.00 1.00
Bearing Sections only 1.00 0.00 1.00 0.00
Fan ArcFace 0.95 0.05 0.15 0.85
Gearbox Adversarial 0.65 0.35 0.80 0.20
Slider Disent Cat 0.70 0.30 0.90 0.10
Valve Disent Split 0.80 0.20 0.90 0.10

embeddings during inference and obtains an overall performance
of 73.45%. Although the overall performance is lower than that
of ArcFace, it showed improvements for all machines except Bear-
ing and Fan. The Disentangled Weighted (Disent Wt) model ob-
tains the highest overall performance for a single model without
ensembling and machine-specific losses. The MSL and MSL+ANP
systems showed improvements on the development set, but, as dis-
cussed next, worsened performance on the evaluation set.
Evaluation Set results on the DCASE challenge blind test set are
shown in Table 3. Interestingly, both of our disentanglement mod-
els performed better than MSL and MSL+ANP. As indicated in Ta-
ble 4, the MSL system used multi-task learning for ToyTrain, only
sections for Bearing, ArcFace for Fan, adversarial training for Gear-
box, and a slightly modified version of disentanglement for valve,
where every attribute was assigned a separate embedding space. In

all cases, our disentangled models outperformed the MSL systems.
These observations convey that disentanglement is an effective tech-
nique for domain generalization.

However, optimizing disentanglement weights (Disent Wt) on
the dev set did not lead to improved performance over the simple
concatenation approach (Disent Cat). One hypothesis is that the
optimized weights turned out to be slightly dataset-specific, which
hurt generalization performance.

We ranked 5th out of 32 teams in the competition, obtaining an
overall harmonic mean of 67.57%. We surpassed the baseline by
13.5% and trailed the top rank [28] by 3.4%. We surpassed the top
rank for Bearing, Gearbox, and ToyCar(AUC). We believe that [28]
adopted a better pipeline to train the feature extractor — (1) they
average model weights from multiple epochs (2) they pre-train on
all 7 machines and fine-tune for each machine. We hypothesize that
our disentangled model can also be improved by incorporating these
optimizations in the training pipeline.

5. CONCLUSION

In this study, we presented a disentangled multi-task learning frame-
work for improved domain generalization in anomalous sound de-
tection. We demonstrated that the disentangled model performs
better than simple multi-task learning, or only learning based on
domain-shared features (e.g., section indices). We also showed that
there is increased flexibility in post-processing due to the multiple
disentangled embedding spaces. In addition to the NN algorithm,
we plan to explore other anomaly detection backends in the future,
and to thoroughly evaluate the explainability of our approach.
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